cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 118 results. Next

A003601 Numbers j such that the average of the divisors of j is an integer: sigma_0(j) divides sigma_1(j). Alternatively, numbers j such that tau(j) (A000005(j)) divides sigma(j) (A000203(j)).

Original entry on oeis.org

1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1

Views

Author

Keywords

Comments

Sometimes called arithmetic numbers.
Generalized (sigma_r)-numbers are numbers j for which sigma_r(j)/sigma_0(j) = c^r. Sigma_r(j) denotes the sum of the r-th powers of the divisors of j; c,r are positive integers. The numbers in this sequence are sigma_1-numbers; those in A140480 are sigma_2-numbers. - Ctibor O. Zizka, Jul 14 2008
{a(n)} = union A175678 and A175679 where A175678 = numbers m such that the arithmetic mean Ad(m) of divisors of m and the arithmetic mean Ah(m) of numbers h < m such that gcd(h,m) = 1 are both integers and A175679 = numbers m such that the arithmetic mean Ad(m) of the divisors of m and the arithmetic mean Ak(m) of the numbers k <= m are both integers. - Jaroslav Krizek, Aug 07 2010
All odd primes (A065091) are arithmetic numbers. - Wesley Ivan Hurt, Oct 04 2013
A069928(n) = number of arithmetic numbers not greater than n. - Reinhard Zumkeller, Jul 28 2014
A102187(n) divides a(n) for a(n) = 1, 6, 140, 270, 672, ... A007340. - Thomas Ordowski, Oct 24 2014
The quotients sigma(j)/tau(j) are in A102187. - Bernard Schott, Jun 07 2017

Examples

			Sigma(6) = 12, tau(6) = 4, sigma(6)/tau(6) = 3 so 6 belongs to this sequence. - _Bernard Schott_, Jun 07 2017
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement is A049642.
Cf. A245644, A245656, A069928. Nonprimes are in A023883.

Programs

  • GAP
    a:=Filtered([1..110],n->Sigma(n) mod Tau(n)=0);; Print(a); # Muniru A Asiru, Jan 25 2019
  • Haskell
    a003601 n = a003601_list !! (n-1)
    a003601_list = filter ((== 1) . a245656) [1..]
    -- Reinhard Zumkeller, Jul 28 2014, Dec 31 2013, Jan 06 2012
    
  • Maple
    with(numtheory); t := [ ]: f := [ ]: for n from 1 to 500 do if sigma(n) mod tau(n) = 0 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t; # corrected by Wesley Ivan Hurt, Oct 03 2013
  • Mathematica
    Select[Range[120], IntegerQ[DivisorSigma[1, # ]/DivisorSigma[0, # ]] &] (* Stefan Steinerberger, Apr 03 2006 *)
  • PARI
    is(n)=sigma(n)%numdiv(n)==0 \\ Charles R Greathouse IV, Jul 10 2012
    
  • Python
    from sympy import divisors, divisor_count
    [n for n in range(1,10**5) if not sum(divisors(n)) % divisor_count(n)] # Chai Wah Wu, Aug 05 2014
    

Formula

a(n) ~ n. - Charles R Greathouse IV, Jul 10 2012
A245656(a(n)) = 1. - Reinhard Zumkeller, Jul 28 2014

Extensions

David W. Wilson, Oct 15 1996, points out that 30 was missing.
More terms from Stefan Steinerberger, Apr 03 2006

A006037 Weird numbers: abundant (A005101) but not pseudoperfect (A005835).

Original entry on oeis.org

70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17272, 17570, 17990, 18410, 18830, 18970, 19390, 19670
Offset: 1

