cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 126 results. Next

A022998 If n is odd then n, otherwise 2n.

Original entry on oeis.org

0, 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, 17, 36, 19, 40, 21, 44, 23, 48, 25, 52, 27, 56, 29, 60, 31, 64, 33, 68, 35, 72, 37, 76, 39, 80, 41, 84, 43, 88, 45, 92, 47, 96, 49, 100, 51, 104, 53, 108, 55, 112, 57, 116, 59, 120, 61, 124, 63, 128, 65, 132, 67
Offset: 0

Views

Author

Keywords

Comments

Also for n > 0: numerator of Sum_{i=1..n} 2/(i*(i+1)), denominator=A026741. - Reinhard Zumkeller, Jul 25 2002
For n > 2: a(n) = gcd(A143051((n-1)^2), A143051(1+(n-1)^2)) = A050873(A000290(n-1), A002522(n-1)). - Reinhard Zumkeller, Jul 20 2008
Partial sums give the generalized octagonal numbers A001082. - Omar E. Pol, Sep 10 2011
Multiples of 4 and odd numbers interleaved. - Omar E. Pol, Sep 25 2011
The Pisano period lengths modulo m appear to be A066043(m). - R. J. Mathar, Oct 08 2011
The partial sums a(n)/A026741(n+1) given by R. Zumkeller in a comment above are 2*n/(n+1) (telescopic sum), and thus converge to 2. - Wolfdieter Lang, Apr 09 2013
a(n) = numerator(H(n,1)), where H(n,1) = 2*n/(n+1) is the harmonic mean of 1 and n. a(n) = 2*n/gcd(2n, n+1) = 2*n/gcd(n+1,2). a(n) = A227041(n,1), n>=1. - Wolfdieter Lang, Jul 04 2013
a(n) = numerator of the mean (2n/(n+1), after reduction), of the compositions of n; denominator is given by A001792(n-1). - Clark Kimberling, Mar 11 2014
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence of convergents of the 2-periodic continued fraction [0; 1, -4, 1, -4, ...] = 1/(1 - 1/(4 - 1/(1 - 1/(4 - ...)))) begins [0/1, 1/1, 4/3, 3/2, 8/5, 5/3, 12/7, ...]. The present sequence is the sequence of numerators. The sequence of denominators of the continued fraction convergents [1, 1, 3, 2, 5, 3, 7, ...] is A026741, also a strong divisibility sequence. Cf. A203976. - Peter Bala, May 19 2014
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized octagonal numbers. - Omar E. Pol, Jul 27 2018
a(n) is the number of petals of the Rhodonea curve r = a*cos(n*theta) or r = a*sin(n*theta). - Matt Westwood, Nov 19 2019

Crossrefs

Column 4 of A195151. - Omar E. Pol, Sep 25 2011
Cf. A000034, A001082 (partial sums).
Cf. A227041 (first column). - Wolfdieter Lang, Jul 04 2013
Row 2 of A349593. A385555, A385556, A385557, A385558, A385559, and A385560 are respectively rows 3, 4, 5-6, 7, 8, and 9-10.

Programs

  • Haskell
    a022998 n = a000034 (n + 1) * n
    a022998_list = zipWith (*) [0..] $ tail a000034_list
    -- Reinhard Zumkeller, Mar 31 2012
    
  • Magma
    [((-1)^n+3)*n/2: n in [0..70]]; // Vincenzo Librandi, Sep 17 2011
    
  • Maple
    A022998 := proc(n) if type(n,'odd') then n ; else 2*n; end if; end proc: # R. J. Mathar, Mar 10 2011
  • Mathematica
    Table[n (3 + (-1)^n)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Dec 13 2013 *)
    Table[If[OddQ[n],n,2n],{n,0,150}] (* or *) Riffle[ 2*Range[ 0,150,2], Range[ 1,150,2]] (* Harvey P. Dale, Feb 06 2017 *)
  • PARI
    a(n)=if(n%2,n,2*n)
    
  • Python
    def A022998(n): return n if n&1 else n<<1 # Chai Wah Wu, Mar 05 2024
  • SageMath
    [n*(1+((n+1)%2)) for n in (0..80)] # G. C. Greubel, Jul 31 2022
    

