cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 880 results. Next

A159991 Powers of 60: a(n) = 60^n.

Original entry on oeis.org

1, 60, 3600, 216000, 12960000, 777600000, 46656000000, 2799360000000, 167961600000000, 10077696000000000, 604661760000000000, 36279705600000000000, 2176782336000000000000, 130606940160000000000000, 7836416409600000000000000, 470184984576000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Examples

			G.f. = 1 + 60*x + 3600*x^2 + 216000*x^3 + 12960000*x^4 + 77600000*x^5 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

Programs

Formula

a(n) = A000400(n)*A011557(n) = A000351(n)*A001021(n) = A000302(n)*A001024(n) = A000244(n)*A009964(n). (Corrected by Robert B Fowler, Jan 25 2023)
From Muniru A Asiru, Nov 21 2018: (Start)
a(n) = 60^n.
a(n) = 60*a(n-1) for n > 0, a(0) = 1.
G.f.: 1/(1-60*x).
E.g.f: exp(60*x). (End)
a(n) = 1/a(-n) for all n in Z. - Michael Somos, Jan 01 2019

A334774 Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k local maxima.

Original entry on oeis.org

1, 3, 3, 9, 57, 24, 27, 705, 1449, 339, 81, 7617, 48615, 49695, 7392, 243, 78357, 1290234, 3650706, 2234643, 230217, 729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934, 2187, 7944321, 686779323, 9080961729, 30829608729, 31435152267, 9159564513, 529634931
Offset: 1

Views

Author

Andrew Howroyd, May 11 2020

Keywords

Comments

Also the number of permutations of 2 indistinguishable copies of 1..n with exactly k-1 peaks. A peak is an interior maximum.

Examples

			Triangle begins:
    1;
    3,      3;
    9,     57,       24;
   27,    705,     1449,       339;
   81,   7617,    48615,     49695,      7392;
  243,  78357,  1290234,   3650706,   2234643,    230217;
  729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934;
  ...
The T(2,1) = 3 permutations of 1122 with 1 local maxima are 1122, 1221, 2211.
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
The T(2,1) = 3 permutations of 1122 with 0 peaks are 2211, 2112, 1122.
The T(2,2) = 3 permutations of 1122 with 1 peak are 2121, 1221, 1212.
		

Crossrefs

Columns k=1..6 are A000244(n-1), 3*A152494, 3*A152495, 3*A152496, 3*A152497, 3*A152498.
Row sums are A000680.
Main diagonal is A334775.
The version for permutations of 1..n is A008303(n,k-1).

Programs

  • PARI
    PeaksBySig(sig, D)={
      my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
        my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
        mapput(FC, key, z)); z);
      local(FC=Map());
      vector(#D, i, F(#sig, D[i], 0));
    }
    Row(n)={ PeaksBySig(vector(n,i,2), [0..n-1]) }
    { for(n=1, 8, print(Row(n))) }

Formula

T(n,k) = F(2,n,k-1,0) where F(m,n,p,q) = Sum_{i=0..p} Sum_{j=0..min(m-i, q)} F(m, n-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) for n > 1 with F(m,1,0,q) = binomial(m-1, q), F(m,1,p,q) = 0 for p > 0.
A334776(n) = Sum_{k=1..n} (k-1)*T(n,k).
A334777(n) = Sum_{k=1..n} k*T(n,k).

A009998 Triangle in which j-th entry in i-th row is (j+1)^(i-j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 4, 1, 1, 16, 27, 16, 5, 1, 1, 32, 81, 64, 25, 6, 1, 1, 64, 243, 256, 125, 36, 7, 1, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0

