cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 107 results. Next

A110654 a(n) = ceiling(n/2), or: a(2*k) = k, a(2*k+1) = k+1.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 05 2005

Keywords

Comments

The number of partitions of 2n into exactly 2 odd parts. - Wesley Ivan Hurt, Jun 01 2013
Number of nonisomorphic outer planar graphs of order n >= 3 and size n+1. - Christian Barrientos and Sarah Minion, Feb 27 2018
Also the clique covering number of the n-dipyramidal graph for n >= 3. - Eric W. Weisstein, Jun 27 2018

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 5*x^9 + ...
		

Crossrefs

Essentially the same sequence as A008619 and A123108.
Cf. A014557, A275416 (multisets).
Cf. A298648 (number of smallest coverings of dipyramidal graphs by maximal cliques).

Programs

Formula

a(n) = floor(n/2) + n mod 2.
a(n) = A004526(n+1) = A001057(n)*(-1)^(n+1).
For n > 0: a(n) = A008619(n-1).
A110655(n) = a(a(n)), A110656(n) = a(a(a(n))).
a(n) = A109613(n) - A028242(n) = A110660(n) / A028242(n).
a(n) = A001222(A029744(n)). - Reinhard Zumkeller, Feb 16 2006
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2, a(2) = a(1) = 1, a(0) = 0. - Reinhard Zumkeller, May 22 2006
First differences of quarter-squares: a(n) = A002620(n+1) - A002620(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = A007742(n) - A173511(n). - Reinhard Zumkeller, Feb 20 2010
a(n) = A000217(n) / A008619(n). - Reinhard Zumkeller, Aug 24 2011
From Michael Somos, Sep 19 2006: (Start)
Euler transform of length 2 sequence [1, 1].
G.f.: x/((1-x)*(1-x^2)).
a(-1-n) = -a(n). (End)
a(n) = floor((n+1)/2) = |Sum_{m=1..n} Sum_{k=1..m} (-1)^k|, where |x| is the absolute value of x. - William A. Tedeschi, Mar 21 2008
a(n) = A065033(n) for n > 0. - R. J. Mathar, Aug 18 2008
a(n) = ceiling(n/2) = smallest integer >= n/2. - M. F. Hasler, Nov 17 2008
If n is zero then a(n) is zero, else a(n) = a(n-1) + (n mod 2). - R. J. Cano, Jun 15 2014
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (1 + x) * u * v - (u^2 - v) / 2. - Michael Somos, Jun 15 2014
Given g.f. A(x) then 2 * x^3 * (1 + x) * A(x) * A(x^2) is the g.f. of A014557. - Michael Somos, Jun 15 2014
a(n) = (n + (n mod 2)) / 2. - Fred Daniel Kline, Jun 08 2016
E.g.f.: (sinh(x) + x*exp(x))/2. - Ilya Gutkovskiy, Jun 08 2016
Satisfies the nested recurrence a(n) = a(a(n-2)) + a(n-a(n-1)) with a(1) = a(2) = 1. Cf. A004001. - Peter Bala, Aug 30 2022

Extensions

Deleted wrong formula and added formula. - M. F. Hasler, Nov 17 2008

A155585 a(n) = 2^n*E(n, 1) where E(n, x) are the Euler polynomials.

Original entry on oeis.org

1, 1, 0, -2, 0, 16, 0, -272, 0, 7936, 0, -353792, 0, 22368256, 0, -1903757312, 0, 209865342976, 0, -29088885112832, 0, 4951498053124096, 0, -1015423886506852352, 0, 246921480190207983616, 0, -70251601603943959887872, 0, 23119184187809597841473536, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2009

Keywords

Comments

Previous name was: a(n) = Sum_{k=0..n-1} (-1)^(k)*C(n-1,k)*a(n-1-k)*a(k) for n>0 with a(0)=1.
Factorials have a similar recurrence: f(n) = Sum_{k=0..n-1} C(n-1,k)*f(n-1-k)*f(k), n > 0.
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A155585(x) = Sum_{k=0..x-1} T(x,k)*(-1)^k. See Mathematica code below. - John M. Campbell, Nov 16 2011
For the difference table and the relation to the Seidel triangle see A239005. - Paul Curtz, Mar 06 2014
From Tom Copeland, Sep 29 2015: (Start)
Let z(t) = 2/(e^(2t)+1) = 1 + tanh(-t) = e.g.f.(-t) for this sequence = 1 - t + 2*t^3/3! - 16*t^5/5! + ... .
dlog(z(t))/dt = -z(-t), so the raising operators that generate Appell polynomials associated with this sequence, A081733, and its reciprocal, A119468, contain z(-d/dx) = e.g.f.(d/dx) as the differential operator component.
dz(t)/dt = z*(z-2), so the assorted relations to a Ricatti equation, the Eulerian numbers A008292, and the Bernoulli numbers in the Rzadkowski link hold.
From Michael Somos's formula below (drawing on the Edwards link), y(t,1)=1 and x(t,1) = (1-e^(2t))/(1+e^(2t)), giving z(t) = 1 + x(t,1). Compare this to the formulas in my list in A008292 (Sep 14 2014) with a=1 and b=-1,
A) A(t,1,-1) = A(t) = -x(t,1) = (e^(2t)-1)/(1+e^(2t)) = tanh(t) = t + -2*t^3/3! + 16*t^5/5! + -272*t^7/7! + ... = e.g.f.(t) - 1 (see A000182 and A000111)
B) Ainv(t) = log((1+t)/(1-t))/2 = tanh^(-1)(t) = t + t^3/3 + t^5/5 + ..., the compositional inverse of A(t)
C) dA/dt = (1-A^2), relating A(t) to a Weierstrass elliptic function
D) ((1-t^2)d/dt)^n t evaluated at t=0, a generator for the sequence A(t)
F) FGL(x,y)= (x+y)/(1+xy) = A(Ainv(x) + Ainv(y)), a related formal group law corresponding to the Lorentz FGL (Lorentz transformation--addition of parallel velocities in special relativity) and the Atiyah-Singer signature and the elliptic curve (1-t^2)*s = t^3 in Tate coordinates according to the Lenart and Zainoulline link and the Buchstaber and Bunkova link (pp. 35-37) in A008292.
A133437 maps the reciprocal odd natural numbers through the refined faces of associahedra to a(n).
A145271 links the differential relations to the geometry of flow maps, vector fields, and thereby formal group laws. See Mathworld for links of tanh to other geometries and statistics.
Since the a(n) are related to normalized values of the Bernoulli numbers and the Riemann zeta and Dirichlet eta functions, there are links to Witten's work on volumes of manifolds in two-dimensional quantum gauge theories and the Kervaire-Milnor formula for homotopy groups of hyperspheres (see my link below).
See A101343, A111593 and A059419 for this and the related generator (1 + t^2) d/dt and associated polynomials. (End)
With the exception of the first term (1), entries are the alternating sums of the rows of the Eulerian triangle, A008292. - Gregory Gerard Wojnar, Sep 29 2018