Views

Author

Keywords

Comments

OProject@Home in subproject Weird Engine calculates and stores the weird numbers.
There are no odd weird numbers < 10^17. - Robert A. Hearn (rah(AT)ai.mit.edu), May 25 2005
From Alois P. Heinz, Oct 30 2009: (Start)
The first weird number that has more than one decomposition of its divisors set into two subsets with equal sum (and thus is not a member of A083209) is 10430:
1+5+7+10+14+35+298+10430 = 2+70+149+745+1043+1490+2086+5215
2+70+298+10430 = 1+5+7+10+14+35+149+745+1043+1490+2086+5215. (End)
There are no odd weird numbers < 1.8*10^19. - Wenjie Fang, Sep 04 2013
S. Benkowski and P. Erdős (1974) proved that the asymptotic density W of weird numbers is positive. It can be shown that W < 0.0101 (see A005835). - Jaycob Coleman, Oct 26 2013
No odd weird number exists below 10^21. This search was done on the volunteer computing project yoyo@home. - Wenjie Fang, Feb 23 2014
No odd weird number with abundance less than 10^14 exists below 10^28. See Odd Weird Search link. - Wenjie Fang, Feb 25 2015
A weird number k multiplied by a prime p > sigma(k) is again weird. Primitive weird numbers (A002975) are those which are not a multiple of a smaller term, i.e., don't have a weird proper divisor. Sequence A065235 lists odd numbers that can be written in only one way as sum of their divisors, and A122036 lists those which are not in A136446, i.e., not sum of proper divisors > 1. - M. F. Hasler, Jul 30 2016

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 70, p. 24, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 129.

Crossrefs

Programs

  • Haskell
    a006037 n = a006037_list !! (n-1)
    a006037_list = filter ((== 0) . a210455) a005101_list
    -- Reinhard Zumkeller, Jan 21 2013
  • Maple
    isA006037 := proc(n)
        isA005101(n) and not isA005835(n) ;
    end proc:
    for n from 1 do
        if isA006037(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Jun 18 2015
  • Mathematica
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) fQ[n_] := Block[{d, l, t, i}, If[ DivisorSigma[1, n] > 2n && Mod[n, 6] != 0, d = Take[Divisors[n], {1, -2}]; l = 2^Length[d]; t = Table[ NthSubset[j, d], {j, l - 1}]; i = 1; While[i < l && Plus @@ t[[i]] != n, i++ ]]; If[i == l, True, False]]; Select[ Range[ 20000], fQ[ # ] &] (* Robert G. Wilson v, May 20 2005 *)
  • PARI
    is_A006037(n,d=divisors(n),s=vecsum(d)-n,m=#d-1)={ m||return; while(d[m]>n, s-=d[m]; m--); d[m]n, is_A006037(n-d[m], d, s-d[m], m-1) && is_A006037(n, d, s-d[m], m-1), sM. F. Hasler, Mar 30 2008; improved and updated to current PARI syntax by M. F. Hasler, Jul 15 2016
    
  • PARI
    is_A006037(n, d=divisors(n)[^-1], s=vecsum(d))={s>n && !is_A005835(n,d,s)} \\ Equivalent but slightly faster than the self-contained version above.-- For efficiency, ensure that the argument is even or add "!bittest(n,0) && ..." to check this first. - M. F. Hasler, Jul 17 2016
    
  • PARI
    t=0; A006037=vector(100,i, until( is_A006037(t+=2),); t) \\ M. F. Hasler, Mar 30 2008
    

Extensions

More terms from Jud McCranie, Oct 21 2001

A140480 RMS numbers: numbers n such that root mean square of divisors of n is an integer.

Original entry on oeis.org

1, 7, 41, 239, 287, 1673, 3055, 6665, 9545, 9799, 9855, 21385, 26095, 34697, 46655, 66815, 68593, 68985, 125255, 155287, 182665, 242879, 273265, 380511, 391345, 404055, 421655, 627215, 730145, 814463, 823537, 876785, 1069895, 1087009, 1166399, 1204281, 1256489
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 29 2008, Jul 11 2008