Formula

Denominator of (n+1)*(n-1)*(2*n+1)/(2*n) (for n > 0).
a(n+1) = lcm(n, n+2)/n + lcm(n, n+2)/(n+2) for all n >= 1. - Asher Auel, Dec 15 2000
Multiplicative with a(2^e) = 2^(e+1), a(p^e) = p^e, p > 2.
G.f. x*(1 + 4*x + x^2)/(1-x^2)^2. - Ralf Stephan, Jun 10 2003
a(n) = 3*n/2 + n*(-1)^n/2 = n*(3 + (-1)^n)/2. - Paul Barry, Sep 04 2003
a(n) = A059029(n-1) + 1 = A043547(n+2) - 2.
a(n)*a(n+3) = -4 + a(n+1)*a(n+2).
a(n) = n*(((n+1) mod 2) + 1) = n^2 + 2*n - 2*n*floor((n+1)/2). - William A. Tedeschi, Feb 29 2008
a(n) = denominator((n+1)/(2*n)) for n >= 1; A026741(n+1) = numerator((n+1)/(2*n)) for n >= 1. - Johannes W. Meijer, Jun 18 2009
a(n) = 2*a(n-2) - a(n-4).
Dirichlet g.f. zeta(s-1)*(1+2^(1-s)). - R. J. Mathar, Mar 10 2011
a(n) = n * (2 - n mod 2) = n * A000034(n+1). - Reinhard Zumkeller, Mar 31 2012
a(n) = floor(2*n/(1 + (n mod 2))). - Wesley Ivan Hurt, Dec 13 2013
From Ilya Gutkovskiy, Mar 16 2017: (Start)
E.g.f.: x*(2*sinh(x) + cosh(x)).
It appears that a(n) is the period of the sequence k*(k + 1)/2 mod n. (End) [This is correct; see A349593. - Jianing Song, Jul 03 2025]
a(n) = Sum_{d | n} A345082(d). - Peter Bala, Jan 13 2024

Extensions

More terms from Michael Somos, Aug 07 2000

A056220 a(n) = 2*n^2 - 1.

Original entry on oeis.org

-1, 1, 7, 17, 31, 49, 71, 97, 127, 161, 199, 241, 287, 337, 391, 449, 511, 577, 647, 721, 799, 881, 967, 1057, 1151, 1249, 1351, 1457, 1567, 1681, 1799, 1921, 2047, 2177, 2311, 2449, 2591, 2737, 2887, 3041, 3199, 3361, 3527, 3697, 3871, 4049, 4231, 4417, 4607, 4801
Offset: 0

Views

Author

N. J. A. Sloane, Aug 06 2000

Keywords

Comments

Image of squares (A000290) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}. - Henry Bottomley, Dec 12 2000
Surround numbers of an n X n square. - Jason Earls, Apr 16 2001
Numbers n such that 2*n + 2 is a perfect square. - Cino Hilliard, Dec 18 2003, Juri-Stepan Gerasimov, Apr 09 2016
The sums of the consecutive integer sequences 2n^2 to 2(n+1)^2-1 are cubes, as 2n^2 + ... + 2(n+1)^2-1 = (1/2)(2(n+1)^2 - 1 - 2n^2 + 1)(2(n+1)^2 - 1 + 2n^2) = (2n+1)^3. E.g., 2+3+4+5+6+7 = 27 = 3^3, then 8+9+10+...+17 = 125 = 5^3. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 29 2005
X values (other than 0) of solutions to the equation 2*X^3 + 2*X^2 = Y^2. To find Y values: b(n) = 2n*(2*n^2 - 1). - Mohamed Bouhamida, Nov 06 2007
Average of the squares of two consecutive terms is also a square. In fact: (2*n^2 - 1)^2 + (2*(n+1)^2 - 1)^2 = 2*(2*n^2 + 2*n + 1)^2. - Matias Saucedo (solomatias(AT)yahoo.com.ar), Aug 18 2008
Equals row sums of triangle A143593 and binomial transform of [1, 6, 4, 0, 0, 0, ...] with n > 1. - Gary W. Adamson, Aug 26 2008
Start a spiral of square tiles. Trivially the first tile fits in a 1 X 1 square. 7 tiles fit in a 3 X 3 square, 17 tiles fit in a 5 X 5 square and so on. - Juhani Heino, Dec 13 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-2, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jan 26 2010
For each n > 0, the recursive series, formula S(b) = 6*S(b-1) - S(b-2) - 2*a(n) with S(0) = 4n^2-4n+1 and S(1) = 2n^2, has the property that every even term is a perfect square and every odd term is twice a perfect square. - Kenneth J Ramsey, Jul 18 2010
Fourth diagonal of A154685 for n > 2. - Vincenzo Librandi, Aug 07 2010
First integer of (2*n)^2 consecutive integers, where the last integer is 3 times the first + 1. As example, n = 2: term = 7; (2*n)^2 = 16; 7, 8, 9, ..., 20, 21, 22: 7*3 + 1 = 22. - Denis Borris, Nov 18 2012
Chebyshev polynomial of the first kind T(2,n). - Vincenzo Librandi, May 30 2014
For n > 0, number of possible positions of a 1 X 2 rectangle in a (n+1) X (n+2) rectangular integer lattice. - Andres Cicuttin, Apr 07 2016
This sequence also represents the best solution for Ripà's n_1 X n_2 X n_3 dots problem, for any 0 < n_1 = n_2 < n_3 = floor((3/2)*(n_1 - 1)) + 1. - Marco Ripà, Jul 23 2018