Examples

			E.g.f.: 1 + x - 2*x^3/3! + 16*x^5/5! - 272*x^7/7! + 7936*x^9/9! -+ ... = exp(x)/cosh(x).
O.g.f.: 1 + x - 2*x^3 + 16*x^5 - 272*x^7 + 7936*x^9 - 353792*x^11 +- ...
O.g.f.: 1 + x/(1+2*x) + 2!*x^2/((1+2*x)*(1+4*x)) + 3!*x^3/((1+2*x)*(1+4*x)*(1+6*x)) + ...
		

Crossrefs

Equals row sums of A119879. - Johannes W. Meijer, Apr 20 2011
(-1)^n*a(n) are the alternating row sums of A123125. - Wolfdieter Lang, Jul 12 2017

Programs

  • Maple
    A155585 := n -> 2^n*euler(n, 1): # Peter Luschny, Jan 26 2009
    a := proc(n) option remember; `if`(n::even, 0^n, -(-1)^n - add((-1)^k*binomial(n,k) *a(n-k), k = 1..n-1)) end: # Peter Luschny, Jun 01 2016
    # Or via the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> (-2)^n*subs(x = -1/2, F(n)):
    seq(a(n), n = 0..30); # Peter Luschny, May 21 2021
  • Mathematica
    a[m_] := Sum[(-2)^(m - k) k! StirlingS2[m, k], {k, 0, m}] (* Peter Luschny, Apr 29 2009 *)
    poly[q_] :=  2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] :=  First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Table[Sum[T[x, k]*(-1)^k, {k, 0, x-1}], {x, 1, 16}] (* John M. Campbell, Nov 16 2011 *)
    f[n_] := (-1)^n 2^(n+1) PolyLog[-n, -1]; f[0] = -f[0]; Array[f, 27, 0] (* Robert G. Wilson v, Jun 28 2012 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,(-1)^(k)*binomial(n-1,k)*a(n-1-k)*a(k)))
    
  • PARI
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(X),n)
    
  • PARI
    a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1+2*k*x+x*O(x^n))),n) \\ Paul D. Hanna, Jul 20 2011
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( 1 + sinh(x + A) / cosh(x + A), n))} /* Michael Somos, Jan 16 2012 */
    
  • PARI
    a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,intformal(subst(A,x,-x)+x*O(x^n))^k/k!));n!*polcoeff(A,n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 25 2013
    
  • Python
    from sympy import bernoulli
    def A155585(n): return (((2<<(m:=n+1))-2)*bernoulli(m)<>1) if n&1 else (0 if n else 1) # Chai Wah Wu, Apr 14 2023
  • Sage
    def A155585(n) :
        if n == 0 : return 1
        return add(add((-1)^(j+1)*binomial(n+1,k-j)*j^n for j in (0..k)) for k in (1..n))
    [A155585(n) for n in (0..26)] # Peter Luschny, Jul 23 2012
    
  • Sage
    def A155585_list(n): # Akiyama-Tanigawa algorithm
        A = [0]*(n+1); R = []
        for m in range(n+1) :
            d = divmod(m+3, 4)
            A[m] = 0 if d[1] == 0 else (-1)^d[0]/2^(m//2)
            for j in range(m, 0, -1) :
                A[j - 1] = j * (A[j - 1] - A[j])
            R.append(A[0])
        return R
    A155585_list(30) # Peter Luschny, Mar 09 2014
    

