A001971
Nearest integer to n^2/8.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 5, 6, 8, 10, 13, 15, 18, 21, 25, 28, 32, 36, 41, 45, 50, 55, 61, 66, 72, 78, 85, 91, 98, 105, 113, 120, 128, 136, 145, 153, 162, 171, 181, 190, 200, 210, 221, 231, 242, 253, 265, 276, 288, 300, 313, 325, 338, 351, 365, 378, 392, 406, 421, 435, 450
Offset: 0
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
- M. Jeger, Einfuehrung in die Kombinatorik, Klett, 1975, Bd.2, pages 110 ff. [Paul Weisenhorn, Jun 05 2009]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- G. Almkvist, Invariants, mostly old ones, Pacific J. Math. 86 (1980), no. 1, 1-13. MR0586866 (81j:14029)
- A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
- Shalosh B. Ekhad and Doron Zeilberger, In How many ways can I carry a total of n coins in my two pockets, and have the same amount in both pockets?, arXiv:1901.08172 [math.CO], 2019.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. Vainsencher and A. M. Bruckstein, On isoperimetrically optimal polyforms, Theoretical Computer Science 406.1-2, 2008, pp. 146-159.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Kind of an inverse of
A261491 (regarding Go).
Cf.
A026810 (partitions with greatest part 4),
A001400 (partitions in at most 4 parts),
A000217 (a(2n+1): triangular numbers n(n+1)/2),
A000982 (a(2n): round(n^2/2)).
-
a001971 = floor . (+ 0.5) . (/ 8) . fromIntegral . (^ 2)
-- Reinhard Zumkeller, May 08 2012
-
[Round(n^2/8): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011
-
A001971:=-(1-z+z**2)/((z+1)*(z**2+1)*(z-1)**3); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation [Note that this "generating function" is Sum_{n >= 0} a(n+2)*z^n, not a(n)*z^n. - M. F. Hasler, Jun 16 2022]
-
LinearRecurrence[{2,-1,0,1,-2,1},{0,0,1,1,2,3},70] (* Harvey P. Dale, Jan 30 2014 *)
-
{a(n) = round(n^2 / 8)};
-
apply( {A001971(n)=n^2\/8}, [0..99]) \\ M. F. Hasler, Jun 16 2022
A008804
Expansion of 1/((1-x)^2*(1-x^2)*(1-x^4)).
Original entry on oeis.org
1, 2, 4, 6, 10, 14, 20, 26, 35, 44, 56, 68, 84, 100, 120, 140, 165, 190, 220, 250, 286, 322, 364, 406, 455, 504, 560, 616, 680, 744, 816, 888, 969, 1050, 1140, 1230, 1330, 1430, 1540, 1650, 1771, 1892, 2024, 2156, 2300, 2444, 2600, 2756, 2925, 3094, 3276, 3458
Offset: 0
G.f. = 1 + 2*x + 4*x^2 + 6*x^3 + 10*x^4 + 14*x^5 + 20*x^6 + 26*x^7 + 35*x^8 + ...
There are 10 asymmetric nonnegative integer 2 X 2 matrices with sum of elements equal to 7 under action of D_4:
[0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [0 1] [0 2] [0 2] [1 1]
[1 6] [2 5] [3 4] [2 4] [3 3] [4 2] [5 1] [3 2] [4 1] [2 3]
- T. D. Noe, Table of n, a(n) for n = 0..1000
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets with no reflection symmetry, 2019.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 197
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. [From _R. J. Mathar_, Nov 08 2008]
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,2,-2,0,2,-1).
Column k=3 of
A181322. Column k = 4 of
A180472 (but with different offset).