Views

Author

Keywords

Comments

Read as a square array this is the Hilbert transform of triangle A123125 (see A145905 for the definition of this term). For example, the fourth row of A123125 is (0,1,4,1) and the expansion (x + 4*x^2 + x^3)/(1-x)^4 = x + 8*x^2 + 27*x^3 + 64*x^4 + ... generates the entries in the fourth row of this array read as a square. - Peter Bala, Oct 28 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  3,  1;
  1,  8,  9,  4,  1;
  1, 16, 27, 16,  5,  1;
  1, 32, 81, 64, 25,  6,  1;
  ...
From _Gus Wiseman_, May 01 2021: (Start)
The rows of the triangle are obtained by reading antidiagonals upward in the following table of A(k,n) = n^k, with offset k = 0, n = 1:
         n=1:     n=2:     n=3:     n=4:     n=5:     n=6:
   k=0:   1        1        1        1        1        1
   k=1:   1        2        3        4        5        6
   k=2:   1        4        9       16       25       36
   k=3:   1        8       27       64      125      216
   k=4:   1       16       81      256      625     1296
   k=5:   1       32      243     1024     3125     7776
   k=6:   1       64      729     4096    15625    46656
   k=7:   1      128     2187    16384    78125   279936
   k=8:   1      256     6561    65536   390625  1679616
   k=9:   1      512    19683   262144  1953125 10077696
  k=10:   1     1024    59049  1048576  9765625 60466176
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.

Crossrefs

Row sums give A026898.
Column n = 2 of the array is A000079.
Column n = 3 of the array is A000244.
Row k = 2 of the array is A000290.
Row k = 3 of the array is A000578.
Diagonal n = k of the array is A000312.
Diagonal n = k + 1 of the array is A000169.
Diagonal n = k + 2 of the array is A000272.
The transpose of the array is A009999.
The numbers of divisors of the entries are A343656 (row sums: A343657).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Haskell
    a009998 n k = (k + 1) ^ (n - k)
    a009998_row n = a009998_tabl !! n
    a009998_tabl = map reverse a009999_tabl
    -- Reinhard Zumkeller, Feb 02 2014
    
  • Maple
    E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x));
    G := (n,x) -> E(n,x)/(1-x)^(n+1);
    A009998 := (n,k) -> coeff(series(G(n-k,x),x,18),x,k);
    seq(print(seq(A009998(n,k),k=0..n)),n=0..6);
    # Peter Luschny, Aug 02 2010
  • Mathematica
    Flatten[Table[(j+1)^(i-j),{i,0,20},{j,0,i}]] (* Harvey P. Dale, Dec 25 2012 *)
  • PARI
    T(i,j)=(j+1)^(i-j) \\ Charles R Greathouse IV, Feb 06 2017

Formula

T(n,n) = 1; T(n,k) = (k+1)*T(n-1,k) for k=0..n-1. - Reinhard Zumkeller, Feb 02 2014
T(n,m) = (m+1)*Sum_{k=0..n-m}((n+1)^(k-1)*(n-m)^(n-m-k)*(-1)^(n-m-k)*binomial(n-m-1,k-1)). - Vladimir Kruchinin, Sep 12 2015

Extensions

a(62) corrected to 512 by T. D. Noe, Dec 20 2007

A109395 Denominator of phi(n)/n = Product_{p|n} (1 - 1/p); phi(n)=A000010(n), the Euler totient function.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 2, 33, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 11, 7, 19, 29, 59, 15, 61, 31, 7, 2, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, 15, 19, 77, 13, 79, 5, 3
Offset: 1

Views

Author

Franz Vrabec, Aug 26 2005

Keywords

Comments

a(n)=2 iff n=2^k (k>0); otherwise a(n) is odd. If p is prime, a(p)=p; the converse is false, e.g.: a(15)=15. It is remarkable that this sequence often coincides with A006530, the largest prime P dividing n. Theorem: a(n)=P if and only if for every prime p < P in n there is some prime q in n with p|(q-1). - Franz Vrabec, Aug 30 2005

Examples

			a(10) = 10/gcd(10,phi(10)) = 10/gcd(10,4) = 10/2 = 5.
		

Crossrefs

Cf. A076512 for the numerator.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

Formula

a(n) = n/gcd(n, phi(n)) = n/A009195(n).
From Antti Karttunen, Feb 09 2019: (Start)
a(n) = denominator of A173557(n)/A007947(n).
a(2^n) = 2 for all n >= 1.
(End)
From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean of phi(n)/n: lim_{m->oo} (1/m) * Sum_{n=1..m} A076512(n)/a(n) = 6/Pi^2 (A059956).
Asymptotic mean of n/phi(n): lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A076512(n) = zeta(2)*zeta(3)/zeta(6) (A082695). (End)