Formula

E.g.f.: exp(x)*sech(x) = exp(x)/cosh(x). (See A009006.) - Paul Barry, Mar 15 2006
Sequence of absolute values is A009006 (e.g.f. 1+tan(x)).
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + 2*k*x). - Paul D. Hanna, Jul 20 2011
a(n) = 2^n*E_{n}(1) where E_{n}(x) are the Euler polynomials. - Peter Luschny, Jan 26 2009
a(n) = EL_{n}(-1) where EL_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n+1) = (4^n-2^n)*B_n(1)/n, where B_{n}(x) are the Bernoulli polynomials (B_n(1) = B_n for n <> 1). - Peter Luschny, Apr 22 2009
G.f.: 1/(1-x+x^2/(1-x+4*x^2/(1-x+9*x^2/(1-x+16*x^2/(1-...))))) (continued fraction). - Paul Barry, Mar 30 2010
G.f.: -log(x/(exp(x)-1))/x = Sum_{n>=0} a(n)*x^n/(2^(n+1)*(2^(n+1)-1)*n!). - Vladimir Kruchinin, Nov 05 2011
E.g.f.: exp(x)/cosh(x) = 2/(1+exp(-2*x)) = 2/(G(0) + 1); G(k) = 1 - 2*x/(2*k + 1 - x*(2*k+1)/(x - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2011
E.g.f. is x(t,1) + y(t,1) where x(t,a) and y(t,a) satisfy y(t,a)^2 = (a^2 - x(t,a)^2) / (1 - a^2 * x(t,a)^2) and dx(t,a) / dt = y(t,a) * (1 - a * x(t,a)^2) and are the elliptic functions of Edwards. - Michael Somos, Jan 16 2012
E.g.f.: 1/(1 - x/(1+x/(1 - x/(3+x/(1 - x/(5+x/(1 - x/(7+x/(1 - x/(9+x/(1 +...))))))))))), a continued fraction. - Paul D. Hanna, Feb 11 2012
E.g.f. satisfies: A(x) = Sum_{n>=0} Integral( A(-x) dx )^n / n!. - Paul D. Hanna, Nov 25 2013
a(n) = -2^(n+1)*Li_{-n}(-1). - Peter Luschny, Jun 28 2012
a(n) = Sum_{k=1..n} Sum_{j=0..k} (-1)^(j+1)*binomial(n+1,k-j)*j^n for n > 0. - Peter Luschny, Jul 23 2012
From Sergei N. Gladkovskii, Oct 25 2012 to Dec 16 2013: (Start)
Continued fractions:
G.f.: 1 + x/T(0) where T(k) = 1 + (k+1)*(k+2)*x^2/T(k+1).
E.g.f.: exp(x)/cosh(x) = 1 + x/S(0) where S(k) = (2*k+1) + x^2/S(k+1).
E.g.f.: 1 + x/(U(0)+x) where U(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/U(k+1)))).
E.g.f.: 1 + tanh(x) = 4*x/(G(0)+2*x) where G(k) = 1 - (k+1)/(1 - 2*x/(2*x + (k+1)^2/G(k+1)));
G.f.: 1 + x/G(0) where G(k) = 1 + 2*x^2*(2*k+1)^2 - x^4*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1) (due to Stieltjes).
E.g.f.: 1 + x/(G(0) + x) where G(k) = 1 - 2*x/(1 + (k+1)/G(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*(k+1)/( 1 - x*(k+1)/Q(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*k^2 + x/(1 - x*(k+1)^2/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - 2*x + x*(k+1)/(1-x*(k+1)/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/Q(k+1)).
E.g.f.: 1 + x*Q(0) where Q(k) = 1 - x^2/( x^2 + (2*k+1)*(2*k+3)/Q(k+1)).
G.f.: 2 - T(0)/(1+x) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + (1+x)^2/T(k+1)).
E.g.f.: 1/(x - Q(0)) where Q(k) = 4*k^2 - 1 + 2*x + x^2*(2*k-1)*(2*k+3)/Q(k+1). (End)
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A001057. - Michael Somos, Jan 03 2013
From Paul Curtz, Mar 06 2014: (Start)
a(2n) = A000007(n).
a(2n+1) = (-1)^n*A000182(n+1).
a(n) is the binomial transform of A122045(n).
a(n) is the row sum of A081658. For fractional Euler numbers see A238800.
a(n) + A122045(n) = 2, 1, -1, -2, 5, 16, ... = -A163982(n).
a(n) - A122045(n) = -A163747(n).
a(n) is the Akiyama-Tanigawa transform applied to 1, 0, -1/2, -1/2, -1/4, 0, ... = A046978(n+3)/A016116(n). (End)
a(n) = 2^(2*n+1)*(zeta(-n,1/2) - zeta(-n, 1)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) = 2^(n + 1)*(2^(n + 1) - 1)*Bernoulli(n + 1, 1)/(n + 1). (From Bill Gosper, Oct 28 2015) - N. J. A. Sloane, Oct 28 2015 [See the above comment from Peter Luschny, Apr 22 2009.]
a(n) = -(n mod 2)*((-1)^n + Sum_{k=1..n-1} (-1)^k*C(n,k)*a(n-k)) for n >= 1. - Peter Luschny, Jun 01 2016
a(n) = (-2)^n*F_{n}(-1/2), where F_{n}(x) is the Fubini polynomial. - Peter Luschny, May 21 2021

