cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A322003 Indices where A028897(A322000(n)) increases. Partial sums of A072170(n,10).

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 59, 72, 90, 108, 130, 152, 182, 212, 248, 284, 329, 374, 426, 478, 542, 606, 678, 750, 834, 918, 1011, 1104, 1214, 1324, 1446, 1568, 1708, 1848, 2002, 2156, 2333, 2510, 2702, 2894, 3108, 3322, 3552, 3782, 4040, 4298, 4575, 4852, 5156, 5460, 5784, 6108, 6464, 6820, 7196, 7572, 7977, 8382
Offset: 0

Views

Author

M. F. Hasler, Feb 19 2019

Keywords

Comments

A322000 lists all nonnegative integers m ordered by increasing "decibinary" value N = A028897(m) = Sum d[i]*2^i where d[i] are the decimal digits of m. A072170(N,10) says in how many ways a given N can be written in that way. Accordingly, this is also the length of runs of identical values A028897(A322000(k)), and the partial sums, listed here as a(k), give the indices of A322000 where the decibinary value of the terms go up by one.
We have a(k) <= A000123(k-1) with equality for 1 <= k <= 10: the first differences of A000123 give back that sequence with terms duplicated, and this is the limiting column of A072170.

Crossrefs

Programs

  • PARI
    A322003(n)=sum(k=0,n-1,A072170(k,10))
    A322003_vec=vector(99,k,s=if(k>1,s)+A072170(k-1,10)) \\ more efficient for computing a large vector. Excludes the initial a(0) = 0 to have 1-based indices of the vector match the indices of the components a(n), n >= 1.

Formula

a(n) = Sum_{0 <= k < n} A072170(k,10).

A002487 Stern's diatomic series (or Stern-Brocot sequence): a(0) = 0, a(1) = 1; for n > 0: a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19
Offset: 0

Views

Author

Keywords

Comments

Also called fusc(n) [Dijkstra].
a(n)/a(n+1) runs through all the reduced nonnegative rationals exactly once [Stern; Calkin and Wilf].
If the terms are written as an array:
column 0 1 2 3 4 5 6 7 8 9 ...
row 0: 0
row 1: 1
row 2: 1,2
row 3: 1,3,2,3
row 4: 1,4,3,5,2,5,3,4
row 5: 1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5
row 6: 1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,...
...
then (ignoring row 0) the sum of the k-th row is 3^(k-1), each column is an arithmetic progression and the steps are nothing but the original sequence. - Takashi Tokita (butaneko(AT)fa2.so-net.ne.jp), Mar 08 2003
From N. J. A. Sloane, Oct 15 2017: (Start)
The above observation can be made more precise. Let A(n,k), n >= 0, 0 <= k <= 2^(n-1)-1 for k > 0, denote the entry in row n and column k of the left-justified array above.
The equations for columns 0,1,2,3,4,... are successively (ignoring row 0):
1 (n >= 1),
n (n >= 2),
n-1 (n >= 3),
2n-3 (n >= 3),
n-2 (n >= 4),
3n-7 (n >= 4),
...
and in general column k > 0 is given by
A(n,k) = a(k)*n - A156140(k) for n >= ceiling(log_2(k+1))+1, and 0 otherwise.
(End)
a(n) is the number of odd Stirling numbers S_2(n+1, 2r+1) [Carlitz].
Moshe Newman proved that the fraction a(n+1)/a(n+2) can be generated from the previous fraction a(n)/a(n+1) = x by 1/(2*floor(x) + 1 - x). The successor function f(x) = 1/(floor(x) + 1 - frac(x)) can also be used.
a(n+1) = number of alternating bit sets in n [Finch].
If f(x) = 1/(1 + floor(x) - frac(x)) then f(a(n-1)/a(n)) = a(n)/a(n+1) for n >= 1. If T(x) = -1/x and f(x) = y, then f(T(y)) = T(x) for x > 0. - Michael Somos, Sep 03 2006
a(n+1) is the number of ways of writing n as a sum of powers of 2, each power being used at most twice (the number of hyperbinary representations of n) [Carlitz; Lind].
a(n+1) is the number of partitions of the n-th integer expressible as the sum of distinct even-subscripted Fibonacci numbers (= A054204(n)), into sums of distinct Fibonacci numbers [Bicknell-Johnson, theorem 2.1].
a(n+1) is the number of odd binomial(n-k, k), 0 <= 2*k <= n. [Carlitz], corrected by Alessandro De Luca, Jun 11 2014
a(2^k) = 1. a(3*2^k) = a(2^(k+1) + 2^k) = 2. Sequences of terms between a(2^k) = 1 and a(2^(k+1)) = 1 are palindromes of length 2^k-1 with a(2^k + 2^(k-1)) = 2 in the middle. a(2^(k-1) + 1) = a(2^k - 1) = k+1 for k > 1. - Alexander Adamchuk, Oct 10 2006
The coefficients of the inverse of the g.f. of this sequence form A073469 and are related to binary partitions A000123. - Philippe Flajolet, Sep 06 2008
It appears that the terms of this sequence are the number of odd entries in the diagonals of Pascal's triangle at 45 degrees slope. - Javier Torres (adaycalledzero(AT)hotmail.com), Aug 06 2009
Let M be an infinite lower triangular matrix with (1, 1, 1, 0, 0, 0, ...) in every column shifted down twice:
1;
1, 0;
1, 1, 0;
0, 1, 0, 0;
0, 1, 1, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
...
Then this sequence A002487 (without initial 0) is the first column of lim_{n->oo} M^n. (Cf. A026741.) - Gary W. Adamson, Dec 11 2009 [Edited by M. F. Hasler, Feb 12 2017]
Member of the infinite family of sequences of the form a(n) = a(2*n); a(2*n+1) = r*a(n) + a(n+1), r = 1 for A002487 = row 1 in the array of A178239. - Gary W. Adamson, May 23 2010
Equals row 1 in an infinite array shown in A178568, sequences of the form
a(2*n) = r*a(n), a(2*n+1) = a(n) + a(n+1); r = 1. - Gary W. Adamson, May 29 2010
Row sums of A125184, the Stern polynomials. Equivalently, B(n,1), the n-th Stern polynomial evaluated at x = 1. - T. D. Noe, Feb 28 2011
The Kn1y and Kn2y triangle sums, see A180662 for their definitions, of A047999 lead to the sequence given above, e.g., Kn11(n) = A002487(n+1) - A000004(n), Kn12(n) = A002487(n+3) - A000012(n), Kn13(n) = A002487(n+5) - A000034(n+1) and Kn14(n) = A002487(n+7) - A157810(n+1). For the general case of the knight triangle sums see the Stern-Sierpiński triangle A191372. This triangle not only leads to Stern's diatomic series but also to snippets of this sequence and, quite surprisingly, their reverse. - Johannes W. Meijer, Jun 05 2011
Maximum of terms between a(2^k) = 1 and a(2^(k+1)) = 1 is the Fibonacci number F(k+2). - Leonid Bedratyuk, Jul 04 2012
Probably the number of different entries per antidiagonal of A223541. That would mean there are exactly a(n+1) numbers that can be expressed as a nim-product 2^x*2^y with x + y = n. - Tilman Piesk, Mar 27 2013
Let f(m,n) be the frequency of the integer n in the interval [a(2^(m-1)), a(2^m-1)]. Let phi(n) be Euler's totient function (A000010). Conjecture: for all integers m,n n<=m f(m,n) = phi(n). - Yosu Yurramendi, Sep 08 2014
Back in May 1995, it was proved that A000360 is the modulo 3 mapping, (+1,-1,+0)/2, of this sequence A002487 (without initial 0). - M. Jeremie Lafitte (Levitas), Apr 24 2017
Define a sequence chf(n) of Christoffel words over an alphabet {-,+}: chf(1) = '-'; chf(2*n+0) = negate(chf(n)); chf(2*n+1) = negate(concatenate(chf(n),chf(n+1))). Then the length of the chf(n) word is fusc(n) = a(n); the number of '-'-signs in the chf(n) word is c-fusc(n) = A287729(n); the number of '+'-signs in the chf(n) word is s-fusc(n) = A287730(n). See examples below. - I. V. Serov, Jun 01 2017
The sequence can be extended so that a(n) = a(-n), a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1) for all n in Z. - Michael Somos, Jun 25 2019
Named after the German mathematician Moritz Abraham Stern (1807-1894), and sometimes also after the French clockmaker and amateur mathematician Achille Brocot (1817-1878). - Amiram Eldar, Jun 06 2021
It appears that a(n) is equal to the multiplicative inverse of A007305(n+1) mod A007306(n+1). For example, a(12) is 2, the multiplicative inverse of A007305(13) mod A007306(13), where A007305(13) is 4 and A007306(13) is 7. - Gary W. Adamson, Dec 18 2023