Examples

			a(0) = 0^2-1*1 = -1, a(1) = 1^2 - 4*0 = 1, a(2) = 2^2 - 9*1 = 7, etc.
a(4) = 31 = (1, 3, 3, 1) dot (1, 6, 4, 0) = (1 + 18 + 12 + 0). - _Gary W. Adamson_, Aug 29 2008
		

Crossrefs

Cf. A066049 (indices of prime terms)
Column 2 of array A188644 (starting at offset 1).

Programs

Formula

G.f.: (-1 + 4*x + x^2)/(1-x)^3. - Henry Bottomley, Dec 12 2000
a(n) = A119258(n+1,2) for n > 0. - Reinhard Zumkeller, May 11 2006
From Doug Bell, Mar 08 2009: (Start)
a(0) = -1,
a(n) = sqrt(A001844(n)^2 - A069074(n-1)),
a(n+1) = sqrt(A001844(n)^2 + A069074(n-1)) = sqrt(a(n)^2 + A069074(n-1)*2). (End)
a(n) + a(n+1) + 1 = (2n+1)^2. - Doug Bell, Mar 09 2009
a(n) = a(n-1) + 4*n - 2 (with a(0)=-1). - Vincenzo Librandi, Dec 25 2010
a(n) = A188653(2*n) for n > 0. - Reinhard Zumkeller, Apr 13 2011
a(n) = A162610(2*n-1,n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(n) = ( Sum_{k=0..2} (C(n+k,3)-C(n+k-1,3))*(C(n+k,3)+C(n+k+1,3)) ) - (C(n+2,3)-C(n-1,3))*(C(n,3)+C(n+3,3)), for n > 3. - J. M. Bergot, Jun 16 2014
a(n) = j^2 + k^2 - 2 or 2*j*k if n >= 2 and j = n + sqrt(2)/2 and k = n - sqrt(2)/2. - Avi Friedlich, Mar 30 2015
a(n) = A002593(n)/n^2. - Bruce J. Nicholson, Apr 03 2017
a(n) = A000384(n) + n - 1. - Bruce J. Nicholson, Nov 12 2017
a(n)*a(n+k) + 2k^2 = m^2 (a perfect square), m = a(n) + (2n*k), for n>=1. - Ezhilarasu Velayutham, May 13 2019
From Amiram Eldar, Aug 10 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(2)*Pi*cot(Pi/sqrt(2))/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi*csc(Pi/sqrt(2))/4 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(2))*csc(Pi/sqrt(2)).
Product_{n>=2} (1 - 1/a(n)) = (Pi/(4*sqrt(2)))*csc(Pi/sqrt(2)). (End)
a(n) = A003215(n) - A000217(n-2)*2. - Leo Tavares, Jun 29 2021
Let T(n) = n*(n+1)/2. Then a(n)^2 = T(2n-2)*T(2n+1) + n^2. - Charlie Marion, Feb 12 2023
E.g.f.: exp(x)*(2*x^2 + 2*x - 1). - Stefano Spezia, Jul 08 2023

A085787 Generalized heptagonal numbers: m*(5*m - 3)/2, m = 0, +-1, +-2 +-3, ...