Keywords

Comments

For any numbers, A and B, both appearing in the sequence, if gcd(A,B)=1, then A*B is also in the sequence. - Andrew Weimholt, Jul 01 2008
The primes in this sequence are the NSW primes (A088165). For the terms less than 2^31, the only powers greater than 1 appearing in the prime factorization of numbers are 3^3 and 13^2. It appears that all terms are +-1 (mod 8). See A224988 for even numbers. - T. D. Noe, Jul 06 2008, Apr 25 2013
A basis for this sequence is given by A002315. This can be considered as the convergents of quasiregular continued fractions or a special 6-ary numeration system (see A. S. Fraenkel) which gives the characterization of positions of some heap or Wythoff game. What is the Sprague-Grundy function of this game?
Sequence generalized: sigma_r-numbers are numbers n for which sigma_r(n)/sigma_0(n) = c^r. Sigma_r(n) denotes sum of r-th powers of divisors of n; c,r positive integers. This sequence are sigma_2-numbers, A003601 are sigma_1-numbers. In a weaker form we have sigma_r(n)/sigma_0(n) = c^t; t is an integer from <1,r>. - Ctibor O. Zizka, Jul 14 2008
The primes in this sequence are prime numerators with an odd index in A001333. The RMS values (A141812) of prime RMS numbers (this sequence) are prime Pell numbers (A000129) with an odd index. - Ctibor O. Zizka, Aug 13 2008
From Ctibor O. Zizka, Aug 30 2008: (Start)
The set of RMS numbers n could be split into subsets according to the number and form of divisors of n. By definition, RMS(n) = sqrt(sigma_2(n) / sigma_0(n)) should be an integer. Now consider some examples. For n prime number, n has 2 divisors [1,n] and we have to solve Pell's equation n^2 = 2*C^2 - 1; C positive integer. The solution is a prime n of the form u(i) = 6*u(i-1) - u(i-2), i >= 2, u(0)=1, u(1)=7, known as an NSW prime (A088165). For n = p_1*p_2, p_1 and p_2 primes, n has 4 divisors {1; p_1; p_2; p_1*p_2}. There are 2 possible cases. Firstly p^2 = (2*C)^2 - 1 which does not hold for any prime p; secondly p_1^2 = 2*C_1^2 - 1 and p_2^2 = 2*C_2^2 - 1; C_1 and C_2 positive integers.
The solution is that p_1 and p_2 are different NSW primes. If n = p^3, divisors of n are {1; p; p^2; p^3} and we have to solve the Diophantine equation (p^8 - 1)/(p - 1) = (2*C)^2. This equation has no solution for any prime p. RMS numbers n with 4 divisors are only of the form n = p_1*p_2, with p_1 and p_2 NSW primes. The general case is n = p_1*...*p_t, n has 2^t divisors, and for t >= 3, NSW primes are not the only solution. If some of the prime divisors are equals p_i = p_j = ... = p_k, the general case n = p_1*...*p_t is "degenerate" because of the multiplicity of prime factors and therefore n has fewer than 2^t divisors. (End)
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4, lim_{n->infinity} a(n) = x*(k*x+1)^n, k = a(1) - 3, x = (1 + sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878, whose prime terms give A121534. a(1)=5 gives A001834, whose prime terms give A086386. a(1)=6 gives A030221, whose prime terms {29, 139, 3191, ...} are not a sequence on the OEIS. a(1)=7 gives A002315, whose prime terms give A088165. a(1)=8 gives A033890; the OEIS does not have its prime terms as a sequence (do there exist any prime terms?). a(1)=9 gives A057080, whose prime terms {71, 34649, 16908641, ...} are not a sequence in the OEIS. a(1)=10 gives A057081, whose prime terms {389806471, 192097408520951, ...} are not a sequence in the OEIS. - Ctibor O. Zizka, Sep 02 2008
16 of the first 1660 terms are even (the smallest is 2217231104). The first 16 even terms are all divisible by 30976. - Donovan Johnson, Apr 16 2013
All the 83 even terms up to 10^13 (see A224988) are divisible by 30976. - Giovanni Resta, Oct 29 2019

Crossrefs

Programs

  • Haskell
    a140480 n = a140480_list !! (n-1)
    a140480_list = filter
        ((== 1) . a010052 . (\x -> a001157 x `div` a000005 x)) a020486_list
    -- Reinhard Zumkeller, Jan 15 2013
  • Mathematica
    rmsQ[n_] := IntegerQ[Sqrt[DivisorSigma[2, n]/DivisorSigma[0, n]]]; m = 160000; sel1 = Select[8*Range[0, m]+1, rmsQ]; sel7 = Select[8*Range[m]-1, rmsQ]; Union[sel1, sel7] (* Jean-François Alcover, Aug 31 2011, after T. D. Noe's comment *)
    Select[Range[1300000],IntegerQ[RootMeanSquare[Divisors[#]]]&] (* Harvey P. Dale, Mar 24 2016 *)

Extensions

More terms from T. D. Noe and Andrew Weimholt, Jul 01 2008

A002975 Primitive weird numbers: weird numbers with no proper weird divisors.