Examples

			Stern's diatomic array begins:
  1,1,
  1,2,1,
  1,3,2,3,1,
  1,4,3,5,2,5,3,4,1,
  1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1,
  1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,7,11,4,9,...
  ...
a(91) = 19, because 91_10 = 1011011_2; b_6=b_4=b_3=b_1=b_0=1, b_5=b_2=0;  L=5; m_1=0, m_2=1, m_3=3, m_4=4, m_5=6; c_1=2, c_2=3, c_3=2, c_4=3; f(1)=1, f(2)=2, f(3)=5, f(4)=8, f(5)=19. - _Yosu Yurramendi_, Jul 13 2016
From _I. V. Serov_, Jun 01 2017: (Start)
a(n) is the length of the Christoffel word chf(n):
n  chf(n) A070939(n)   a(n)
1   '-'       1          1
2   '+'       2          1
3   '+-'      2          2
4   '-'       3          1
5   '--+'     3          3
6   '-+'      3          2
... (End)
G.f. = x + x^2 + 2*x^3 + x^4 + 3*x^5 + 2*x^6 + 3*x^7 + x^8 + ... - _Michael Somos_, Jun 25 2019
		

References

  • M. Aigner and G. M. Ziegler, Proofs from THE BOOK, 3rd ed., Berlin, Heidelberg, New York: Springer-Verlag, 2004, p. 97.
  • Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 114.
  • Krishna Dasaratha, Laure Flapan, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse and Matthew Stroegeny, A family of multi-dimensional continued fraction Stern sequences, Abtracts Amer. Math. Soc., Vol. 33 (#1, 2012), #1077-05-2543.
  • Edsger W. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232 (sequence is called fusc).
  • F. G. M. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhaengen und durch gewisse lineare Funktional-Gleichungen definirt werden, Verhandlungen der Koenigl. Preuss. Akademie der Wiss. Berlin (1850), pp. 36-42, Feb 18, 1850. Werke, II, pp. 705-711.
  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.16.3; pp. 148-149.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 117.
  • Thomas Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Record values are in A212289.
If the 1's are replaced by pairs of 1's we obtain A049456.
Inverse: A020946.
Cf. a(A001045(n)) = A000045(n). a(A062092(n)) = A000032(n+1).
Cf. A064881-A064886 (Stern-Brocot subtrees).
A column of A072170.
Cf. A049455 for the 0,1 version of Stern's diatomic array.
Cf. A000119, A262097 for analogous sequences in other bases and A277189, A277315, A277328 for related sequences with similar graphs.
Cf. A086592 and references therein to other sequences related to Kepler's tree of fractions.

Programs

  • Haskell
    a002487 n = a002487_list !! n
    a002487_list = 0 : 1 : stern [1] where
       stern fuscs = fuscs' ++ stern fuscs' where
         fuscs' = interleave fuscs $ zipWith (+) fuscs $ (tail fuscs) ++ [1]
       interleave []     ys = ys
       interleave (x:xs) ys = x : interleave ys xs
    -- Reinhard Zumkeller, Aug 23 2011
    
  • Julia
    using Nemo
    function A002487List(len)
        a, A = QQ(0), [0,1]
        for n in 1:len
            a = next_calkin_wilf(a)
            push!(A, denominator(a))
        end
    A end
    A002487List(91) |> println # Peter Luschny, Mar 13 2018
    
  • Magma
    [&+[(Binomial(k, n-k-1) mod 2): k in [0..n]]: n in [0..100]]; // Vincenzo Librandi, Jun 18 2019
    
  • Maple
    A002487 := proc(n) option remember; if n <= 1 then n elif n mod 2 = 0 then procname(n/2); else procname((n-1)/2)+procname((n+1)/2); fi; end: seq(A002487(n),n=0..91);
    A002487 := proc(m) local a,b,n; a := 1; b := 0; n := m; while n>0 do if type(n,odd) then b := a+b else a := a+b end if; n := floor(n/2); end do; b; end proc: seq(A002487(n),n=0..91); # Program adapted from E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232. - Igor Urbiha (urbiha(AT)math.hr), Oct 28 2002. Since A007306(n) = a(2*n+1), this program can be adapted for A007306 by replacing b := 0 by b := 1.
    A002487 := proc(n::integer) local k; option remember; if n = 0 then 0 elif n=1 then 1 else add(K(k,n-1-k)*procname(n - k), k = 1 .. n) end if end proc:
    K := proc(n::integer, k::integer) local KC; if 0 <= k and k <= n and n-k <= 2 then KC:=1; else KC:= 0; end if; end proc: seq(A002487(n),n=0..91); # Thomas Wieder, Jan 13 2008
    # next Maple program:
    a:= proc(n) option remember; `if`(n<2, n,
          (q-> a(q)+(n-2*q)*a(n-q))(iquo(n, 2)))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 11 2021
    fusc := proc(n) local a, b, c; a := 1; b := 0;
        for c in convert(n, base, 2) do
            if c = 0 then a := a + b else b := a + b fi od;
        b end:
    seq(fusc(n), n = 0..91); # Peter Luschny, Nov 09 2022
    Stern := proc(n, u) local k, j, b;
        b := j -> nops({seq(Bits:-Xor(k, j-k), k = 0..j)}):
        ifelse(n=0, 1-u, seq(b(j), j = 2^(n-1)-1..2^n-1-u)) end:
    seq(print([n], Stern(n, 1)), n = 0..5); # As shown in the comments.
    seq(print([n], Stern(n, 0)), n = 0..5); # As shown in the examples. # Peter Luschny, Sep 29 2024
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[ EvenQ[n], a[n/2], a[(n-1)/2] + a[(n+1)/2]]; Table[ a[n], {n, 0, 100}] (* end of program *)
    Onemore[l_] := Transpose[{l, l + RotateLeft[l]}] // Flatten;
    NestList[Onemore, {1}, 5] // Flatten  (*gives [a(1), ...]*) (* Takashi Tokita, Mar 09 2003 *)
    ToBi[l_] := Table[2^(n - 1), {n, Length[l]}].Reverse[l]; Map[Length,
    Split[Sort[Map[ToBi, Table[IntegerDigits[n - 1, 3], {n, 500}]]]]]  (*give [a(1), ...]*) (* Takashi Tokita, Mar 10 2003 *)
    A002487[m_] := Module[{a = 1, b = 0, n = m}, While[n > 0, If[OddQ[n], b = a+b, a = a+b]; n = Floor[n/2]]; b]; Table[A002487[n], {n, 0, 100}] (* Jean-François Alcover, Sep 06 2013, translated from 2nd Maple program *)
    a[0] = 0; a[1] = 1;
    Flatten[Table[{a[2*n] = a[n], a[2*n + 1] = a[n] + a[n + 1]}, {n, 0, 50}]] (* Horst H. Manninger, Jun 09 2021 *)
    nmax = 100; CoefficientList[Series[x*Product[(1 + x^(2^k) + x^(2^(k+1))), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2022 *)
  • PARI
    {a(n) = n=abs(n); if( n<2, n>0, a(n\2) + if( n%2, a(n\2 + 1)))};
    