Original entry on oeis.org

0, 1, 4, 7, 13, 18, 27, 34, 46, 55, 70, 81, 99, 112, 133, 148, 172, 189, 216, 235, 265, 286, 319, 342, 378, 403, 442, 469, 511, 540, 585, 616, 664, 697, 748, 783, 837, 874, 931, 970, 1030, 1071, 1134, 1177, 1243, 1288, 1357, 1404, 1476, 1525, 1600, 1651, 1729
Offset: 0

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Zero together with the partial sums of A080512. - Omar E. Pol, Sep 10 2011
Second heptagonal numbers (A147875) and positive terms of A000566 interleaved. - Omar E. Pol, Aug 04 2012
These numbers appear in a theta function identity. See the Hardy-Wright reference, Theorem 355 on p. 284. See the g.f. of A113429. - Wolfdieter Lang, Oct 28 2016
Characteristic function is A133100. - Michael Somos, Jan 30 2017
40*a(n) + 9 is a square. - Bruno Berselli, Apr 18 2018
Numbers k such that the concatenation k225 is a square. - Bruno Berselli, Nov 07 2018
The sequence terms occur as exponents in the expansion of Sum_{n >= 0} q^(n*(n+1)) * Product_{k >= n+1} 1 - q^k = 1 - q - q^4 + q^7 + q^13 - q^18 - q^27 + + - - ... (see Hardy and Wright, Theorem 363, p. 290). - Peter Bala, Dec 15 2024

Examples

			From the first formula: a(5) = A000217(5) + A000217(2) = 15 + 3 = 18.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.

Crossrefs

Column 3 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), this sequence (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Haskell
    a085787 n = a085787_list !! n
    a085787_list = scanl (+) 0 a080512_list
    -- Reinhard Zumkeller, Apr 06 2015
  • Magma
    [5*n*(n+1)/8-1/16+(-1)^n*(2*n+1)/16: n in [0..60]]; // Vincenzo Librandi, Sep 11 2011
    
  • Mathematica
    Select[Table[(n*(n+1)/2-1)/5,{n,500}],IntegerQ] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2012 *)
  • PARI
    t(n)=n*(n+1)/2
    for(i=0,40,print1(t(i)+t(floor(i/2)), ", "))
    
  • PARI
    {a(n) = (5*(-n\2)^2 - (-n\2)*3*(-1)^n) / 2}; /* Michael Somos, Oct 17 2006 */
    

Formula

a(n) = A000217(n) + A000217(floor(n/2)).
a(2*n-1) = A000566(n).
a(2*n) = A147875(n). - Bruno Berselli, Apr 18 2018
G.f.: x * (1 + 3*x + x^2) / ((1 - x) * (1 - x^2)^2). a(n) = a(-1-n) for all n in Z. - Michael Somos, Oct 17 2006
a(n) = 5*n*(n + 1)/8 - 1/16 + (-1)^n*(2*n + 1)/16. - R. J. Mathar, Jun 29 2009
a(n) = (A000217(n) + A001082(n))/2 = (A001318(n) + A118277(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = A002378(n) - A001318(n). - Omar E. Pol, Oct 23 2013
Sum_{n>=1} 1/a(n) = 10/9 + (2*sqrt(1 - 2/sqrt(5))*Pi)/3. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (x*(9 + 5*x)*exp(x) - (1 - 2*x)*sinh(x))/8. - Franck Maminirina Ramaharo, Nov 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(5)/3 - 10/9 - 2*sqrt(5)*log(phi)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Feb 28 2022

Extensions

New name from T. D. Noe, Apr 21 2006
Formula in sequence name added by Omar E. Pol, May 28 2012

A074377 Generalized 10-gonal numbers: m*(4*m - 3) for m = 0, +- 1, +- 2, +- 3, ...

Original entry on oeis.org

0, 1, 7, 10, 22, 27, 45, 52, 76, 85, 115, 126, 162, 175, 217, 232, 280, 297, 351, 370, 430, 451, 517, 540, 612, 637, 715, 742, 826, 855, 945, 976, 1072, 1105, 1207, 1242, 1350, 1387, 1501, 1540, 1660, 1701, 1827, 1870, 2002, 2047, 2185, 2232, 2376, 2425
Offset: 0

Views

Author

W. Neville Holmes, Sep 04 2002

Keywords

Comments

Also called generalized decagonal numbers.
Odd triangular numbers decremented and halved.
It appears that this is zero together with the partial sums of A165998. - Omar E. Pol, Sep 10 2011 [this is correct, see the g.f., Joerg Arndt, Sep 29 2013]
Also, A033954 and positive members of A001107 interleaved. - Omar E. Pol, Aug 04 2012
Also, numbers m such that 16*m+9 is a square. After 1, therefore, there are no squares in this sequence. - Bruno Berselli, Jan 07 2016
Convolution of the sequences A047522 and A059841. - Ilya Gutkovskiy, Mar 16 2017
Numbers k such that the concatenation k5625 is a square. - Bruno Berselli, Nov 07 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(8*n-7))*(1 + x^(8*n-1))*(1 - x^(8*n)) = 1 + x + x^7 + x^10 + x^22 + .... - Peter Bala, Dec 10 2020