-
a:=[1,2,4,6,10,14,20,26];; for n in [9..60] do a[n]:=2*a[n-1] -2*a[n-3]+2*a[n-4]-2*a[n-5]+2*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Sep 12 2019
-
R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)^2*(1-x^2)*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
-
seq(coeff(series(1/((1-x)^2*(1-x^2)*(1-x^4)), x, n+1), x, n), n = 0..60); # G. C. Greubel, Sep 12 2019
-
LinearRecurrence[{2,0,-2,2,-2,0,2,-1}, {1,2,4,6,10,14,20,26}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
gf[x_,k_]:=x^k/2 (1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])-(1+x)/(1-x^2)^Floor[k/2+1]); CoefficientList[Series[gf[x,4]/x^7,{x,0,60}],x] (* Herbert Kociemba, Nov 27 2016 *)
Table[(84 +12*(-1)^n +85*n +3*(-1)^n*n +24*n^2 +2*n^3 +12*Sin[n Pi/2])/96, {n,0,60}] (* Eric W. Weisstein, Oct 12 2017 *)
CoefficientList[Series[1/((1-x)^4*(1+x)^2*(1+x^2)), {x,0,60}], x] (* Eric W. Weisstein, Oct 12 2017 *)
-
a(n)=(84+12*(-1)^n+6*I*((-I)^n-I^n)+(85+3*(-1)^n)*n+24*n^2 +2*n^3)/96 \\ Jaume Oliver Lafont, Sep 20 2009
-
{a(n) = my(s = 1); if( n<-7, n = -8 - n; s = -1); if( n<0, 0, s * polcoeff( 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^4)) + x * O(x^n), n))}; /* Michael Somos, Feb 02 2011 */
-
def A008804_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)^2*(1-x^2)*(1-x^4))).list()
A008804_list(60) # G. C. Greubel, Sep 12 2019
A008763
Expansion of g.f.: x^4/((1-x)*(1-x^2)^2*(1-x^3)).
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 38, 45, 57, 66, 81, 93, 111, 126, 148, 166, 192, 214, 244, 270, 305, 335, 375, 410, 455, 495, 546, 591, 648, 699, 762, 819, 889, 952, 1029, 1099, 1183, 1260, 1352, 1436, 1536, 1628, 1736, 1836, 1953, 2061, 2187, 2304, 2439
Offset: 0
a(7) = 4:
41 32 31 22
11 11 21 21
G.f. = x^4 + x^5 + 3*x^6 + 4*x^7 + 7*x^8 + 9*x^9 + 14*x^10 + 17*x^11 + ...
a(5-1) = 1 because P(5) has only one triple {[1,1,1,5], [2,2,2,4], [1,3,3,3]} of elements from Q(28) where f([1,1,1,5]) = 5, f([2,2,2,4]) = 3, f([1,3,3,3]) = 8, and 5 + 3 = 8. - _Michael Somos_, Jan 21 2015
a(6-1) = 1 because P(6) has only one triple {[1,1,2,6], [2,2,3,5], [1,3,4,4]} of elements from Q(42) where f([1,1,2,6]) = 8, f([2,2,3,5]) = 10, f([1,3,4,4]) = 18 and 8 + 10 = 18. - _Michael Somos_, Jan 21 2015
a(7-1) = 3 because P(7) has three triples. The triple {[1,1,1,7], [2,4,4,4], [3,3,3,5]} from Q(52) where f([1,1,1,7]) = 13, f([2,4,4,4]) = 27, f([3,3,3,5]) = 40 and 13 + 27 = 40. The triple {[1,2,2,7], [2,3,3,6], [1,4,4,5]} from Q(58) where f([1,2,2,7]) = 13, f([2,3,3,6]) = 32, f([1,4,4,5]) = 45 and 13 + 32 = 45. The triple {[1,1,3,7], [2,2,4,6], [1,3,5,5]} from Q(60) where f([1,1,3,7]) = 26, f([2,2,4,6]) = 24, f([1,3,5,5]) = 50 and 26 + 24 = 50. - _Michael Somos_, Jan 21 2015
- G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
- G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis VIII: Plane partition diamonds, Advances Applied Math., 27 (2001), 231-242 (Cor. 2.1, n=1).