  • PARI
    fusc(n)=local(a=1,b=0);while(n>0,if(bitand(n,1),b+=a,a+=b);n>>=1);b \\ Charles R Greathouse IV, Oct 05 2008
    
  • PARI
    A002487(n,a=1,b=0)=for(i=0,logint(n,2),if(bittest(n,i),b+=a,a+=b));b \\ M. F. Hasler, Feb 12 2017, updated Feb 14 2019
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def a(n): return n if n<2 else a(n//2) if n%2==0 else a((n - 1)//2) + a((n + 1)//2) # Indranil Ghosh, Jun 08 2017; corrected by Reza K Ghazi, Dec 27 2021
    
  • Python
    def a(n):
        a, b = 1, 0
        while n > 0:
            if n & 1:
                b += a
            else:
                a += b
            n >>= 1
        return b
    # Reza K Ghazi, Dec 29 2021
    
  • Python
    def A002487(n): return sum(int(not (n-k-1) & ~k) for k in range(n)) # Chai Wah Wu, Jun 19 2022
    
  • Python
    # (fast way for big vectors)
    from math import log, ceil
    import numpy
    how_many_terms = 2**20  # (Powers of 2 recommended but other integers are also possible.)
    A002487, A002487[1]  = numpy.zeros(2**(ce:=ceil(log(how_many_terms,2))), dtype=object), 1
    for exponent in range(1,ce):
        L, L2 = 2**exponent, 2**(exponent+1)
        A002487[L2 - 1] = exponent + 1
        A002487[L:L2][::2] = A002487[L >> 1: L]
        A002487[L + 1:L2 - 2][::2] = A002487[L:L2 - 3][::2]  +  A002487[L + 2:L2 - 1][::2]
    print(list(A002487[0:100])) # Karl-Heinz Hofmann, Jul 22 2025
  • R
    N <- 50 # arbitrary
    a <- 1
    for (n in 1:N)
    {
      a[2*n    ] = a[n]
      a[2*n + 1] = a[n] + a[n+1]
      a
    }
    a
    # Yosu Yurramendi, Oct 04 2014
    
  • R
    # Given n, compute a(n) by taking into account the binary representation of n
    a <- function(n){
      b <- as.numeric(intToBits(n))
      l <- sum(b)
      m <- which(b == 1)-1
      d <- 1
      if(l > 1) for(j in 1:(l-1)) d[j] <- m[j+1]-m[j]+1
      f <- c(0,1)
      if(l > 1) for(j in 3:(l+1)) f[j] <- d[j-2]*f[j-1]-f[j-2]
      return(f[l+1])
    } # Yosu Yurramendi, Dec 13 2016
    
  • R
    # computes the sequence as a vector A, rather than function a() as above.
    A <- c(1,1)
    maxlevel <- 5 # by choice
    for(m in 1:maxlevel) {
      A[2^(m+1)] <- 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        A[2^r*(2*k+1)] <- A[2^r*(2*k)] + A[2^r*(2*k+2)]
    }}
    A # Yosu Yurramendi, May 08 2018
    
  • Sage
    def A002487(n):
        M = [1, 0]
        for b in n.bits():
            M[b] = M[0] + M[1]
        return M[1]
    print([A002487(n) for n in (0..91)])
    # For a dual see A174980. Peter Luschny, Nov 28 2017
    
  • Scheme
    ;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization
    (definec (A002487 n) (cond ((<= n 1) n) ((even? n) (A002487 (/ n 2))) (else (+ (A002487 (/ (- n 1) 2)) (A002487 (/ (+ n 1) 2))))))
    ;; Antti Karttunen, Nov 05 2016
    