A303428 Number of ways to write n as x*(3*x-2) + y*(3*y-2) + 3^u + 3^v, where x,y,u,v are integers with x <= y and 0 <= u <= v.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 2, 1, 3, 3, 5, 2, 3, 3, 2, 2, 5, 4, 5, 2, 3, 5, 2, 3, 5, 4, 7, 2, 4, 5, 3, 4, 6, 4, 7, 3, 6, 6, 4, 4, 5, 5, 9, 5, 6, 6, 2, 5, 5, 7, 8, 4, 5, 4, 4, 4, 6, 6, 8, 3, 6, 6, 3, 4, 6, 7, 8, 5, 8, 6, 5, 4, 6, 7, 8, 6, 6, 6, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1. Moreover, any integer n > 1 can be written as x*(3*x+2) + y*(3*y+2) + 3^z + 3^w, where x is an integer and y,z,w are nonnegative integers.
a(n) > 0 for all n = 2..3*10^8. Those x*(3*x-2) with x integral are called generalized octagonal numbers (A001082). 76683391 is the least integer n > 1 not representable as the sum of two generalized octagonal numbers and two powers of 2.
See also A303389, A303401 and A303432 for similar conjectures.

Examples

			a(2) = 1 with 2 = 0*(3*0-2) + 0*(3*0-2) + 3^0 + 3^0.
a(3) = 1 with 3 = 0*(3*0-2) + 1*(3*1-2) + 3^0 + 3^0.
a(4) = 2 with 4 = 1*(3*1-2) + 1*(3*1-2) + 3^0 + 3^0 = 0*(3*0-2) + 0*(3*0-2) + 3^0 + 3^1.
a(5) = 1 with 5 = 0*(3*0-2) + 1*(3*1-2) + 3^0 + 3^1.
a(9) = 1 with 9 = (-1)*(3*(-1)-2) + 0*(3*0-2) + 3^0 + 3^1.
a(4360) = 4 with 4360 = (-35)*(3*(-35)-2) + (-13)*(3*(-13)-2) + 3^0 + 3^4 = (-37)*(3*(-37)-2) + (-7)*(3*(-7)-2) + 3^2 + 3^2 = (-27)*(3*(-27)-2) + (-23)*(3*(-23)-2) + 3^5 + 3^5 = (-25)*(3*(-25)-2) + (-1)*(3*(-1)-2) + 3^5 + 3^7.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[3(n-3^j-3^k)+2],Do[If[SQ[3(n-3^j-3^k-x(3x-2))+1],r=r+1],{x,-Floor[(Sqrt[3(n-3^j-3^k)/2+1]-1)/3],(Sqrt[3(n-3^j-3^k)/2+1]+1)/3}]],
    {j,0,Log[3,n/2]},{k,j,Log[3,n-3^j]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A011764 a(n) = 3^(2^n) (or: write in base 3, read in base 9).

Original entry on oeis.org

3, 9, 81, 6561, 43046721, 1853020188851841, 3433683820292512484657849089281, 11790184577738583171520872861412518665678211592275841109096961
Offset: 0

Views

Author

Stephan Y Solomon (ilans(AT)way.com)

Keywords

Comments

a(n) is the second-highest value k such that A173419(k) = n+2. - Charles R Greathouse IV, Oct 03 2012
Let b(0) = 6; b(n+1) = smallest number such that b(n+1) + Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+1) = a(n) for n >= 0. - Derek Orr, Dec 13 2014
Changing "+" to "-": Let b(0) = 6; b(n+1) = smallest number such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n+2) = a(n) for n >= 0. - Derek Orr, Jan 04 2015
With offset = 1, a(n) is the number of collections C of subsets of {1,2,...,n} such that if S is in C then the complement of S is not in C. - Geoffrey Critzer, Feb 06 2017

Crossrefs

Subsequence of A000244 (powers of 3).

Programs

Formula

a(0) = 3 and a(n+1) = a(n)^2. - Benoit Jubin, Jun 27 2009
Sum_{n>=0} 1/a(n) = A078885. - Amiram Eldar, Nov 09 2020
Product_{n>=0} (1 + 1/a(n)) = 3/2. - Amiram Eldar, Jan 29 2021
a(n) = A000244(A000079(n)), or A011764 = A000244 o A000079. - M. F. Hasler, Jul 20 2023