- S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Nesrine Benyahia-Tani, Zahra Yahi, and Sadek Bouroubi, Ordered and non-ordered non-congruent convex quadrilaterals inscribed in a regular n-gon, Rostocker Math. Kolloq. 68, 71-79 (2013), Theorem 5.
- W. Duke, On codes and Siegel modular forms, Int. Math. Res. Notes 1993, No. 5, Theorem 2. [MR1219862 (94d:11029)]
- Michele Graffeo, Sergej Monavari, Riccardo Moschetti, and Andrea T. Ricolfi, Enumeration of partitions via socle reduction, arXiv:2501.10267 [math.CO], 2025. See p. 40.
- S. P. Humphries, Home page
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 450
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 232
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Michael Somos, In the Elliptic Realm
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,-1,2,1,-1).
See
A266769 for a version without the four leading zeros.
-
a:=[0,0,0,0,1,1,3,4];; for n in [9..60] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]-2*a[n-4]-a[n-5]+2*a[n-6]+a[n-7]-a[n-8]; od; a; # G. C. Greubel, Sep 10 2019
-
K:=Rationals(); M:=MatrixAlgebra(K,4); q1:=DiagonalMatrix(M,[1,-1,1,-1]); p1:=DiagonalMatrix(M,[1,1,-1,-1]); q2:=DiagonalMatrix(M,[1,1,1,-1]); h:=M![1,1,1,1, 1,1,-1,-1, 1,-1,1,-1, 1,-1,-1,1]/2; H:=MatrixGroup<4,K|q1,q2,h,p1>; MolienSeries(H);
-
R:=PowerSeriesRing(Integers(), 60); [0,0,0,0] cat Coefficients(R!( x^4/((1-x)*(1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 10 2019
-
a:= n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [1,2,-1,-2,-1,2,1,-1][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..60); # Alois P. Heinz, Jul 31 2008
-
CoefficientList[Series[x^4/((1-x)*(1-x^2)^2*(1-x^3)), {x,0,60}], x] (* Jean-François Alcover, Mar 30 2011 *)
LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{0,0,0,0,1,1,3,4},60] (* Harvey P. Dale, Mar 04 2012 *)
a[ n_]:= Quotient[9(n+1)(-1)^n +2n^3 -9n +65, 144]; (* Michael Somos, Jan 21 2015 *)
a[ n_]:= Sign[n] SeriesCoefficient[ x^4/((1-x)(1-x^2)^2(1-x^3)), {x, 0, Abs@n}]; (* Michael Somos, Jan 21 2015 *)
-
{a(n) = (9*(n+1)*(-1)^n + 2*n^3 - 9*n + 65) \ 144}; /* Michael Somos, Jan 21 2015 */
-
a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; -1,1,2,-1,-2,-1,2,1]^n*[0;0;0;0;1;1;3;4])[1,1] \\ Charles R Greathouse IV, Feb 06 2017
-
def AA008763_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(x^4/((1-x)*(1-x^2)^2*(1-x^3))).list()
AA008763_list(60) # G. C. Greubel, Sep 10 2019
Entry revised Dec 25 2003
A060016
Triangle T(n,k) = number of partitions of n into k distinct parts, 1 <= k <= n.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 4, 3, 0, 0, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 0, 0, 1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Triangle starts
[ 1] 1,
[ 2] 1, 0,
[ 3] 1, 1, 0,
[ 4] 1, 1, 0, 0,
[ 5] 1, 2, 0, 0, 0,
[ 6] 1, 2, 1, 0, 0, 0,
[ 7] 1, 3, 1, 0, 0, 0, 0,
[ 8] 1, 3, 2, 0, 0, 0, 0, 0,
[ 9] 1, 4, 3, 0, 0, 0, 0, 0, 0,
[10] 1, 4, 4, 1, 0, 0, 0, 0, 0, 0,
[11] 1, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0,
[12] 1, 5, 7, 2, 0, 0, 0, 0, 0, 0, 0, 0,
[13] 1, 6, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
[14] 1, 6, 10, 5, 0, 0, 0, 0, 0, 0, 0, 0, ...