Formula

a(n+1) = (2*k+1)*a(n) - a(n-1) where k = floor(a(n-1)/a(n)). - David S. Newman, Mar 04 2001
Let e(n) = A007814(n) = exponent of highest power of 2 dividing n. Then a(n+1) = (2k+1)*a(n)-a(n-1), n > 0, where k = e(n). Moreover, floor(a(n-1)/a(n)) = e(n), in agreement with D. Newman's formula. - Dragutin Svrtan (dsvrtan(AT)math.hr) and Igor Urbiha (urbiha(AT)math.hr), Jan 10 2002
Calkin and Wilf showed 0.9588 <= limsup a(n)/n^(log(phi)/log(2)) <= 1.1709 where phi is the golden mean. Does this supremum limit = 1? - Benoit Cloitre, Jan 18 2004. Coons and Tyler show the limit is A246765 = 0.9588... - Kevin Ryde, Jan 09 2021
a(n) = Sum_{k=0..floor((n-1)/2)} (binomial(n-k-1, k) mod 2). - Paul Barry, Sep 13 2004
a(n) = Sum_{k=0..n-1} (binomial(k, n-k-1) mod 2). - Paul Barry, Mar 26 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 2*u*v*w - u^2*w. - Michael Somos, May 02 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^3*u6 - 3*u1^2*u2*u6 + 3*u2^3*u6 - u2^3*u3. - Michael Somos, May 02 2005
G.f.: x * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))) [Carlitz].
a(n) = a(n-2) + a(n-1) - 2*(a(n-2) mod a(n-1)). - Mike Stay, Nov 06 2006
A079978(n) = (1 + e^(i*Pi*A002487(n)))/2, i=sqrt(-1). - Paul Barry, Jan 14 2005
a(n) = Sum_{k=1..n} K(k, n-k)*a(n - k), where K(n,k) = 1 if 0 <= k AND k <= n AND n-k <= 2 and K(n,k) = 0 else. (When using such a K-coefficient, several different arguments to K or several different definitions of K may lead to the same integer sequence. For example, if we drop the condition k <= n in the above definition, then we arrive at A002083 = Narayana-Zidek-Capell numbers.) - Thomas Wieder, Jan 13 2008
a(k+1)*a(2^n - k) - a(k)*a(2^n - (k+1)) = 1; a(2^n - k) + a(k) = a(2^(n+1) + k). Both formulas hold for 0 <= k <= 2^n - 1. G.f.: G(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(k+1)*z^k + ... Define f(z) = (1 + z + z^2), then G(z) = lim f(z)*f(z^2)*f(z^4)* ... *f(z^(2^n))*... = (1 + z + z^2)*G(z^2). - Arie Werksma (werksma(AT)tiscali.nl), Apr 11 2008
a(k+1)*a(2^n - k) - a(k)*a(2^n - (k+1)) = 1 (0 <= k <= 2^n - 1). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
a(2^n + k) = a(2^n - k) + a(k) (0 <= k <= 2^n). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
Let g(z) = a(1) + a(2)*z + a(3)*z^2 + ... + a(k+1)*z^k + ..., f(z) = 1 + z + z^2. Then g(z) = lim_{n->infinity} f(z)*f(z^2)*f(z^4)*...*f(z^(2^n)), g(z) = f(z)*g(z^2). - Arie Werksma (werksma(AT)tiscali.nl), Apr 18 2008
For 0 <= k <= 2^n - 1, write k = b(0) + 2*b(1) + 4*b(2) + ... + 2^(n-1)*b(n-1) where b(0), b(1), etc. are 0 or 1. Define a 2 X 2 matrix X(m) with entries x(1,1) = x(2,2) = 1, x(1,2) = 1 - b(m), x(2,1) = b(m). Let P(n)= X(0)*X(1)* ... *X(n-1). The entries of the matrix P are members of the sequence: p(1,1) = a(k+1), p(1,2) = a(2^n - (k+1)), p(2,1) = a(k), p(2,2) = a(2^n - k). - Arie Werksma (werksma(AT)tiscali.nl), Apr 20 2008
Let f(x) = A030101(x); if 2^n + 1 <= x <= 2^(n + 1) and y = 2^(n + 1) - f(x - 1) then a(x) = a(y). - Arie Werksma (Werksma(AT)Tiscali.nl), Jul 11 2008
a(n) = A126606(n + 1) / 2. - Reikku Kulon, Oct 05 2008
Equals infinite convolution product of [1,1,1,0,0,0,0,0,0] aerated A000079 - 1 times, i.e., [1,1,1,0,0,0,0,0,0] * [1,0,1,0,1,0,0,0,0] * [1,0,0,0,1,0,0,0,1]. - Mats Granvik and Gary W. Adamson, Oct 02 2009; corrected by Mats Granvik, Oct 10 2009
a(2^(p+2)*n+2^(p+1)-1) - a(2^(p+1)*n+2^p-1) = A007306(n+1), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 07 2013
a(2*n-1) = A007306(n), n > 0. - Yosu Yurramendi, Jun 23 2014
a(n*2^m) = a(n), m>0, n > 0. - Yosu Yurramendi, Jul 03 2014
a(k+1)*a(2^m+k) - a(k)*a(2^m+(k+1)) = 1 for m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Nov 07 2014
a(2^(m+1)+(k+1))*a(2^m+k) - a(2^(m+1)+k)*a(2^m+(k+1)) = 1 for m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Nov 07 2014
a(5*2^k) = 3. a(7*2^k) = 3. a(9*2^k) = 4. a(11*2^k) = 5. a(13*2^k) = 5. a(15*2^k) = 4. In general: a((2j-1)*2^k) = A007306(j), j > 0, k >= 0 (see Adamchuk's comment). - Yosu Yurramendi, Mar 05 2016
a(2^m+2^m'+k') = a(2^m'+k')*(m-m'+1) - a(k'), m >= 0, m' <= m-1, 0 <= k' < 2^m'. - Yosu Yurramendi, Jul 13 2016
From Yosu Yurramendi, Jul 13 2016: (Start)
Let n be a natural number and [b_m b_(m-1) ... b_1 b_0] its binary expansion with b_m=1.
Let L = Sum_{i=0..m} b_i be the number of binary digits equal to 1 (L >= 1).
Let {m_j: j=1..L} be the set of subindices such that b_m_j = 1, j=1..L, and 0 <= m_1 <= m_2 <= ... <= m_L = m.
If L = 1 then c_1 = 1, otherwise let {c_j: j=1..(L-1)} be the set of coefficients such that c_(j) = m_(j+1) - m_j + 1, 1 <= j <= L-1.
Let f be a function defined on {1..L+1} such that f(1) = 0, f(2) = 1, f(j) = c_(j-2)*f(j-1) - f(j-2), 3 <= j <= L+1.
Then a(n) = f(L+1) (see example). (End)
a(n) = A001222(A260443(n)) = A000120(A277020(n)). Also a(n) = A000120(A101624(n-1)) for n >= 1. - Antti Karttunen, Nov 05 2016
(a(n-1) + a(n+1))/a(n) = A037227(n) for n >= 1. - Peter Bala, Feb 07 2017
a(0) = 0; a(3n) = 2*A000360(3n-1); a(3n+1) = 2*A000360(3n) - 1; a(3n+2) = 2*A000360(3n+1) + 1. - M. Jeremie Lafitte (Levitas), Apr 24 2017
From I. V. Serov, Jun 14 2017: (Start)
a(n) = A287896(n-1) - 1*A288002(n-1) for n > 1;
a(n) = A007306(n-1) - 2*A288002(n-1) for n > 1. (End)
From Yosu Yurramendi, Feb 14 2018: (Start)
a(2^(m+2) + 2^(m+1) + k) - a(2^(m+1) + 2^m + k) = 2*a(k), m >= 0, 0 <= k < 2^m.
a(2^(m+2) + 2^(m+1) + k) - a(2^(m+1) + k) = a(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^m + k) = a(k)*(m - floor(log_2(k)) - 1) + a(2^(floor(log_2(k))+1) + k), m >= 0, 0 < k < 2^m, a(2^m) = 1, a(0) = 0. (End)
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = 1, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r < - m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m. (End)
Trow(n) = [card({k XOR (j-k): k=0..j}) for j = 2^(n-1)-1..2^n-2] when regarded as an irregular table (n >= 1). - Peter Luschny, Sep 29 2024
a(n) = A000120(A168081(n)). - Karl-Heinz Hofmann, Jun 16 2025

Extensions

Additional references and comments from Len Smiley, Joshua Zucker, Rick L. Shepherd and Herbert S. Wilf
Typo in definition corrected by Reinhard Zumkeller, Aug 23 2011
Incorrect formula deleted and text edited by Johannes W. Meijer, Feb 07 2013

A008619 Positive integers repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38
Offset: 0