Extensions

New name from Peter Luschny, Mar 12 2015

A153641 Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0

Views

Author

Peter Luschny, Dec 29 2008

Keywords

Comments

In the following the expression [n odd] is 1 if n is odd, 0 otherwise.
(+) W_n(0) = E_n are the Euler (or secant) numbers A122045.
(+) W_n(1) = T_n are the signed tangent numbers, see A009006.
(+) W_{n-1}(1) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli number A027641/A027642.
(+) W_n(-1) 2^{-n}(n+1) = G_n the Genocchi number A036968.
(+) W_n(1/2) 2^{n} are the signed generalized Euler (Springer) number, see A001586.
(+) | W_n([n odd]) | the number of alternating permutations A000111.
(+) | W_n([n odd]) / n! | for 0<=n the Euler zeta number A099612/A099617 (see Wikipedia on Bernoulli number). - Peter Luschny, Dec 29 2008
The diagonals in the full triangle (with zero coefficients) of the polynomials have the general form E(k)*binomial(n+k,k) (k>=0 fixed, n=0,1,...) where E(n) are the Euler numbers in the enumeration A122045. For k=2 we find the triangular numbers A000217 and for k=4 A154286. - Peter Luschny, Jan 06 2009
From Peter Bala, Jun 10 2009: (Start)
The Swiss-Knife polynomials W_n(x) may be expressed in terms of the Bernoulli polynomials B(n,x) as
... W_n(x) = 4^(n+1)/(2*n+2)*[B(n+1,(x+3)/4) - B(n+1,(x+1)/4)].
The Swiss-Knife polynomials are, apart from a multiplying factor, examples of generalized Bernoulli polynomials.
Let X be the Dirichlet character modulus 4 defined by X(4*n+1) = 1, X(4*n+3) = -1 and X(2*n) = 0. The generalized Bernoulli polynomials B(X;n,x), n = 1,2,..., associated with the character X are defined by means of the generating function
... t*exp(x*t)*(exp(t)-exp(3*t))/(exp(4*t)-1) = sum {n = 1..inf} B(X;n,x)*t^n/n!.
The first few values are B(X;1,x) = -1/2, B(X;2,x) = -x, B(X,3,x) = -3/2*(x^2-1) and B(X;4,x) = -2*(x^3-3*x).
In general, W_n(x) = -2/(n+1)*B(X;n+1,x).
For the theory of generalized Bernoulli polynomials associated to a periodic arithmetical function see [Cohen, Section 9.4].
The generalized Bernoulli polynomials may be used to evaluate twisted sums of k-th powers. For the present case the result is
sum{n = 0..4*N-1} X(n)*n^k = 1^k - 3^k + 5^k - 7^k + ... - (4*N-1)^k
= [B(X;k+1,4*N) - B(X;k+1,0)]/(k+1) = [W_k(0) - W_k(4*N)]/2.
For the proof apply [Cohen, Corollary 9.4.17 with m = 4 and x = 0].
The generalized Bernoulli polynomials and the Swiss-Knife polynomials are also related to infinite sums of powers through their Fourier series - see the formula section below. For a table of the coefficients of generalized Bernoulli polynomials attached to a Dirichlet character modulus 8 see A151751.
(End)
The Swiss-Knife polynomials provide a general formula for alternating sums of powers similar to the formula which are provided by the Bernoulli polynomials for non-alternating sums of powers (see the Luschny link). Sequences covered by this formula include A001057, A062393, A062392, A011934, A144129, A077221, A137501, A046092. - Peter Luschny, Jul 12 2009
The greatest common divisor of the nonzero coefficients of the decapitated Swiss-Knife polynomials is exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd primes, symbolically:
gcd(coeffs(SKP_{n}(x) - x^n)) = A155457(n) (n>1). - Peter Luschny, Dec 16 2009
Another version is at A119879. - Philippe Deléham, Oct 26 2013

Examples

			1
x
x^2  -1
x^3  -3x
x^4  -6x^2   +5
x^5 -10x^3  +25x
x^6 -15x^4  +75x^2  -61
x^7 -21x^5 +175x^3 -427x
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]

Crossrefs

W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........ A000012
W_1: 0, 1, 2, 3, 4, 5, ........ A001477
W_2: -1, 0, 3, 8, 15, 24, ........ A067998
W_3: 0, -2, 2, 18, 52, 110, ........ A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ... A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ... A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ... A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ... A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [Peter Luschny, Jul 07 2009]

Programs

  • Maple
    w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
    # Coefficients with zeros:
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
    # Recursion
    W := proc(n,z) option remember; local k,p;
    if n = 0 then 1 else p := irem(n+1,2);
    z^n - p + add(`if`(irem(k,2)=1,0,
    W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
    # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
  • Mathematica
    max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
    Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
  • Sage
    def A046978(k):
        if k % 4 == 0:
            return 0
        return (-1)**(k // 4)
    def A153641_poly(n, x):
        return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
    for n in (0..7): print(A153641_poly(n, x))  # Peter Luschny, Oct 24 2011

Formula

W_n(x) = Sum_{k=0..n}{v=0..k} (-1)^v binomial(k,v)*c_k*(x+v+1)^n where c_k = frac((-1)^(floor(k/4))/2^(floor(k/2))) [4 not div k] (Iverson notation).
From Peter Bala, Jun 10 2009: (Start)
E.g.f.: 2*exp(x*t)*(exp(t)-exp(3*t))/(1-exp(4*t))= 1 + x*t + (x^2-1)*t^2/2! + (x^3-3*x)*t^3/3! + ....
W_n(x) = 1/(2*n+2)*Sum_{k=0..n+1} 1/(k+1)*Sum_{i=0..k} (-1)^i*binomial(k,i)*((x+4*i+3)^(n+1) - (x+4*i+1)^(n+1)).
Fourier series expansion for the generalized Bernoulli polynomials:
B(X;2*n,x) = (-1)^n*(2/Pi)^(2*n)*(2*n)! * {sin(Pi*x/2)/1^(2*n) - sin(3*Pi*x/2)/3^(2*n) + sin(5*Pi*x/2)/5^(2*n) - ...}, valid for 0 <= x <= 1 when n >= 1.
B(X;2*n+1,x) = (-1)^(n+1)*(2/Pi)^(2*n+1)*(2*n+1)! * {cos(Pi*x/2)/1^(2*n+1) - cos(3*Pi*x/2)/3^(2*n+1) + cos(5*Pi*x/2)/5^(2*n+1) - ...}, valid for 0 <= x <= 1 when n >= 1 and for 0 <= x < 1 when n = 0.
(End)
E.g.f.: exp(x*t) * sech(t). - Peter Luschny, Jul 07 2009
O.g.f. as a J-fraction: z/(1-x*z+z^2/(1-x*z+4*z^2/(1-x*z+9*z^2/(1-x*z+...)))) = z + x*z^2 + (x^2-1)*z^3 + (x^3-3*x)*z^4 + .... - Peter Bala, Mar 11 2012
Conjectural o.g.f.: Sum_{n >= 0} (1/2^((n-1)/2))*cos((n+1)*Pi/4)*( Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - (k + x)*t) ) = 1 + x*t + (x^2 - 1)*t^2 + (x^3 - 3*x)*t^3 + ... (checked up to O(t^13)), which leads to W_n(x) = Sum_{k = 0..n} 1/2^((k - 1)/2)*cos((k + 1)*Pi/4)*( Sum_{j = 0..k} (-1)^j*binomial(k, j)*(j + x)^n ). - Peter Bala, Oct 03 2016