Crossrefs

Cf. A001107 (10-gonal numbers).
Column 6 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), this sequence (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Cf. sequences of the form m*(m+k)/(k+1) listed in A274978. [Bruno Berselli, Jul 25 2016]

Programs

  • Magma
    [n^2+n-1/4+(-1)^n/4+n*(-1)^n/2: n in [0..50]]; // Vincenzo Librandi, Sep 29 2013
    
  • Mathematica
    CoefficientList[Series[x(1 +6x +x^2)/((1-x)(1-x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 29 2013 *)
    LinearRecurrence[{1,2,-2,-1,1}, {0,1,7,10,22}, 50] (* G. C. Greubel, Nov 07 2018 *)
  • PARI
    a(n)=(2*n+3-4*(n%2))*(n-n\2)
    
  • PARI
    concat([0],Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - x^2)^2) +O(x^50))) \\ Indranil Ghosh, Mar 16 2017
    
  • Python
    def A074377(n): return (n+1>>1)*((n<<1)+(-1 if n&1 else 3)) # Chai Wah Wu, Mar 11 2025

Formula

(n(n+1)-2)/4 where n(n+1)/2 is odd.
G.f.: x*(1+6*x+x^2)/((1-x)*(1-x^2)^2). - Michael Somos, Mar 04 2003
a(2*k) = k*(4*k+3); a(2*k+1) = (2*k+1)^2+k. - Benoit Jubin, Feb 05 2009
a(n) = n^2+n-1/4+(-1)^n/4+n*(-1)^n/2. - R. J. Mathar, Oct 08 2011
Sum_{n>=1} 1/a(n) = (4 + 3*Pi)/9. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: exp(x)*x^2 + (2*exp(x) - exp(-x)/2)*x - sinh(x)/2. - Ilya Gutkovskiy, Mar 16 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2) - 4/9. - Amiram Eldar, Feb 28 2022
a(n) = (n+1)*(2*n-1)/2 if n is odd and a(n) = n*(2*n+3)/2 if n is even. - Chai Wah Wu, Mar 11 2025

Extensions

New name from T. D. Noe, Apr 21 2006
Formula in sequence name from Omar E. Pol, May 28 2012

A028347 a(n) = n^2 - 4.

Original entry on oeis.org

0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597
Offset: 2

Views

Author

Keywords

Comments

Nonnegative X values of solutions to the equation X^3 + 4*X^2 = Y^2. The respective Y values are n*(n^2 - 4). - Mohamed Bouhamida, Nov 06 2007
Discriminants of binary forms x^2 + n*x*y + y^2 (for n > 1). - Artur Jasinski, Apr 28 2008
a(n)*a(n-1) + 4 = (a(n)-n)^2. This is the case d = 4 in the general (n^2-d)*((n-1)^2-d) + d = (n^2-n-d)^2. - Bruno Berselli, Dec 07 2011
Interleaving of A134582 and A078371. - Bruce J. Nicholson, Oct 14 2019

Examples

			G.f. = 5*x^3 + 12*x^4 + 21*x^5 + 32*x^6 + 45*x^7 + 60*x^8 + 77*x^9 + 96*x^10 + ...
		

References

  • Alain Connes, Noncommutative Geometry, Academic Press, 1994, p. 35.

Crossrefs

a(n), n>=3, second column (used for the Balmer series of the hydrogen atom) of triangle A120070.

Programs

Formula

Except for initial term, denominators of energies of hydrogen lines.
a(n+2) = n*(n+4). G.f.: x^3*(5-3*x)/(1-x)^3. - Barry E. Williams, Jun 16 2000, R. J. Mathar, Aug 06 2009
a(n) = 2*n + a(n-1) - 1. - Vincenzo Librandi, Aug 02 2010
Sum_{n >= 3} 1/a(n) = 25/48 = 0.52083333... = 100*A021196. - R. J. Mathar, Mar 22 2011
a(n) = x, the solution of k = (sqrt(x)+n)/2 and k + (1/k) = n (also valid for a(0) = -4 and a(1) = -3). - Charles L. Hohn, Apr 16 2011
E.g.f.: (x^2 + x - 4)*exp(x). - G. C. Greubel, Jul 17 2017
Sum_{n>=3} (-1)^(n+1)/a(n) = 7/48. - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=3} (1 - 1/a(n)) = 6*sin(sqrt(5)*Pi)/(sqrt(5)*Pi).
Product_{n>=3} (1 + 1/a(n)) = -4*sqrt(3)*sin(sqrt(3)*Pi)/Pi. (End)

A045944 Rhombic matchstick numbers: a(n) = n*(3*n+2).