Views

Author

Keywords

Comments

The floor of the arithmetic mean of the first n+1 positive integers. - Cino Hilliard, Sep 06 2003
Number of partitions of n into powers of 2 where no power is used more than three times, or 4th binary partition function (see A072170).
Number of partitions of n in which the greatest part is at most 2. - Robert G. Wilson v, Jan 11 2002
Number of partitions of n into at most 2 parts. - Jon Perry, Jun 16 2003
a(n) = #{k=0..n: k+n is even}. - Paul Barry, Sep 13 2003
Number of symmetric Dyck paths of semilength n+2 and having two peaks. E.g., a(6)=4 because we have UUUUUUU*DU*DDDDDDD, UUUUUU*DDUU*DDDDDD, UUUUU*DDDUUU*DDDDD and UUUU*DDDDUUUU*DDDD, where U=(1,1), D=(1,-1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
Smallest positive integer whose harmonic mean with another positive integer is n (for n > 0). For example, a(6)=4 is already given (as 4 is the smallest positive integer such that the harmonic mean of 4 (with 12) is 6) - but the harmonic mean of 2 (with -6) is also 6 and 2 < 4, so the two positive integer restrictions need to be imposed to rule out both 2 and -6.
Second outermost diagonal of Losanitsch's triangle (A034851). - Alonso del Arte, Mar 12 2006
Arithmetic mean of n-th row of A080511. - Amarnath Murthy, Mar 20 2003
a(n) is the number of ways to pay n euros (or dollars) with coins of one and two euros (respectively dollars). - Richard Choulet and Robert G. Wilson v, Dec 31 2007
Inverse binomial transform of A045623. - Philippe Deléham, Dec 30 2008
Coefficient of q^n in the expansion of (m choose 2)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
Binomial transform of (-1)^n*A034008(n) = [1,0,1,-2,4,-8,16,-32,...]. - Philippe Deléham, Nov 15 2009
From Jon Perry_, Nov 16 2010: (Start)
Column sums of:
1 1 1 1 1 1...
1 1 1 1...
1 1...
..............
--------------
1 1 2 2 3 3... (End)
This sequence is also the half-convolution of the powers of 1 sequence A000012 with itself. For the definition of half-convolution see a comment on A201204, where also the rule for the o.g.f. is given. - Wolfdieter Lang, Jan 09 2012
a(n) is also the number of roots of the n-th Bernoulli polynomial in the right half-plane for n>0. - Michel Lagneau, Nov 08 2012
a(n) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the Exe vibronic perturbation matrix, H(Q) (cf. Viel & Eisfeld). - Bradley Klee, Jul 21 2015
a(n) is the number of distinct integers in the n-th row of Pascal's triangle. - Melvin Peralta, Feb 03 2016
a(n+1) for n >= 3 is the diameter of the Generalized Petersen Graph G(n, 1). - Nick Mayers, Jun 06 2016
The arithmetic function v_1(n,2) as defined in A289198. - Robert Price, Aug 22 2017
Also, this sequence is the second column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018
a(n+2) is the least k such that given any k integers, there exist two of them whose sum or difference is divisible by n. - Pablo Hueso Merino, May 09 2020
Column k = 2 of A051159. - John Keith, Jun 28 2021

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 109, Eq. [6c]; p. 116, P(n,2).
  • D. Parisse, 'The tower of Hanoi and the Stern-Brocot Array', Thesis, Munich 1997

Crossrefs

Essentially same as A004526.
Harmonic mean of a(n) and A056136 is n.
a(n)=A010766(n+2, 2).
Cf. A010551 (partial products).
Cf. A263997 (a block spiral).
Cf. A289187.
Column 2 of A235791.

Programs

  • Haskell
    a008619 = (+ 1) . (`div` 2)
    a008619_list = concatMap (\x -> [x,x]) [1..]
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..100]]; // Vincenzo Librandi, Feb 04 2015
    
  • Maple
    a:= n-> iquo(n+2, 2): seq(a(n), n=0..75);
  • Mathematica
    Flatten[Table[{n,n},{n,35}]] (* Harvey P. Dale, Sep 20 2011 *)
    With[{c=Range[40]},Riffle[c,c]] (* Harvey P. Dale, Feb 23 2013 *)
    CoefficientList[Series[1/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
    LinearRecurrence[{1, 1, -1}, {1, 1, 2}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
    Table[QBinomial[n, 2, -1], {n, 2, 75}] (* John Keith, Jun 28 2021 *)
  • PARI
    a(n)=n\2+1
    
  • Python
    def A008619(n): return (n>>1)+1 # Chai Wah Wu, Jul 07 2022
  • Sage
    a = lambda n: 1 if n==0 else a(n-1)+1 if 2.divides(n) else a(n-1) # Peter Luschny, Feb 05 2015
    
  • Scala
    (2 to 99).map( / 2) // _Alonso del Arte, May 09 2020
    

Formula

Euler transform of [1, 1].
a(n) = 1 + floor(n/2).
G.f.: 1/((1-x)(1-x^2)).
E.g.f.: ((3+2*x)*exp(x) + exp(-x))/4.
a(n) = a(n-1) + a(n-2) - a(n-3) = -a(-3-n).
a(0) = a(1) = 1 and a(n) = floor( (a(n-1) + a(n-2))/2 + 1 ).
a(n) = (2*n + 3 + (-1)^n)/4. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} binomial(j, i)*(-2)^i. - Paul Barry, Aug 26 2003
E.g.f.: ((1+x)*exp(x) + cosh(x))/2. - Paul Barry, Sep 13 2003
a(n) = A108299(n-1,n)*(-1)^floor(n/2) for n > 0. - Reinhard Zumkeller, Jun 01 2005
a(n) = A108561(n+2,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
a(n) = A125291(A125293(n)) for n>0. - Reinhard Zumkeller, Nov 26 2006
a(n) = ceiling(n/2), n >= 1. - Mohammad K. Azarian, May 22 2007
INVERT transformation yields A006054 without leading zeros. INVERTi transformation yields negative of A124745 with the first 5 terms there dropped. - R. J. Mathar, Sep 11 2008
a(n) = A026820(n,2) for n > 1. - Reinhard Zumkeller, Jan 21 2010
a(n) = n - a(n-1) + 1 (with a(0)=1). - Vincenzo Librandi, Nov 19 2010
a(n) = A000217(n) / A110654(n). - Reinhard Zumkeller, Aug 24 2011
a(n+1) = A181971(n,n). - Reinhard Zumkeller, Jul 09 2012
1/(1+2/(2+3/(3+4/(4+5/(5+...(continued fraction))))) = 1/(e-1), see A073333. - Philippe Deléham, Mar 09 2013
a(n) = floor(A000217(n)/n), n > 0. - L. Edson Jeffery, Jul 26 2013
a(n) = n*a(n-1) mod (n+1) = -a(n-1) mod (n+1), the least positive residue modulo n+1 for each expression for n > 0, with a(0) = 1 (basically restatements of Vincenzo Librandi's formula). - Rick L. Shepherd, Apr 02 2014
a(n) = (a(0) + a(1) + ... + a(n-1))/a(n-1), where a(0) = 1. - Melvin Peralta, Jun 16 2015
a(n) = Sum_{k=0..n} (-1)^(n-k) * (k+1). - Rick L. Shepherd, Sep 18 2020
a(n) = a(n-2) + 1 for n >= 2. - Vladimír Modrák, Sep 29 2020
a(n) = A004526(n)+1. - Chai Wah Wu, Jul 07 2022

Extensions

Additional remarks from Daniele Parisse
Edited by N. J. A. Sloane, Sep 06 2009
Partially edited by Joerg Arndt, Mar 11 2010

A000123 Number of binary partitions: number of partitions of 2n into powers of 2.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1828, 2030, 2268, 2506, 2790, 3074, 3404, 3734, 4124, 4514, 4964, 5414, 5938, 6462, 7060, 7658, 8350, 9042, 9828
Offset: 0