A142150 The nonnegative integers interleaved with 0's.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 15 2008

Keywords

Comments

Number of vertical pairs in a wheel with n equal sections. - Wesley Ivan Hurt, Jan 22 2012
Number of even terms of n-th row in the triangles A162610 and A209297. - Reinhard Zumkeller, Jan 19 2013
Also the result of writing n-1 in base 2 and multiplying the last digit with the number with its last digit removed. See A115273 and A257844-A257850 for generalization to other bases. - M. F. Hasler, May 10 2015
Also follows the rule: a(n+1) is the number of terms that are identical with a(n) for a(0..n-1). - Marc Morgenegg, Jul 08 2019

Crossrefs

Programs

Formula

a(n) = XOR{k AND (n-k): 0<=k<=n}.
a(n) = (n/2)*0^(n mod 2); a(2*n)=n and a(2*n+1)=0.
a(n) = floor(n^2/2) mod n. - Enrique Pérez Herrero, Jul 29 2009
a(n) = A027656(n-2). - Reinhard Zumkeller, Nov 05 2009
a(n) = Sum_{k=0..n} (k mod 2)*((n-k) mod 2). - Reinhard Zumkeller, Nov 05 2009
a(n+1) = A000217(n) mod A000027(n+1) = A000217(n) mod A001477(n+1). - Edgar Almeida Ribeiro (edgar.a.ribeiro(AT)gmail.com), May 19 2010
From Bruno Berselli, Oct 19 2010: (Start)
a(n) = n*(1+(-1)^n)/4.
G.f.: x^2/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) for n > 3.
Sum_{i=0..n} a(i) = (2*n*(n+1)+(2*n+1)*(-1)^n-1)/16 (see A008805). (End)
a(n) = -a(-n) = A195034(n-1)-A195034(-n-1). - Bruno Berselli, Oct 12 2011
a(n) = A000326(n) - A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = Sum_{i=1..n} floor((2*i-n)/2). - Wesley Ivan Hurt, Aug 21 2014
a(n-1) = floor(n/2)*(n mod 2), where (n mod 2) is the parity of n, or remainder of division by 2. - M. F. Hasler, May 10 2015
a(n) = A158416(n) - 1. - Filip Zaludek, Oct 30 2016
E.g.f.: x*sinh(x)/2. - Ilya Gutkovskiy, Oct 30 2016
a(n) = A000007(a(n-1)) + a(n-2) for n > 1. - Nicolas Bělohoubek, Oct 06 2024

A117966 Balanced ternary enumeration (based on balanced ternary representation) of integers; write n in ternary and then replace 2's with (-1)'s.

Original entry on oeis.org

0, 1, -1, 3, 4, 2, -3, -2, -4, 9, 10, 8, 12, 13, 11, 6, 7, 5, -9, -8, -10, -6, -5, -7, -12, -11, -13, 27, 28, 26, 30, 31, 29, 24, 25, 23, 36, 37, 35, 39, 40, 38, 33, 34, 32, 18, 19, 17, 21, 22, 20, 15, 16, 14, -27, -26, -28, -24, -23, -25, -30, -29, -31, -18, -17, -19, -15, -14, -16, -21, -20, -22, -36
Offset: 0

Views

Author

Keywords

Comments

As the graph demonstrates, there are large discontinuities in the sequence between terms 3^i-1 and 3^i, and between terms 2*3^i-1 and 2*3^i. - N. J. A. Sloane, Jul 03 2016

Examples

			7 in base 3 is 21; changing the 2 to a (-1) gives (-1)*3+1 = -2, so a(7) = -2. I.e., the number of -2 according to the balanced ternary enumeration is 7, which can be obtained by replacing every -1 by 2 in the balanced ternary representation (or expansion) of -2, which is -1,1.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, pp. 173-175; 2nd. ed. pp. 190-193.

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,i;
       L:= subs(2=-1,convert(n,base,3));
       add(L[i]*3^(i-1),i=1..nops(L))
    end proc:
    map(f, [$0..100]);
    # alternate:
    N:= 100: # to get a(0) to a(N)
    g:= 0:
    for n from 1 to ceil(log[3](N+1)) do
    g:= convert(series(3*subs(x=x^3,g)*(1+x+x^2)+x/(1+x+x^2),x,3^n+1),polynom);
    od:
    seq(coeff(g,x,j),j=0..N); # Robert Israel, Nov 17 2015
    # third Maple program:
    a:= proc(n) option remember; `if`(n=0, 0,
          3*a(iquo(n, 3, 'r'))+`if`(r=2, -1, r))
        end:
    seq(a(n), n=0..3^4-1);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Map[FromDigits[#, 3] &, IntegerDigits[#, 3] /. 2 -> -1 & /@ Range@ 80] (* Michael De Vlieger, Nov 17 2015 *)
  • PARI
    a(n) = subst(Pol(apply(x->if(x == 2, -1, x), digits(n,3)), 'x), 'x, 3)
    vector(73, i, a(i-1))  \\ Gheorghe Coserea, Nov 17 2015
    