Original entry on oeis.org

0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the n-th term of the sequence found by reading the line from 0 in the direction 0,5,.... The spiral begins:
.
85--84--83--82--81--80
. \
56--55--54--53--52 79
/ . \ \
57 33--32--31--30 51 78
/ / . \ \ \
58 34 16--15--14 29 50 77
/ / / . \ \ \ \
59 35 17 5---4 13 28 49 76
/ / / / . \ \ \ \ \
60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / /
61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
(End)
Connection to triangular numbers: a(n) = 4*T_n + S_n where T_n is the n-th triangular number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010
Also, second octagonal numbers. - Bruno Berselli, Jan 13 2011
Sequence found by reading the line from 0, in the direction 0, 16, ... and the line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
Let P denote the points from the n X n grid. A(n-1) also coincides with the minimum number of points Q needed to "block" P, that is, every line segment spanned by two points from P must contain one point from Q. - Manfred Scheucher, Aug 30 2018
Also the number of internal edges of an (n+1)*(n+1) "square" of hexagons; i.e., n+1 rows, each of n+1 edge-adjacent hexagons, stacked with minimal overhang. - Jon Hart, Sep 29 2019
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+2; {1, 2n-1, 1, 1, 1, 2n-1, 1, 18n+4}]. - Magus K. Chu, Oct 13 2022

Crossrefs

Bisection of A001859. See Comments of A135713.
Cf. second n-gonal numbers: A005449, A014105, A147875, A179986, A033954, A062728, A135705.
Cf. A056109.
Cf. A003154.

Programs

Formula

O.g.f.: x*(5+x)/(1-x)^3. - R. J. Mathar, Jan 07 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=5, a(2)=16. - Harvey P. Dale, May 06 2011
a(n) = a(n-1) + 6*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
For n > 0, a(n)^3 + (a(n)+1)^3 + ... + (a(n)+n)^3 + 2*A000217(n)^2 = (a(n) + n + 1)^3 + ... + (a(n) + 2n)^3; see also A033954. - Charlie Marion, Dec 08 2007
a(n) = Sum_{i=0..n-1} A016969(i) for n > 0. - Bruno Berselli, Jan 13 2011
a(n) = A174709(6*n+4). - Philippe Deléham, Mar 26 2013
a(n) = A001082(2*n). - Michael Turniansky, Aug 24 2013
Sum_{n>=1} 1/a(n) = (9 + sqrt(3)*Pi - 9*log(3))/12 = 0.3794906245574721941... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A002378(n) + A014105(n). - J. M. Bergot, Apr 24 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(12) - 3/4. - Amiram Eldar, Jul 03 2020
E.g.f.: exp(x)*x*(5 + 3*x). - Stefano Spezia, Jun 08 2021
From Leo Tavares, Oct 14 2021: (Start)
a(n) = A000290(n) + 4*A000217(n). See Square Stars illustration.
a(n) = A000567(n+2) - A022144(n+1)
a(n) = A005563(n) + A001105(n).
a(n) = A056109(n) - 1. (End)
From Leo Tavares, Oct 06 2022: (Start)
a(n) = A003154(n+1) - A000567(n+1). See Split Stars illustration.
a(n) = A014105(n) + 2*A000217(n). (End)

A118277 Generalized 9-gonal (or enneagonal) numbers: m*(7*m - 5)/2 with m = 0, 1, -1, 2, -2, 3, -3, ...