Views

Author

Keywords

Comments

Also, a(n) = number of "non-squashing" partitions of 2n (or 2n+1), that is, partitions 2n = p_1 + p_2 + ... + p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k [Hirschhorn and Sellers].
Row sums of A101566. - Paul Barry, Jan 03 2005
Equals infinite convolution product of [1,2,2,2,2,2,2,2,2] aerated A000079 - 1 times, i.e., [1,2,2,2,2,2,2,2,2] * [1,0,2,0,2,0,2,0,2] * [1,0,0,0,2,0,0,0,2]. - Mats Granvik and Gary W. Adamson, Aug 04 2009
Which can be further decomposed to the infinite convolution product of finally supported sequences, namely [1,1] aerated A000079 - 1 times with multiplicity A000027 + 1 times, i.e., [1,1] * [1,1] * [1,0,1] * [1,0,1] * [1,0,1] * ... (next terms are [1,0,0,0,1] 4 times, etc.). - Eitan Y. Levine, Jun 18 2023
Given A018819 = A000123 with repeats, polcoeff (1, 1, 2, 2, 4, 4, ...) * (1, 1, 1, ...) = (1, 2, 4, 6, 10, ...) = (1, 0, 2, 0, 4, 0, 6, ...) * (1, 2, 2, 2, ...). - Gary W. Adamson, Dec 16 2009
Let M = an infinite lower triangular matrix with (1, 2, 2, 2, ...) in every column shifted down twice. A000123 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. Replacing (1, 2, 2, 2, ...) with (1, 3, 3, 3, ...) and following the same procedure, we obtain A171370: (1, 3, 6, 12, 18, 30, 42, 66, 84, 120, ...). - Gary W. Adamson, Dec 06 2009
First differences of the sequence are (1, 2, 2, 4, 4, 6, 6, 10, ...), A018819, i.e., the sequence itself with each term duplicated except for the first one (unless a 0 is prefixed before taking the first differences), as shown by the formula a(n) - a(n-1) = a(floor(n/2)), valid for all n including n = 0 if we let a(-1) = 0. - M. F. Hasler, Feb 19 2019
Sum over k <= n of number of partitions of k into powers of 2, A018819. - Peter Munn, Feb 21 2020

Examples

			For non-squashing partitions and binary partitions see the example in A018819.
For n=3, the a(3)=6 admitted partitions of 2n=6 are 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+4 and 2+4. - _R. J. Mathar_, Aug 11 2021
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
  • R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. G. de Bruijn, On Mahler's partition problem, Indagationes Mathematicae, vol. X (1948), 210-220.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • H. Gupta, A simple proof of the Churchhouse conjecture concerning binary partitions, Indian J. Pure Appl. Math. 3 (1972), 791-794.
  • H. Gupta, A direct proof of the Churchhouse conjecture concerning binary partitions, Indian J. Math. 18 (1976), 1-5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A002033, A002487, A002577, A005704-A005706, A023359, A040039, A100529. Partial sums and bisection of A018819.
A column of A072170. Row sums of A089177. Twice A033485.
Cf. A145515. - Alois P. Heinz, Apr 16 2009
Cf. A171370. - Gary W. Adamson, Dec 06 2009

Programs

  • Haskell
    import Data.List (transpose)
    a000123 n = a000123_list !! n
    a000123_list = 1 : zipWith (+)
       a000123_list (tail $ concat $ transpose [a000123_list, a000123_list])
    -- Reinhard Zumkeller, Nov 15 2012, Aug 01 2011
    
  • Magma
    [1] cat [n eq 1 select n+1 else Self(n-1) + Self(n div 2): n in [1..70]]; // Vincenzo Librandi, Dec 17 2016
    
  • Maple
    A000123 := proc(n) option remember; if n=0 then 1 else A000123(n-1)+A000123(floor(n/2)); fi; end; [ seq(A000123(i),i=0..50) ];
    # second Maple program: more efficient for large n; try: a( 10^25 );
    g:= proc(b, n) option remember; `if`(b<0, 0, `if`(b=0 or
          n=0, 1, `if`(b>=n, add((-1)^(t+1)*binomial(n+1, t)
          *g(b-t, n), t=1..n+1), g(b-1, n)+g(2*b, n-1))))
        end:
    a:= n-> (t-> g(n/2^(t-1), t))(max(ilog2(2*n), 1)):
    seq(a(n), n=0..60); # Alois P. Heinz, Apr 16 2009, revised Apr 14 2016
  • Mathematica
    a[0] = 1; a[n_] := a[n] = a[Floor[n/2]] + a[n-1]; Array[a,49,0] (* Jean-François Alcover, Apr 11 2011, after M. F. Hasler *)
    Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1}]], #2]]] &, {1}, Range[2, 49]] (* Birkas Gyorgy, Apr 18 2011 *)
  • PARI
    {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) * (1+x) / (1-x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, a(n\2) + a(n-1))}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    A123=[];A000123(n)={ n<3 && return(2^n); if( n<=#A123, A123[n] && return(A123[n]); A123[n-1] && return( A123[n] = A123[n-1]+A000123(n\2) ), n>2*#A123 && A123=concat(A123,vector((n-#A123)\2))); A123[if(n>#A123,1,n)]=2*sum(k=1,n\2-1,A000123(k),1)+(n%2+1)*A000123(n\2)} \\ Stores results in global vector A123 dynamically resized to at most 3n/4 when size is less than n/2. Gives a(n*10^6) in ~ n sec. - M. F. Hasler, Apr 30 2009
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,2^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Oct 30 2012
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A000123(n): return 1 if n == 0 else A000123(n-1) + A000123(n//2) # Chai Wah Wu, Jan 18 2022

Formula

a(n) = A018819(2*n).
a(n) = a(n-1) + a(floor(n/2)). For proof see A018819.
2 * a(n) = a(n+1) + a(n-1) if n is even. - Michael Somos, Jan 07 2011
G.f.: (1-x)^(-1) Product_{n>=0} (1 - x^(2^n))^(-1).
a(n) = Sum_{i=0..n} a(floor(i/2)) [O'Shea].
a(n) = (1/n)*Sum_{k=1..n} (A038712(k)+1)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Aug 22 2002
Conjecture: Limit_{n ->infinity} (log(n)*a(2n))/(n*a(n)) = c = 1.63... - Benoit Cloitre, Jan 26 2003 [The constant c is equal to 2*log(2) = 1.38629436... =A016627. - Vaclav Kotesovec, Aug 07 2019]
G.f. A(x) satisfies A(x^2) = ((1-x)/(1+x)) * A(x). - Michael Somos, Aug 25 2003
G.f.: Product_{k>=0} (1+x^(2^k))/(1-x^(2^k)) = (Product_{k>=0} (1+x^(2^k))^(k+1) )/(1-x) = Product_{k>=0} (1+x^(2^k))^(k+2). - Joerg Arndt, Apr 24 2005
From Philippe Flajolet, Sep 06 2008: (Start)
The asymptotic rate of growth is known precisely - see De Bruijn's paper. With p(n) the number of partitions of n into powers of two, the asymptotic formula of de Bruijn is: log(p(2*n)) = 1/(2*L2)*(log(n/log(n)))^2 + (1/2 + 1/L2 + LL2/L2)*log(n) - (1 + LL2/L2)*log(log(n)) + Phi(log(n/log(n))/L2), where L2=log(2), LL2=log(log(2)) and Phi(x) is a certain periodic function with period 1 and a tiny amplitude.
Numerically, Phi(x) appears to have a mean value around 0.66. An expansion up to O(1) term had been obtained earlier by Kurt Mahler. (End)
G.f.: exp( Sum_{n>=1} 2^A001511(n) * x^n/n ), where 2^A001511(n) is the highest power of 2 that divides 2*n. - Paul D. Hanna, Oct 30 2012
(n/2)*a(n) = Sum_{k = 0..n-1} (n-k)/A000265(n-k)*a(k). - Peter Bala, Mar 03 2019
Conjectures from Mikhail Kurkov, May 04 2025: (Start)
Sum_{k=0..n} a(2^m*k)*A106400(n-k) = A125790(m,2*n) for m >= 0, n >= 0.
Sum_{k=0..n} a(2^m*(2*k+1))*A106400(n-k) = A125790(m+1,2*n+1) for m >= 0, n >= 0.
More generally, if we define b(n,m,p,q) = Sum_{k=0..n} a(2^m*(2*p*k+2*q+1))*A106400(n-k) for m >= 0, p > 0, q >= 0, n >= 0, then it also looks like that we have b(n,m,p,q) = Sum_{k=0..m+1} A078121(m+1,k)*b(n,k,p/2,(q-1)/2), b(n,m,p,q) = Sum_{k=0..m+1} A078121(m+1,k)*b(n,k,p/2,q/2)*(-1)^(m+k+1) for m >= 0, p > 0, q >= 0, n >= 0. (End)
Conjecture: Sum_{i>=0} a(2^m*i + k)*x^i = f(k,x) / Product_{q>=0} (1 - x^(2^q)) for m > 0, 2^(m-1) <= k < 2^m where f(k,x) is g.f. for k-th row of A381810. - Mikhail Kurkov, May 17 2025