  • Python
    def a(n):
        if n==0: return 0
        if n%3==0: return 3*a(n//3)
        elif n%3==1: return 3*a((n - 1)//3) + 1
        else: return 3*a((n - 2)//3) - 1
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 06 2017

Formula

a(0) = 0, a(3n) = 3a(n), a(3n+1) = 3a(n)+1, a(3n+2) = 3a(n)-1.
G.f. satisfies A(x) = 3*A(x^3)*(1+x+x^2) + x/(1+x+x^2). - corrected by Robert Israel, Nov 17 2015
A004488(n) = a(n)^{-1}(-a(n)). I.e., if a(n) <= 0, A004488(n) = A117967(-a(n)) and if a(n) > 0, A004488(n) = A117968(a(n)).
a(n) = n - 3 * A005836(A289814(n) + 1). - Andrey Zabolotskiy, Nov 11 2019

Extensions

Name corrected by Andrey Zabolotskiy, Nov 10 2019

A034008 a(n) = floor(2^|n-1|/2). Or: 1, 0, followed by powers of 2.

Original entry on oeis.org

1, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 0

Views

Author

Keywords

Comments

Powers of 2 with additional first two terms.
Essentially the same as A131577 (and A000079).
[(-1)^n*a(n)] = [1, 0, 1, -2, 4, -8, 16, -32, ...] is the inverse binomial transform of A008619 = [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...]. - Philippe Deléham, Nov 15 2009
Number of compositions (ordered partitions) of n into an even number of parts. - Geoffrey Critzer, Mar 28 2010
Number of compositions of n into an even number of even parts.
Number of compositions of n into parts k >= 2 where there are k - 1 sorts of part k. - Joerg Arndt, Sep 30 2012
Taking n-th differences of this sequence reproduces the same sequence except for a(1) = n mod 2 (parity of n) and a(0) = (-1)^a(1)*floor(n/2 + 1). - M. F. Hasler, Jan 13 2015

References

  • Richard P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, 1997, p. 45, exercise 9.

Crossrefs

Programs

  • Maple
    A034008:=n->2^(n-2): 1, 0, seq(A034008(n), n=2..50); # Wesley Ivan Hurt, Apr 12 2017
  • Mathematica
    a = x/(1 - x); CoefficientList[Series[1/(1 - a^2), {x, 0, 30}], x] (* Geoffrey Critzer, Mar 28 2010 *)
  • PARI
    a(n)=if(n<2,n==0,2^(n-2))

Formula

a(n) = 2^(n-2), n >= 2; a(0) = 1, a(1) = 0.
G.f.: (1-x)^2/(1-2*x).
G.f. 1/( 1 - Sum_{k >= 1} (k-1)*x^k ). - Joerg Arndt, Sep 30 2012
G.f.: x*G(0), where G(k) = 1 + 1/(1 - (1 - x)/(1 + x*(k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013
a(n+1) = A131577(n) and a(n+2) = A000079(n) for all n >= 0. - M. F. Hasler, Jan 13 2015
Inverse binomial transform of (3^n - 2*n + 1)/2 for n >= 0. - Paul Curtz, Sep 24 2019
E.g.f.: (1/4)*(3 + exp(2*x) - 2*x). - Stefano Spezia, Sep 25 2019
Binomial transform of A001057(n+1) or (-1)^n*A008619(n). - Paul Curtz, Oct 07 2019

Extensions

Additional comments from Barry E. Williams, May 27 2000
Additional comments from Michael Somos, Jun 18 2002
Edited by M. F. Hasler, Jan 13 2015

A130472 A permutation of the integers: a(n) = (-1)^n * floor( (n+1)/2 ).

Original entry on oeis.org

0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, -14, 14, -15, 15, -16, 16, -17, 17, -18, 18, -19, 19, -20, 20, -21, 21, -22, 22, -23, 23, -24, 24, -25, 25, -26, 26, -27, 27, -28, 28, -29, 29, -30, 30, -31, 31, -32, 32
Offset: 0

Views

Author

Clark Kimberling, May 28 2007

Keywords

Comments

Pisano period lengths: 1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, ... - R. J. Mathar, Aug 10 2012
Partial sums of A038608. - Stanislav Sykora, Nov 27 2013

Crossrefs

Sums of the form Sum_{k=0..n} k^p * q^k: A059841 (p=0,q=-1), this sequence (p=1,q=-1), A089594 (p=2,q=-1), A232599 (p=3,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), A036827 (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).

Programs

Formula

a(n) = -A001057(n).
a(2n) = n, a(2n+1) = -(n+1).
a(n) = Sum_{k=0..n} k*(-1)^k.
a(n) = -a(n-1) +a(n-2) +a(n-3).
G.f.: -x/( (1-x)*(1+x)^2 ). - R. J. Mathar, Feb 20 2011
a(n) = floor( (n/2)*(-1)^n ). - Wesley Ivan Hurt, Jun 14 2013
a(n) = ceiling( n/2 )*(-1)^n. - Wesley Ivan Hurt, Oct 22 2013
a(n) = ((-1)^n*(2*n+1) - 1)/4. - Adriano Caroli, Mar 28 2015
E.g.f.: (1/4)*(-exp(x) + (1-2*x)*exp(-x) ). - G. C. Greubel, Mar 31 2021

A181983 a(n) = (-1)^(n+1) * n.