A015523 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 3, 14, 57, 241, 1008, 4229, 17727, 74326, 311613, 1306469, 5477472, 22964761, 96281643, 403668734, 1692414417, 7095586921, 29748832848, 124724433149, 522917463687, 2192374556806, 9191710988853, 38537005750589
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Aug 01 2010: (Start)
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 and 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
For n >= 1, the sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the side squares to A152187 and for the central square to A179606.
This sequence belongs to a family of sequences with g.f. 1/(1-3*x-k*x^2). Red king sequences that are members of this family are A007482 (k=2), A015521 (k=4), A015523 (k=5; this sequence), A083858 (k=6), A015524 (k=7) and A015525 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A049072 (k=-4), A057083 (k=-3), A000225 (k=-2), A001906 (k=-1), A000244 (k=0), A006190 (k=1), A030195 (k=3), A099012 (k=9), A015528 (k=10) and A015529 (k=11).
Inverse binomial transform of A052918 (with extra leading 0).
(End)
First differences in A197189. - Bruno Berselli, Oct 11 2011
Pisano period lengths: 1, 3, 4, 6, 4, 12, 3, 12, 12, 12, 120, 12, 12, 3, 4, 24, 288, 12, 72, 12, ... - R. J. Mathar, Aug 10 2012
This is the Lucas U(P=3, Q=-5) sequence, and hence for n >= 0, a(n+2)/a(n+1) equals the continued fraction 3 + 5/(3 + 5/(3 + 5/(3 + ... + 5/3))) with n 5's. - Greg Dresden, Oct 06 2019

Crossrefs

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    Join[{a = 0, b = 1}, Table[c = 3 * b + 5 * a; a = b; b = c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    a[0] := 0; a[1] := 1; a[n_] := a[n] = 3a[n - 1] + 5a[n - 2]; Table[a[n], {n, 0, 49}] (* Alonso del Arte, Jan 16 2011 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-3*x-5*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,3,-5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3*a(n-1) + 5*a(n-2).
From Paul Barry, Jul 20 2004: (Start)
a(n) = ((3/2 + sqrt(29)/2)^n - (3/2 - sqrt(29)/2)^n)/sqrt(29).
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*5^k*3^(n-2*k-1). (End)
G.f.: x/(1 - 3*x - 5*x^2). - R. J. Mathar, Nov 16 2007
From Johannes W. Meijer, Aug 01 2010: (Start)
Limit_{k->oo} a(n+k)/a(k) = (A072263(n) + a(n)*sqrt(29))/2.
Limit_{n->oo} A072263(n)/a(n) = sqrt(29). (End)
G.f.: G(0)*x/(2-3*x), where G(k) = 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
E.g.f.: 2*exp(3*x/2)*sinh(sqrt(29)*x/2)/sqrt(29). - Stefano Spezia, Oct 06 2019

A055643 Babylonian numbers: integers in base 60 with each sexagesimal digit represented by 2 decimal digits, leading zeros omitted.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Comments

From Wolfdieter Lang, Jan 16 2018: (Start)
The symbols used for 0..9 in this base 60 notation are 00, 01, ..., 09, but leading zeros are omitted.
For the Sumerian-Babylonian sexagesimal-decimal number system which uses two positions for each base-60 position filled with only one-digit numbers alternating between ranges of 0 to 9 and 0 to 5 see the link below.
(End)
For n < 1440, US and NATO military time designation of n minutes since midnight. - J. Lowell, Dec 29 2020

References

  • Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
  • Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
  • Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
  • Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
  • Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.

Crossrefs

Note also that A250073 = a(A000079(n)), A250089 = a(A051037(n)), A254334 = a(A000244(n)), A254335 = a(A000351(n)), A254336 = a(A011557(n)).
See also A281863 (value of the 0,1,2,...,n-th digit of a(n), counted from the right), A282622 (length of a(n), #digits, for n >= 1).

Programs

  • Mathematica
    Array[FromDigits@ Apply[Join, PadLeft[#, 2] & /@ IntegerDigits@ IntegerDigits[#, 60]] &, 71, 0] (* Michael De Vlieger, Jan 11 2018 *)
  • PARI
    A055643(n)=fromdigits(digits(n,60),100) \\ M. F. Hasler, Jan 09 2018
    
  • Python
    def a(n): return n if n < 60 else 100*a(n//60) + n%60
    print([a(n) for n in range(71)]) # Michael S. Branicky, Oct 22 2022

Formula

a(60*n+r) = 100*a(n) + r, 0 <= r <= 59. - Jianing Song, Oct 22 2022

Extensions

a(69) and a(70) from WG Zeist, Sep 08 2012

A076264 Number of ternary (0,1,2) sequences without a consecutive '012'.