Original entry on oeis.org

0, 1, 6, 9, 19, 24, 39, 46, 66, 75, 100, 111, 141, 154, 189, 204, 244, 261, 306, 325, 375, 396, 451, 474, 534, 559, 624, 651, 721, 750, 825, 856, 936, 969, 1054, 1089, 1179, 1216, 1311, 1350, 1450, 1491, 1596, 1639, 1749, 1794, 1909, 1956, 2076, 2125, 2250
Offset: 0

Views

Author

T. D. Noe, Apr 21 2006

Keywords

Comments

Partial sums of A195140. - Omar E. Pol, Sep 13 2011
The characteristic function starts 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0 , ... and has the generating function f(x,x^6) in terms of Ramanujan's two-variable theta function. See A080995, A010054, A133100 etc. - Omar E. Pol, Jul 13 2012
Also A179986 and positive terms of A001106 interleaved. - Omar E. Pol, Aug 04 2012
Sequence provides all integers m such that 56*m + 25 is a square. - Bruno Berselli, Oct 07 2015

Crossrefs

Cf. A001106 (9-gonal numbers).
Column 5 of A195152.
Cf. A195140.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), this sequence (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8): n in [0..50]]; // Vincenzo Librandi, Oct 10 2011
    
  • Mathematica
    n=9; Union[Table[i((n-2)i-(n-4))/2, {i,-30,30}]]
    LinearRecurrence[{1,2,-2,-1,1},{0,1,6,9,19},60] (* Harvey P. Dale, Jun 08 2016 *)
  • PARI
    a(n)=7*n*(n+1)/8-3/16+3*(-1)^n*(1+2*n)/16 \\ Charles R Greathouse IV, Jan 18 2012

Formula

a(n) = n*(7*n-5)/2 for positive and negative n.
a(n) = (1/16)*(14*n^2 + 14*n - 3 + 3*(-1)^n*(2*n + 1)). - R. J. Mathar, Oct 08 2011
G.f.: x*(1+5*x+x^2) / ( (1+x)^2*(1-x)^3 ). - R. J. Mathar, Oct 08 2011
Sum_{n>=1} 1/a(n) = 2*(7 + 5*Pi*tan(3*Pi/14))/25. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (1/16)*(3*(1 - 2*x)*exp(-x) + (-3 + 28*x + 14*x^2)*exp(x)). - G. C. Greubel, Aug 19 2017

Extensions

Extended Name by Omar E. Pol, Jul 28 2018

A195162 Generalized 12-gonal numbers: k*(5*k-4) for k = 0, +-1, +-2, ...

Original entry on oeis.org

0, 1, 9, 12, 28, 33, 57, 64, 96, 105, 145, 156, 204, 217, 273, 288, 352, 369, 441, 460, 540, 561, 649, 672, 768, 793, 897, 924, 1036, 1065, 1185, 1216, 1344, 1377, 1513, 1548, 1692, 1729, 1881, 1920, 2080, 2121, 2289, 2332, 2508, 2553, 2737, 2784, 2976, 3025
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

Also generalized dodecagonal numbers.
Second 12-gonal numbers (A135705) and positive terms of A051624 interleaved. - Omar E. Pol, Aug 04 2012
The characteristic function of this sequence is A205988. - Jason Kimberley, Nov 15 2012
Also, integer values of m*(m+4)/5. - Bruno Berselli, Dec 05 2012
Also, numbers h such that 5*h + 4 is a square. - Bruno Berselli, Oct 10 2013
Exponents in expansion of Product_{n >= 1} (1 + x^(10*n-9))*(1 + x^(10*n-1))*(1 - x^(10*n)) = 1 + x + x^9 + x^12 + x^28 + .... - Peter Bala, Dec 10 2020

Crossrefs

Partial sums of A195161.
Column 8 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), this sequence (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Cf. sequences of the form m*(m+k)/(k+1) listed in A274978. [Bruno Berselli, Jul 25 2016]

Programs

  • GAP
    List([0..50], n-> (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8); # G. C. Greubel, Jul 04 2019
  • Magma
    [0] cat &cat[[5*n^2-4*n, 5*n^2+4*n]: n in [1..25]]; // Vincenzo Librandi, Sep 26 2011
    
  • Mathematica
    nn = 25; Sort[Table[n*(5*n - 4), {n, -nn, nn}]] (* T. D. Noe, Sep 23 2011 *)
  • PARI
    vector(50, n, n--; (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8) \\ G. C. Greubel, Jul 04 2019
    
  • Sage
    [(10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8 for n in (0..50)] # G. C. Greubel, Jul 04 2019
    

Formula

From R. J. Mathar, Sep 24 2011: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = A008805(n-1) + A008805(n-3) + 8*A008805(n-2). (End)
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: x*(1+8*x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (10*n*(n+1) + 3*(2*n+1)*(-1)^n - 3)/8.
a(n) = a(-n-1). (End)
Sum_{n>=1} 1/a(n) = (5 + 4*sqrt(1 + 2/sqrt(5))*Pi)/16. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (3*(1 - 2*x)*exp(-x) + (-3 +20*x +10*x^2)*exp(x))/8. - G. C. Greubel, Jul 04 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(5)/8 + sqrt(5)*log(phi)/4 - 5/16, where phi is the golden ratio (A001622). - Amiram Eldar, Feb 28 2022

A195160 Generalized 11-gonal (or hendecagonal) numbers: m*(9*m - 7)/2 with m = 0, 1, -1, 2, -2, 3, -3, ...