Original entry on oeis.org

0, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -36, 37, -38, 39, -40, 41, -42, 43, -44, 45, -46, 47, -48, 49, -50, 51, -52, 53, -54, 55, -56, 57, -58, 59
Offset: 0

Views

Author

Michael Somos, Apr 04 2012

Keywords

Comments

This is the Lucas U(-2,1) sequence. - R. J. Mathar, Jan 08 2013
Apparently the Mobius transform of A002129. - R. J. Mathar, Jan 08 2013
For n>0, a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = max(i,j) for 1 <= i,j <= n. - Enrique Pérez Herrero, Jan 14 2013
The sums of the terms of this sequence is the divergent series 1 - 2 + 3 - 4 + ... . Euler summed it to 1/4 which was one of the first examples of summing divergent series. - Michael Somos, Jun 05 2013

Examples

			G.f. = x - 2*x^2 + 3*x^3 - 4*x^4 + 5*x^5 - 6*x^6 + 7*x^7 - 8*x^8 + 9*x^9 + ...
		

References

  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 6.

Crossrefs

Programs

  • Haskell
    a181983 = negate . a038608
    a181983_list = [0, 1] ++ map negate
       (zipWith (+) a181983_list (map (* 2) $ tail a181983_list))
    -- Reinhard Zumkeller, Mar 20 2013
    
  • Magma
    [(-1)^(n+1)*n: n in [0..30]]; // G. C. Greubel, Aug 11 2018
  • Maple
    A181983:=n->-(-1)^n * n; seq(A181983(n), n=0..100); # Wesley Ivan Hurt, Feb 26 2014
  • Mathematica
    a[ n_] := -(-1)^n n;
    a[ n_] := Sign[n] SeriesCoefficient[ x / (1 + x)^2, {x, 0, Abs @n}];
    a[ n_] := Sign[n] (Abs @n)! SeriesCoefficient[ x / Exp[ x], {x, 0, Abs @n}];
    CoefficientList[Series[x/(1+x)^2,{x,0,60}],x] (* or *) LinearRecurrence[{-2,-1},{0,1},60] (* or *) Table[If[OddQ[n],n,-n],{n,0,60}]  (* Harvey P. Dale, Apr 22 2022 *)
  • PARI
    {a(n) = -(-1)^n * n};
    

Formula

G.f.: x / (1 + x)^2.
E.g.f.: x / exp(x).
a(n) = -a(-n) = -(-1)^n * A001477(n) for all n in Z.
a(n+1) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = Bernoulli(k) for k = 0, 1, ..., n.
A001787(n) = p(0) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 1, ..., n+1. - Michael Somos, Jun 05 2013
Euler transform of length 2 sequence [-2, 2].
Series reversion of g.f. is A000108(n) (Catalan numbers) with a(0)=0.
Series reversion of e.g.f. is A000169. INVERT transform omitting a(0)=0 is A049347. PSUM transform is A001057. BINOMIAL transform is A154955. - Michael Somos, Jun 05 2013
n * a(n) = A162395(n). - Michael Somos, Jun 05 2013
a(n) = - A038608(n). - Reinhard Zumkeller, Mar 20 2013
a(n+2) = a(n) - 2*(-1)^n. - G. C. Greubel, Aug 11 2018
a(n) = - A274922(n) if n>0. - Michael Somos, Sep 24 2019
From Amiram Eldar, Oct 24 2023: (Start)
Multiplicative with a(2^e) = -2^e, and a(p^e) = p^e for an odd prime p.
Dirichlet g.f.: zeta(s-1) * (1-2^(2-s)). (End)

A240021 Number T(n,k) of partitions of n into distinct parts, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 2, 2, 2, 4, 1, 0, 1, 2, 1, 1, 4, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 6, 3, 1, 6, 6, 1, 2, 2, 1, 3, 1, 5, 9, 3, 2, 9, 7, 2, 4, 3, 2, 3, 2, 8, 12, 4, 0, 1, 4, 12, 8, 3, 7, 4, 3, 4, 3, 14, 16, 4, 1, 1, 7, 16, 9, 6, 11, 5, 1, 4, 4, 6, 20, 20, 5, 2, 2
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2014

Keywords

Comments

T(n,k) is defined for all n >= 0, k in A001057. Row n contains all terms from the leftmost to the rightmost nonzero term. All other terms (not in the triangle) are equal to 0. First nonzero term of column k>=0 is at n = k^2, first nonzero term of column k<=0 is at n = k*(k+1).
T(n,k) = T(n+k,-k).
T(2n*(2n+1),2n) = A000041(n).
T(4n^2+14n+11,2n+2) = A000070(n).
T(n^2,n) = 1.
T(n^2,n-1) = 0.
T(n^2,n-2) = A209815(n+1).
T(n^2+1,n-1) = A000065(n).
T(n,0) = A239241(n).
Sum_{k<=-1} T(n,k) = A239239(n).
Sum_{k<=0} T(n,k) = A239240(n).
Sum_{k>=1} T(n,k) = A239242(n).
Sum_{k>=0} T(n,k) = A239243(n).
Sum_{k=-1..1} T(n,k) = A239881(n).
T(n,-1) + T(n,1) = A239880(n).
Sum_{k=-n..n} T(n,k) = A000009 (row sums).