Original entry on oeis.org

70, 836, 4030, 5830, 7192, 7912, 9272, 10792, 17272, 45356, 73616, 83312, 91388, 113072, 243892, 254012, 338572, 343876, 388076, 519712, 539744, 555616, 682592, 786208, 1188256, 1229152, 1713592, 1901728, 2081824, 2189024, 3963968, 4128448
Offset: 1

Views

Author

Keywords

Comments

Sidney Kravitz notes that a(21) = 539744; it was misprinted as 539774 in the Benkoski & Erdős article. - Charles R Greathouse IV, Apr 04 2012
It appears that a weird number is primitive iff, divided by its largest prime factor, it is not weird. Is there a simple proof for this? - M. F. Hasler, Aug 20 2014 [The comment below does not answer this question.]
Yes, any primitive weird number, pwn, multiplied by any prime > sigma_1(pwn) is also weird. - Robert G. Wilson v, Jun 09 2015
A proper subsequence of A006037 and A091191. - Robert G. Wilson v, May 25 2015
Number of terms < 10^n: 0, 1, 2, 7, 13, 24, 48, 85, 152, 276, 499, 881, ..., . - Robert G. Wilson v, Jun 21 2017
The primitive weird number (pwn) 176405960704 is the least term which has as its abundance a pwn. Two other terms are 81152249741312, 14327148694372352. - Robert G. Wilson v, Sep 22 2017
Primitive weird numbers == 2 (mod 4): {70, 4030, 5830, 4199030, 1550860550, 66072609790, ...}. All the terms in A258374 appear so far. - Robert G. Wilson v, Nov 21 2015
See A258882 (and A258333) for terms of the form a(n)=2^k*p*q and A258401 for all other terms, with subsets A258883 (a(n)=2^k*p*q*r), A258884 (a(n)=2^k*p*q*r*s), A258885 (six distinct prime factors). A258374 and A258375 list the smallest terms with n prime factors (with / without counting multiplicity). - M. F. Hasler, Jul 12 2016
Sequence A273815 lists terms with nonsquarefree odd part, by definition excluded in A258883 and A258884. - M. F. Hasler, Feb 18 2018
Let n be a weird number and d be a divisor of n. If n/d is not weird, then either it is deficient or it is pseudoperfect. But if n/d is pseudoperfect, then multiplying the subset of the divisors of n/d that sums to n/d by d gives a solution for n, contradicting the assumption that n is weird. Therefore, n/d must be deficient. Of all the prime factors of n contributing to sigma(n)/n, the largest prime will contribute the least, and so if n/gpf(n) is deficient, then n/d is deficient for all divisors d of n, and n is a primitive weird number. - Charlie Neder, Oct 08 2018
The second part of the above reasoning is incorrect: gpf(n) may contribute more to sigma(n)/n than a smaller prime factor. For example, for n = 24, we have n/3 deficient, but n/2 abundant; for n = 350, n/7 is deficient but n/5 is abundant. - M. F. Hasler, Jan 25 2020