Extensions

More terms from Robin Trew (trew(AT)hcs.harvard.edu)
Values up to a(10^4) checked with given PARI code by M. F. Hasler, Apr 30 2009

A028897 If n = Sum c_i 10^i then a(n) = Sum c_i 2^i.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 4
Offset: 0

Views

Author

Keywords

Comments

For n<100, this is the same result as "If n = Sum c_i 10^i then a(n) = Sum c_i (i+1)". - Henry Bottomley, Apr 20 2001
n_2 in the notation of A122618.
Left inverse of A007088 (binary numbers), cf. formula from Karttunen. - M. F. Hasler, Jun 13 2023

Crossrefs

Differs from A081594 and A244158 for the first time at n = 100, which here is a(100) = 4.
See A322000 for integers ordered according to the value of a(n).

Programs

  • Haskell
    a028897 0 = 0
    a028897 n = 2 * a028897 n' + d where (n', d) = divMod n 10
    -- Reinhard Zumkeller, Nov 06 2014
  • Mathematica
    a[n_ /; n < 10] := n; a[n_] := a[n] = If[Mod[n, 10] != 0, a[n-1] + 1, 2*a[n/10]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 02 2016 *)
  • PARI
    a(n)=if(n<1,0,if(n%10,a(n-1)+1,2*a(n/10)))
    
  • PARI
    A028897(n)=fromdigits(digits(n),2) \\ M. F. Hasler, Feb 14 2019
    (MIT/GNU Scheme) (define (A028897 n) (let loop ((z 0) (i 0) (n n)) (if (zero? n) z (loop (+ z (* (modulo n 10) (expt 2 i))) (1+ i) (floor->exact (/ n 10)))))) ;; Antti Karttunen, Jun 22 2014
    

Formula

a(n) = 2*a(floor(n/10)) + (n mod 10). - Henry Bottomley, Apr 20 2001
a(0) = 0, a(n) = 2*a(n/10) if n == 0 (mod 10), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 21 2002
For all n, a(A007088(n)) = n. - Antti Karttunen, Jun 22 2014

Extensions

More terms from Erich Friedman.
Terms up to n = 100 added by Antti Karttunen, Jun 22 2014

A181322 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2*n into powers of 2 less than or equal to 2^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 2, 4, 6, 5, 1, 1, 2, 4, 6, 9, 6, 1, 1, 2, 4, 6, 10, 12, 7, 1, 1, 2, 4, 6, 10, 14, 16, 8, 1, 1, 2, 4, 6, 10, 14, 20, 20, 9, 1, 1, 2, 4, 6, 10, 14, 20, 26, 25, 10, 1, 1, 2, 4, 6, 10, 14, 20, 26, 35, 30, 11, 1, 1, 2, 4, 6, 10, 14, 20, 26, 36, 44, 36, 12, 1, 1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 56, 42, 13, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 26 2011

Keywords

Comments

Column sequences converge towards A000123.

Examples

			A(3,2) = 6, because there are 6 partitions of 2*3=6 into powers of 2 less than or equal to 2^2=4: [4,2], [4,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1].
Square array A(n,k) begins:
  1,  1,  1,  1,  1,  1,  ...
  1,  2,  2,  2,  2,  2,  ...
  1,  3,  4,  4,  4,  4,  ...
  1,  4,  6,  6,  6,  6,  ...
  1,  5,  9, 10, 10, 10,  ...
  1,  6, 12, 14, 14, 14,  ...
		

Crossrefs

Columns k=0-5 give: A000012, A000027(n+1), A002620(n+2), A008804, A088932, A088954.
Main diagonal gives A000123.
Cf. A145515.
See A262553 for another version of this array.
See A072170 for a related array (having the same limiting column).

Programs

  • Maple
    b:= proc(n, j) local nn, r;
          if n<0 then 0
        elif j=0 then 1
        elif j=1 then n+1
        elif n b(n/2^(k-1), k):
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n<0, 0, j == 0, 1, j == 1, n+1, nJean-François Alcover, Jan 15 2014, translated from Maple *)
  • PARI
    A181322(n,k,r=1)={if(nA181322(n-1,k,0)+A181322(2*n,k-1,0),n-=r=1+n\1,(r-k)*binomial(r,k)*sum(i=0,min(k-1,k+n), binomial(k,i)/(r-k+i)*A181322(k-i+n,k,0) *(-1)^i))} \\ From Maple. - M. F. Hasler, Feb 19 2019

Formula

G.f. of column k: 1/(1-x) * 1/Product_{j=0..k-1} (1 - x^(2^j)).
A(n,k) = Sum_{i=0..k} A089177(n,i).
For n < 2^k, T(n,k) = A000123(k). T(n,0) = 1, T(n,1) = n+1. - M. F. Hasler, Feb 19 2019

A007729 6th binary partition function.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344
Offset: 0

Views

Author

Keywords

Comments

From Gary W. Adamson, Aug 31 2016: (Start)
The sequence is the left-shifted vector of the production matrix M, with lim_{k->infinity} M^k. M =
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, ...
1, 2, 0, 0, 0, ...
0, 2, 1, 0, 0, ...
0, 1, 2, 0, 0, ...
0, 0, 2, 1, 0, ...
0, 0, 1, 2, 0, ...
...
The sequence is equal to the product of its aerated variant by (1,2,2,1): (1, 2, 2, 1) * (1, 0, 2, 0, 4, 0, 5, 0, 8, ...) = (1, 2, 4, 5, 8, 10, ...).
Term a((2^n) - 1) = A007051: (1, 2, 5, 14, 41, 122, ...). (End)
a(n) is the number of ways to represent 2n (or 2n+1) as a sum e_0 + 2*e_1 + ... + (2^k)*e_k with each e_i in {0,1,2,3,4,5}. - Michael J. Collins, Dec 25 2018

Crossrefs

A column of A072170.
Apart from an initial zero, coincides with A174868.