Examples

			T(12,-3) = 1: [6,4,2].
T(12,-2) = 2: [10,2], [8,4].
T(12,-1) = 1: [12].
T(12,0) = 2: [6,3,2,1], [5,4,2,1].
T(12,1) = 6: [9,2,1], [8,3,1], [7,4,1], [7,3,2], [6,5,1], [5,4,3].
T(12,2) = 3: [11,1], [9,3], [7,5].
T(13,-1) = 6: [10,2,1], [8,4,1], [8,3,2], [7,4,2], [6,5,2], [6,4,3].
T(14,-2) = 3: [12,2], [10,4], [8,6].
Triangle T(n,k) begins:
: n\k : -3 -2 -1  0  1  2  3  ...
+-----+--------------------------
:  0  :           1
:  1  :              1
:  2  :        1
:  3  :           1, 1
:  4  :        1, 0, 0, 1
:  5  :           2, 1
:  6  :     1, 1, 0, 1, 1
:  7  :        1, 3, 1
:  8  :     1, 1, 0, 2, 2
:  9  :        2, 4, 1, 0, 1
: 10  :     2, 1, 1, 4, 2
: 11  :        4, 5, 1, 1, 1
: 12  :  1, 2, 1, 2, 6, 3
: 13  :     1, 6, 6, 1, 2, 2
: 14  :  1, 3, 1, 5, 9, 3
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
          expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x^(2*irem(i, 2)-1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x^(2*Mod[i, 2]-1)]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[ T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
  • PARI
    N=20; q='q+O('q^N);
    e(n) = if(n%2!=0, u, 1/u);
    gf = prod(n=1,N, 1 + e(n)*q^n );
    V = Vec( gf );
    { for (j=1, #V,  \\ print triangle, including leading zeros
        for (i=0, N-j, print1("   "));  \\ padding
        for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
        print();
    ); }
    /* Joerg Arndt, Apr 01 2014 */

Formula

G.f.: prod(n>=1, 1 + e(n)*q^n ) = 1 + sum(n>=1, e(n)*q^n * prod(k=1..n-1, 1+e(k)*q^k) ) where e(n) = u if n odd, otherwise 1/u; see Pari program. [Joerg Arndt, Apr 01 2014]

A062392 a(n) = n^4 - (n-1)^4 + (n-2)^4 - ... 0^4.

Original entry on oeis.org

0, 1, 15, 66, 190, 435, 861, 1540, 2556, 4005, 5995, 8646, 12090, 16471, 21945, 28680, 36856, 46665, 58311, 72010, 87990, 106491, 127765, 152076, 179700, 210925, 246051, 285390, 329266, 378015, 431985, 491536, 557040, 628881, 707455, 793170, 886446, 987715
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2001

Keywords

Comments

Number of edges in the join of two complete graphs of order n^2 and n, K_n^2 * K_n. - Roberto E. Martinez II, Jan 07 2002
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-5)(P(4,1)-(-1)^k P(4,2k+1))|. - Peter Luschny, Jul 12 2009
Define an infinite symmetric array by T(n,m) = n*(n-1) + m for 0 <= m <= n and T(n,m) = T(m,n), n >= 0. Then a(n) is the sum of terms in the top left (n+1) X (n+1) subarray: a(n) = Sum_{r=0..n} Sum_{c=0..n} T(r,c). - J. M. Bergot, Jul 05 2013
a(n) is the sum of all positive numbers less than A002378(n). - J. M. Bergot, Aug 30 2013
Except the first term, these are triangular numbers that remain triangular when divided by their index, e.g., 66 divided by 11 gives 6. - Waldemar Puszkarz, Sep 14 2017
a(n) is the semiperimeter of the unique primitive Pythagorean triple such that (a-b+c)/2 = T(n) = A000217(n). Its long leg and hypotenuse are consecutive natural numbers and the triple is (2*T(n) - 1, 2*T(n)*(T(n) - 1), 2*T(n)*(T(n) - 1) + 1). - Miguel-Ángel Pérez García-Ortega, May 27 2025

Examples

			From _Bruno Berselli_, Oct 30 2017: (Start)
After 0:
1   =                 -(1) + (2);
15  =             -(1 + 2) + (3 + 4 + 5 + 2*3);
66  =         -(1 + 2 + 3) + (4 + 5 + 6 + 7 + ... + 11 + 3*4);
190 =     -(1 + 2 + 3 + 4) + (5 + 6 + 7 + 8 + ... + 19 + 4*5);
435 = -(1 + 2 + 3 + 4 + 5) + (6 + 7 + 8 + 9 + ... + 29 + 5*6), etc. (End)
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Cf. A000538, A000583. A062393 provides the result for 5th powers, A011934 for cubes, A000217 for squares, A001057 (unsigned) for nonnegative integers, A000035 (offset) for 0th powers.
Cf. A236770 (see crossrefs).

Programs

  • Maple
    a := n -> (2*n^2+n^3-1)*n/2; # Peter Luschny, Jul 12 2009
  • Mathematica
    Table[n (n + 1) (n^2 + n - 1)/2, {n, 0, 40}] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    { a=0; for (n=0, 1000, write("b062392.txt", n, " ", a=n^4 - a) ) } \\ Harry J. Smith, Aug 07 2009

Formula

a(n) = n*(n+1)*(n^2 + n - 1)/2 = n^4 - a(n-1) = A000583(n) - a(n-1) = A000217(A028387(n-1)) = A000217(n)*A028387(n-1).
a(n) = Sum_{i=0..n} A007588(i) for n > 0. - Jonathan Vos Post, Mar 15 2006
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Oct 19 2011
G.f.: x*(x*(x + 10) + 1)/(1 - x)^5. - Harvey P. Dale, Oct 19 2011
a(n) = A000384(A000217(n)). - Bruno Berselli, Jan 31 2014
a(n) = A110450(n) - A002378(n). - Gionata Neri, May 13 2015
Sum_{n>=1} 1/a(n) = tan(sqrt(5)*Pi/2)*2*Pi/sqrt(5). - Amiram Eldar, Jan 22 2024
a(n) = sqrt(144*A288876(n-2) + 72*A006542(n+2) + A000537(n)). - Yasser Arath Chavez Reyes, Jul 22 2024
E.g.f.: exp(x)*x*(2 + 13*x + 8*x^2 + x^3)/2. - Stefano Spezia, Apr 27 2025
a(n) = A000217(n)*(2*A000217(n)-1). - Miguel-Ángel Pérez García-Ortega, May 27 2025
Previous Showing 11-20 of 107 results. Next