T(8,3)=2 since 8 can be written in 2 ways as the sum of 3 distinct positive integers: 5+2+1 and 4+3+1.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 219.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.
-
b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
-> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
end:
T:= proc(n) local l; l:= subsop(1=NULL, b(n, n));
l[], 0$(n-nops(l))
end:
seq(T(n), n=1..20); # Alois P. Heinz, Dec 12 2012
-
Flatten[Table[Length[Select[IntegerPartitions[n,{k}],Max[Transpose[ Tally[#]][[2]]]==1&]],{n,20},{k,n}]] (* Harvey P. Dale, Feb 27 2012 *)
T[, 1] = 1; T[n, k_] /; 1, ] = 0; Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 26 2015 *)
-
N=16; q='q+O('q^N);
gf=sum(n=0,N, z^n * q^((n^2+n)/2) / prod(k=1,n, 1-q^k ) );
/* print triangle: */
gf -= 1; /* remove row zero */
P=Pol(gf,'q);
{ for (n=1,N-1,
p = Pol(polcoeff(P, n),'z);
p += 'z^(n+1); /* preserve trailing zeros */
v = Vec(polrecip(p));
v = vector(n,k,v[k]); /* trim to size n */
print(v);
); }
/* Joerg Arndt, Oct 20 2012 */
A050913
Pure 2-complexes on an infinite set of nodes with n multiple 2-simplexes. Also n-rowed binary matrices with all row sums 3, up to row and column permutation.
Original entry on oeis.org
1, 1, 4, 16, 93, 652, 6369, 79568, 1256425, 24058631, 543204998, 14138916124, 417362929209, 13798729189578, 505990335048034, 20415765544541866, 900364519682003919, 43155049922002494115, 2236988329443856718604, 124862936181977439454012, 7476052709321753156375756, 478506183522725779096476581, 32638841238874891261354722405, 2365895836144423508306322639848, 181785988254681334224483607437510, 14771116583797935886529061991645404, 1266545494725474774697216198539818982
Offset: 0
More terms from T. Forbes (anthony.d.forbes(AT)googlemail.com), May 24 2003
A002621
Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)).
Original entry on oeis.org
1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94, 121, 155, 194, 241, 295, 359, 431, 515, 609, 717, 837, 973, 1123, 1292, 1477, 1683, 1908, 2157, 2427, 2724, 3045, 3396, 3774, 4185, 4626, 5104, 5615, 6166, 6754, 7386, 8058, 8778, 9542, 10358, 11222, 12142, 13114
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
- E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 199
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1).
-
A002621:=-1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+2), right=Set(U, card=1)}, unlabeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=4..51) ; # Zerinvary Lajos, Feb 07 2008
A057077 := proc(n) (-1)^floor(n/2) ; end proc:
A061347 := proc(n) op(1+(n mod 3),[1,1,-2]) ; end proc:
A002621 := proc(n) 83/288*n^2+55/64*n+2815/3456+11/288*n^3+1/576*n^4+11/128*(-1)^n+1/64*(-1)^n*n; %+ A057077(n)/16 +A061347(n)/27; end proc:
seq(A002621(n),n=0..10) ; # R. J. Mathar, Mar 15 2011
-
CoefficientList[Series[1/((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)),{x,0,60}],x] (* Stefan Steinerberger, Jun 10 2007 *)
LinearRecurrence[{2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1}, {1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
-
a(n)=(n+1)*(9*(-1)^n+n^3+21*n^2+145*n+350)\/576 \\ Charles R Greathouse IV, May 23 2013
A000710
Number of partitions of n, with two kinds of 1, 2, 3 and 4.