Original entry on oeis.org

0, 1, 8, 11, 25, 30, 51, 58, 86, 95, 130, 141, 183, 196, 245, 260, 316, 333, 396, 415, 485, 506, 583, 606, 690, 715, 806, 833, 931, 960, 1065, 1096, 1208, 1241, 1360, 1395, 1521, 1558, 1691, 1730, 1870, 1911, 2058, 2101, 2255, 2300, 2461, 2508, 2676
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

Exponents of q in the expansion of Product_{n >= 1} (1 - q^(9*n))*(1 + q^(9*n-1))*(1 + q^(9*n-8)) = 1 + q + q^8 + q^11 + q^25 + q^30 + .... - Peter Bala, Nov 21 2024

Crossrefs

Partial sums of A195159.
Column 7 of A195152.
Cf. A316672.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), this sequence (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    I:=[0, 1, 8, 11, 25]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Apr 09 2013
    
  • Mathematica
    CoefficientList[Series[x (1 + 7 x + x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Apr 09 2013 *)
  • PARI
    a(n)=(18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 \\ Charles R Greathouse IV, Sep 24 2015

Formula

From Bruno Berselli, Sep 14 2011: (Start)
G.f.: x*(1+7*x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16.
a(2n) = A062728(n), a(2n-1) = A051682(n). (End)
Sum_{n>=1} 1/a(n) = 18/49 + 2*Pi*cot(2*Pi/9)/7. - Vaclav Kotesovec, Oct 05 2016

A195313 Generalized 13-gonal numbers: m*(11*m-9)/2 with m = 0, 1, -1, 2, -2, 3, -3, ...

Original entry on oeis.org

0, 1, 10, 13, 31, 36, 63, 70, 106, 115, 160, 171, 225, 238, 301, 316, 388, 405, 486, 505, 595, 616, 715, 738, 846, 871, 988, 1015, 1141, 1170, 1305, 1336, 1480, 1513, 1666, 1701, 1863, 1900, 2071, 2110, 2290, 2331, 2520, 2563, 2761, 2806, 3013, 3060, 3276
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also generalized tridecagonal numbers or generalized triskaidecagonal numbers.
Also A211013 and positive terms of A051865 interleaved. - Omar E. Pol, Aug 04 2012
Numbers k for which 88*k + 81 is a square. - Bruno Berselli, Jul 10 2018

Crossrefs

Partial sums of A195312.
Column 9 of A195152.
Cf. A316672.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), this sequence (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [(22*n*(n+1)+7*(2*n+1)*(-1)^n-7)/16: n in [0..50]]; // Vincenzo Librandi, Sep 16 2011
    
  • Magma
    A195313:=func; [0] cat [A195313(n*m): m in [1,-1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
    
  • Maple
    a:= n-> (m-> m*(11*m-9)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 10 2018
  • Mathematica
    lim = 50; Sort[Table[n*(11*n - 9)/2, {n, -lim, lim}]] (* T. D. Noe, Sep 15 2011 *)
    Accumulate[With[{nn=30},Riffle[9Range[0,nn],Range[1,2nn+1,2]]]] (* Harvey P. Dale, Sep 24 2011 *)
  • PARI
    a(n)=(22*n*(n+1)+7*(2*n+1)*(-1)^n-7)/16 \\ Charles R Greathouse IV, Sep 24 2015

Formula

From Bruno Berselli, Sep 15 2011: (Start)
G.f.: x*(1 + 9*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = (22*n*(n + 1) + 7*(2*n + 1)*(-1)^n - 7)/16.
a(n) - a(n-2) = A175885(n). (End)
Sum_{n>=1} 1/a(n) = 22/81 + 2*Pi*cot(2*Pi/11)/9. - Vaclav Kotesovec, Oct 05 2016
Previous Showing 11-20 of 126 results. Next