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(n<2, n, `if`(irem(n, 2)=0, b(n/2), b((n-1)/2) +b((n+1)/2)))
        end:
    a:= proc(n) option remember;
          b(n+1) +`if`(n>0, a(n-1), 0)
        end:
    seq(a(n), n=0..70);  # Alois P. Heinz, Jun 21 2012
  • Mathematica
    b[n_] := b[n] = If[n<2, n, If[Mod[n, 2] == 0, b[n/2], b[(n-1)/2]+b[(n+1)/2]]]; a[n_] := a[n] = b[n+1] + If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
  • Python
    from itertools import accumulate, count, islice
    from functools import reduce
    def A007729_gen(): # generator of terms
        return accumulate(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) for n in count(1))
    A007729_list = list(islice(A007729_gen(),30)) # Chai Wah Wu, May 07 2023

Formula

G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1 + 2x + 2x^2 + x^3 + 0 + 0 + 0 + ...). - Gary W. Adamson, Sep 01 2016
a(2k) = 2*a(k-1) + a(k); a(2k+1) = 2*a(k) + a(k-1). - Michael J. Collins, Dec 25 2018

Extensions

More terms from Vladeta Jovovic, May 06 2004

A174868 Partial sums of Stern's diatomic series A002487.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344, 353, 358, 364, 365, 372, 378, 389, 394, 408, 417, 430, 434, 449, 460, 478, 485, 502, 512, 525, 528, 542, 553, 572, 580, 601, 614, 632, 637, 654, 666, 685
Offset: 0

Views

Author

Jonathan Vos Post, Dec 01 2010

Keywords

Comments

After the initial 0, identical to A007729.

Examples

			a(16) = 0 + 1 + 1 + 2 + 1 + 3 + 2 + 3 + 1 + 4 + 3 + 5 + 2 + 5 + 3 + 4 + 1 = 41.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], 2*a[n/2] + a[n/2 - 1], 2*a[(n - 1)/2] + a[(n + 1)/2]]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* Amiram Eldar, May 18 2023 *)
  • Python
    from itertools import accumulate, count, islice
    from functools import reduce
    def A174868_gen(): # generator of terms
        return accumulate((sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) for n in count(1)),initial=0)
    A174868_list = list(islice(A174868_gen(),30)) # Chai Wah Wu, May 07 2023

Formula

a(n) = Sum_{i=0..n} A002487(i).
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Feb 27 2017
a(2k) = 2*a(k) + a(k-1); a(2k+1) = 2*a(k) + a(k+1). - Michael J. Collins, Dec 25 2018
a(n) = n^log_2(3) + Psi_D(log_2(n)) + O(n^log_2(phi)), where phi is the golden ratio (A001622) and Psi_D is a 1-periodic continuous function which is Hölder continuous with any exponent smaller than log_2(3/phi) (Heuberger et al., 2022). - Amiram Eldar, May 18 2023

A322000 Nonnegative integers, sorted by increasing value of A028897(n) = Sum d[i]*2^i for n = Sum d[i]*10^i, then value of n.

Original entry on oeis.org

0, 1, 2, 10, 3, 11, 4, 12, 20, 100, 5, 13, 21, 101, 6, 14, 22, 30, 102, 110, 7, 15, 23, 31, 103, 111, 8, 16, 24, 32, 40, 104, 112, 120, 200, 1000, 9, 17, 25, 33, 41, 105, 113, 121, 201, 1001, 18, 26, 34, 42, 50, 106, 114, 122, 130, 202, 210, 1002, 1010, 19, 27
Offset: 0

Views

Author

M. F. Hasler, Feb 13 2019

Keywords

Comments

A028897(n) is the result of using the decimal digits of n, but weighting their position as in base 2. For sake of brevity we refer to this as the b-value of n in the sequel. This idea is found on the website given in links under the name "decibinary numbers".
The b-values increment by 1 at indices (of "records") 1, 2, 4, 6, 10, 14, 20, 26, 36, ... Prefixing an initial 0, the gaps between these, equal to the number of occurrences of a given b-value (0, 1, 2, ...), are 1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 13, 13, ... = A072170(n,10). In this sequence each of (1, 2, 4, 6, 10, 13, 18, ...) is repeated twice.

Examples

			The first terms of the sequence are as follows: (b = A028897)
  n | 0 | 1 | 2 | 10 | 3 | 11 | 4 | 12 | 20 | 100 | 5 | 13 | 21 | 101 | ...
----+---+---+---+----+---+----+---+----+----+-----+---+----+----+-----+-----
b(n)| 0 | 1 | 2 |  2 | 3 |  3 | 4 |  4 |  4 |  4  | 5 |  5 |  5 |  5  | ...
For example, b(345) = 3*2^2 + 4*2 + 5 = 25.
		

Crossrefs

Cf. A028897, A072170 (see comments).

Programs

  • Maple
    N:= 30: # for all numbers with A028897(n) <= N
    L:= {seq([i,i],i=0..9)}: Agenda:= {seq([i,i],i=1..9)}:
    extend:= proc(p) local x;  op(select(t -> t[2]<=N, [seq([10*p[1]+x, 2*p[2]+x],x=0..9)])); end proc:
    sorter:= proc(p1,p2) if p1[2] <> p2[2] then p1[2] < p2[2] else p1[1] < p2[1] fi end proc:
    while Agenda <> {} do
      Agenda:= map(extend, Agenda);
      L:= L union Agenda;
    od:
    L:= sort( convert(L,list),sorter):
    map(t -> t[1], L); # Robert Israel, Feb 24 2019
  • PARI
    my(A028897(n)=fromdigits(digits(n),2),S=[]);for(k=1,2^10,(t=A028897(k))>9||S=setunion(S,[[t,k]]));apply(t->t[2],S)

A007728 5th binary partition function.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 5, 4, 8, 6, 9, 7, 12, 8, 12, 9, 17, 12, 18, 14, 23, 15, 22, 16, 28, 19, 27, 20, 32, 20, 29, 21, 38, 26, 38, 29, 47, 30, 44, 32, 55, 37, 52, 38, 60, 37, 53, 38, 66, 44, 63, 47, 74, 46, 66, 47, 79, 52, 72, 52, 81, 49, 70, 50, 88, 59, 85, 64
Offset: 0

Views

Author

Keywords

Comments

The number of ways of writing n as a sum of powers of 2, each power being used at most four times. - Dmitry Kamenetsky, Jul 14 2023

Crossrefs

A column of A072170.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<0, 0, add(`if`(n-j*2^i<0, 0,
             b(n-j*2^i, i-1)), j=0..4)))
        end:
    a:= n-> b(n, ilog2(n)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jun 21 2012
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 0, 0, Sum[If[n-j*2^i < 0, 0, b[n-j*2^i, i-1, k]], {j, 0, k-1}]]]; a[n_] := b[n, Log[2, n] // Floor, 5]; Table[a[n], {n, 0, 70} ] (* Jean-François Alcover, Jan 17 2014, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=0} (1 - x^(5*2^k))/(1 - x^(2^k)). - Ilya Gutkovskiy, Jul 09 2019

Extensions

More terms from Vladeta Jovovic, May 06 2004
Showing 1-10 of 12 results. Next