Original entry on oeis.org
1, 2, 5, 10, 20, 35, 62, 102, 167, 262, 407, 614, 919, 1345, 1952, 2788, 3950, 5524, 7671, 10540, 14388, 19470, 26190, 34968, 46439, 61275, 80455, 105047, 136541, 176593, 227460, 291673, 372605, 474085, 601105, 759380, 956249, 1200143, 1501749, 1873407
Offset: 0
a(2) = 5 because we have 2, 2', 1+1, 1+1', 1'+1'.
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,2,1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = etr[If[#<5, 2, 1]&]; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3)(1-x^4))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@4], {n,0,39}] (* Robert Price, Jul 28 2020 *)
T[n_, 0] := PartitionsP[n];
T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
T[, ] = 0;
a[n_] := T[n + 10, 4];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
A218320
Number of ways to write n as n = a*b*c*d with 1 <= a <= b <= c <= d <= n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 6, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 11, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 9, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 11, 5, 2, 1, 11, 2
Offset: 1
a(12) = 4 because we can write 12 = 1*1*1*12 = 1*1*2*6 = 1*1*3*4 = 1*2*2*3.
-
for n from 1 to 90 do:t1:=0: for a from 1 to n do: for b from a to n do :for c from b to n do : for d from c to n do :if a*b*c*d = n then t1:=t1+1: else fi: od: od: od: od:printf(`%d, `,t1):od:
# second Maple program
with(numtheory):
b:= proc(n, i, t) option remember;
`if`(n=1, 1, `if`(t=1, `if`(n<=i, 1, 0),
add(b(n/d, d, t-1), d=select(x->x<=i, divisors(n)))))
end:
a:= proc(n) local l, m;
l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
b(m, m, 4)
end:
seq(a(n), n=1..100); # Alois P. Heinz, Nov 03 2012
-
b[n_, i_, t_] := b[n, i, t] = If[n==1, 1, If[t==1, If[n <= i, 1, 0], Sum[b[n/d, d, t-1], {d, Select[Divisors[n], # <= i&]}]]];
a[n_] := (l = Sort[FactorInteger[n], #1[[2]] > #2[[2]]&]; m = Times @@ Power @@@ l; b[m, m, 4]);
Array[a, 100] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)
A000711
Number of partitions of n, with three kinds of 1,2,3 and 4 and two kinds of 5,6,7,...
Original entry on oeis.org
1, 3, 9, 22, 51, 107, 217, 416, 775, 1393, 2446, 4185, 7028, 11569, 18749, 29908, 47083, 73157, 112396, 170783, 256972, 383003, 565961, 829410, 1206282, 1741592, 2497425, 3557957, 5037936, 7091711, 9927583, 13823626, 19151731, 26404879, 36236988, 49509149
Offset: 0
a(2)=9 because we have 2, 2', 2", 1+1, 1'+1', 1"+1", 1+1', 1+1", 1'+1".
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add (add (d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<5,3,2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
nn=31;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/Product[(1-x^i)^2,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
A061924
Number of combinations in card games with 4 suits and 4 players.
Original entry on oeis.org
1, 4, 56, 1320, 43680, 1860480, 96909120, 5967561600, 424097856000, 34162713446400, 3075990524006400, 306135476264217600, 33371339479827148800, 3954242643911239680000, 506046613478104258560000, 69560546966425756200960000, 10221346459144248675287040000
Offset: 0
a(13) = 52*51*50*49*48*47*46*45*44*43*42*41*40 (Whist, Bridge).
-
Table[(4n)!/(4n-n)!,{n,0,20}] (* Harvey P. Dale, Aug 20 2012 *)
-
{ for (n=0, 100, write("b061924.txt", n, " ", (4*n)! / (4*n - n)!) ) } \\ Harry J. Smith, Jul 29 2009
-
from sympy import ff
def A061924(n): return ff(n<<2,n) # Chai Wah Wu, Sep 01 2023
Comments