Original entry on oeis.org

1, 3, 9, 26, 75, 216, 622, 1791, 5157, 14849, 42756, 123111, 354484, 1020696, 2938977, 8462447, 24366645, 70160958, 202020427, 581694636, 1674922950, 4822748423, 13886550633, 39984728949, 115131438424, 331507764639
Offset: 0

Views

Author

John L. Drost, Nov 05 2002

Keywords

Comments

A transform of A000244 under the mapping g(x)->(1/(1+x^3))g(x/(1+x^3)). - Paul Barry, Oct 20 2004
b(n) := (-1)^n*a(n) appears in the formula for the nonpositive powers of rho(9) := 2*cos(Pi/9), when written in the power basis of the algebraic number field Q(rho(9)) of degree 3. See A187360 for the minimal polynomial C(9, x) of rho(9), and a link to the Q(2*cos(pi/n)) paper. 1/rho(9) = -3*1 + 0*rho(9) + 1*rho(9)^2 (see A230079, row n=5). 1/rho(9)^n = b(n)*1 + b(n-2)*rho(9) + b(n-1)*rho(9)^2, n >= 0, with b(-1) = 0 = b(-2). - Wolfdieter Lang, Nov 04 2013
The limit b(n+1)/b(n) = -a(n+1)/a(n) for n -> infinity is -tau(9) := -(1 + rho(9)) = 1/(2*cos(Pi*5/9)), approximately -2.445622407. tau(9) is known to be the length ratio (longest diagonal)/side in the regular 9-gon. This limit follows from the b(n)-recurrence and the solutions of X^3 + 3*X^2 - 1 = 0, which are given by the inverse of the known solutions of the minimal polynomial C(9, x) of rho(9) (see A187360). The other two X solutions are 1/rho(9) = -3 + rho(9)^2, approximately 0.5320888860 and 1/(2*cos(Pi*7/9)) = 1 + rho(9) - rho(9)^2, approximately -0.6527036445, and they are therefore irrelevant for this sequence. - Wolfdieter Lang, Nov 08 2013
a(n) is also the number of ternary (0,1,2) sequences of length n without a consecutive '110' because the patterns A=012 and B=110 have the same autocorrelation, i.e., AA=100=BB, in the sense of Guibas and Odlysko (1981). (A cyclic version of this sequence can be found in sequence A274018.) - Petros Hadjicostas, Sep 12 2017

Examples

			1/rho(9)^3 = -26*1 - 3*rho(9) + 9*rho(9)^2, (approximately 0.15064426) with rho(9) given in the Nov 04 2013 comment above. - _Wolfdieter Lang_, Nov 04 2013
G.f. = 1 + 3*x + 9*x^2 + 26*x^3 + 75*x^4 + 216*x^5 + 622*x^6 + 1791*x^7 + ...
		

References

  • A. Tucker, Applied Combinatorics, 4th ed. p. 277

Crossrefs

The g.f. corresponds to row 3 of triangle A225682.

Programs

  • GAP
    List([0..25],n->Sum([0..Int(n/3)],k->Binomial(n-2*k,k)*(-1)^k*3^(n-3*k))); # Muniru A Asiru, Feb 20 2018
  • Mathematica
    LinearRecurrence[{3,0,-1},{1,3,9},30] (* Harvey P. Dale, Feb 28 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / (1 - 3*x + x^3) + x * O(x^n), n))};
    

Formula

a(n) is asymptotic to g*c^n where c = cos(Pi/18)/cos(7*Pi/18) and g is the largest real root of 81*x^3 - 81*x^2 - 9*x + 1 = 0. - Benoit Cloitre, Nov 06 2002
G.f.: 1/(1 - 3x + x^3).
a(n) = 3*a(n-1) - a(n-3), n > 0.
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2k, k)(-1)^k*3^(n-3k). - Paul Barry, Oct 20 2004
a(n) = middle term in M^(n+1) * [1 0 0], where M = the 3 X 3 matrix [2 1 1 / 1 1 0 / 1 0 0]. Right term = A052536(n), left term = A052536(n+1). - Gary W. Adamson, Sep 05 2005
Previous Showing 81-90 of 880 results. Next