Examples

			10430 = A006037(8) is weird but not primitive weird because it has the proper weird divisor 70 = A006037(1).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* first do *) << Combinatorica` (* then *) fQ[n_] := Block[{d = Most@ Divisors@ n, l = 2^(DivisorSigma[0, n] - 1), i = 1}, i = 1; While[i < l && Plus @@ NthSubset[i, d] != n, i++ ]; i == l]; lst = {}; Do[m = n; If[ Mod[n, 6] != 0 && DivisorSigma[1, n] > 2 n && Union[ Mod[ n, Join[lst, {n + 1}]]][[1]] != 0 && fQ@n, AppendTo[lst, n]; Print@n], {n, 2, 42000000, 2}] (* Robert G. Wilson v, Aug 04 2009 *)
    (* Input: Range of even numbers --- Output: Primitive weird numbers *)
    Block[{$RecursionLimit = Infinity},
      subOfSum[ss_, kk_, rr_] :=
       Module[{s = ss, k = kk, r = rr},
        If[s + w[[k]] >= mm && s + w[[k]] <= m, t = False;
         Goto[done] (* Found *),
         If[s + w[[k]] + w[[k + 1]] <= m,
          subOfSum[s + w[[k]], k + 1, r - w[[k]]]];
         If[s + r - w[[k]] >= m && s + w[[k + 1]] <= m,
          subOfSum[s, k + 1, r - w[[k]] ]]]; t]; (* end subOfSum *)
      greedyQ[ab_] := Module[{abn = ab, v, sum, s, j, jj, k}, tt = False;
        jj = Length[w]; (* start search *)
        Do[s = r; sum = 0; Do[v = w[[j]]; sum = sum + v;
          If[sum > abn, sum = sum - v; Goto[nxt]];
          If[sum == abn, tt = True; Goto[doneG]]; s = s - v;
          Label[nxt], {j, jj, 1, -1}];
         jj = jj - 1, {k, 1, jj - 1}]; Label[doneG];
        (* True means found, False not found *) tt]; (* end greedyQ *)
      cnt = 0;
      Do[ If[ Mod[n, 3] == 0, Goto[agn]]; r = DivisorSigma[1, n];
       m = r - 2*n;
       If[m > 0, fi = FactorInteger[n]; largestP = fi[[Length[fi]]][[1]];
        nn = n/largestP; If[m > 2*nn || Length[fi] < 3, Goto[agn]];
        If[DivisorSigma[1, nn] > 2*nn, Goto[agn]]; t = True; r = r - n;
        ww = Divisors[n]; lenW = Length[ww];
        Do[ If[ ww[[i]] <= m, w = Drop[ww, i - lenW]; Break[],
          r = r - ww[[i]]], {i, lenW - 1, 1, -1}];
        If[r >= m,
         If[ greedyQ[m], t = False, (* Powers of 2 dropped *)
          exp2 = fi[[1]][[2]]; sig2 = 2^(exp2 + 1) - 1; mm = m - sig2;
          lenW = Length[w]; ww = {};
          If[exp2 > 1,
           Do[ Do[ If[ w[[i]] == 2^ii, ww = AppendTo[ww, w[[i]]]],
          {i, 1, lenW}], {ii, 0, exp2}];
            w = Complement[w, ww]
           (* end T if *), w = Drop[w, 2]];
          (* end Pwr2 *) t = subOfSum[0, 1, r]]]; Label[done];
        If[t, Print[++cnt, "   ", n, "  ", t]]];
       Label[agn], {n, 2, 10000000, 2}]]
    (* from Brent Baughn via http://mathematica.stackexchange.com/questions/73301/calculating-weird-numbers, Robert G. Wilson v, Nov 21 2015 *)
  • PARI
    is_A002975(n)=is_A006037(n)&&!fordiv(n,d,!bittest(d,0)&&dA006037(d)&&return) \\ M. F. Hasler, Jan 07 2014

Extensions

More terms from Jud McCranie, Oct 21 2001
One more term from Robert G. Wilson v, Aug 04 2009
a(1)-a(123) double-checked by M. F. Hasler, Jan 07 2014
Edited by M. F. Hasler, Jul 12 2016

A006038 Odd primitive abundant numbers.

Original entry on oeis.org

945, 1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 7425, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 18585, 19215, 19635, 21105, 21945, 22365, 22995, 23205, 24885, 25935, 26145, 26565, 28035, 28215
Offset: 1

Views

Author

Keywords

Comments

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. Sequence A188342 lists the smallest such numbers. - T. D. Noe, Mar 28 2011
Sequence A188439 sorts the numbers in this sequence by the number of distinct prime factors. Eight numbers have exactly three prime factors; 576 have exactly four prime factors. - T. D. Noe, Apr 04 2011
Any multiple of an abundant number (A005101) is again an abundant number. Primitive abundant numbers (A091191) are those not of this form, i.e., without an abundant proper divisor. We don't know any odd perfect number (A000396), so the (odd) terms here have only deficient proper divisors (A071395), and their prime factors p are less than sigma(n/p)/deficiency(n/p). See A005231 (odd abundant numbers) for an explanation why all terms have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. All known terms are semiperfect (A005835, and thus in A006036): no odd weird number (A006037) is known, but if it exists, the smallest one is in this sequence. - M. F. Hasler, Jul 28 2016
So far, a(173) = 351351 is the only known term of A122036, i.e., which can't be written as sum of its proper divisors > 1. - M. F. Hasler, Jan 26 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005101, A005231. Subsequence of A091191.
Cf. A000203, A027751, A379949 (subsequence of square terms).

Programs

  • Haskell
    a006038 n = a006038_list !! (n-1)
    a006038_list = filter f [1, 3 ..] where
       f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
             where pdivs = a027751_row x
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
    isA005100 := proc(n) is(numtheory[sigma](n) < 2*n ); end proc:
    isA006038 := proc(n) local d; if type(n,'odd') and isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if not isA005100(d) then return false; end if; end do: return true;else false; end if; end proc:
    n := 1 ; for a from 1 by 2 do if isA006038(a) then printf("%d %d\n",n,a) ; n := n+1 ; end if; end do: # R. J. Mathar, Mar 28 2011
  • Mathematica
    t = {}; n = 1; While[Length[t] < 50, n = n + 2; If[DivisorSigma[1, n] > 2 n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
  • PARI
    is(n)=n%2 && sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Jun 10 2013
    
  • PARI
    is_A006038(n)=bittest(n,0) && sigma(n)>2*n && !for(i=1,#f=factor(n)[,1],sigma(n\f[i],-1)>2&&return) \\ More than 5 times faster. - M. F. Hasler, Jul 28 2016
    

A005934 Highly powerful numbers: numbers with record value of the product of the exponents in prime factorization (A005361).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1296, 1728, 2592, 3456, 5184, 7776, 10368, 15552, 20736, 31104, 41472, 62208, 86400, 108000, 129600, 194400, 216000, 259200, 324000, 432000, 518400, 648000, 972000, 1296000, 1944000, 2592000
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a = {1}; b = {1}; f[n_] := Times @@ Last /@ FactorInteger[n]; Do[If[f@ n > Max[b], And[AppendTo[b, f@ n], AppendTo[a, n]]], {n, 1000000}]; a (* Michael De Vlieger, Aug 28 2015 *)
    With[{s = Array[Times @@ FactorInteger[#][[All, -1]] &, 3*10^6]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Oct 15 2017 *)
    DeleteDuplicates[Table[{n,Times@@FactorInteger[n][[All,2]]},{n,26*10^5}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    {prdex(n)=local(s,fac); s=1; fac=factor(n); for(k=1,matsize(fac)[1],s=s*fac[k,2]); return(s)} {hp(m)=local(rec); rec=0; for(n=1,m,if(prdex(n)>rec,rec=prdex(n); print1(n",")))}

Formula

For n = Product p_i^e_i, let b(n) = Product e_i; then n is highly powerful if b(n) sets a new record.

Extensions

Hardy and Subbarao give an extensive table.
Corrected and extended by Jason Earls, Jul 10 2003

A006040 a(n) = Sum_{i=0..n} (n!/(n-i)!)^2.

Original entry on oeis.org

1, 2, 9, 82, 1313, 32826, 1181737, 57905114, 3705927297, 300180111058, 30018011105801, 3632179343801922, 523033825507476769, 88392716510763573962, 17324972436109660496553, 3898118798124673611724426, 997918412319916444601453057, 288398421160455852489819933474
Offset: 0

Views

Author

Keywords

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of array A099597.
Cf. A073701.

Programs

  • Maple
    a[0]:= 1:
    for n from 1 to 30 do a[n]:= n^2*a[n-1] + 1 od:
    seq(a[i],i=0..30); # Robert Israel, Dec 15 2014
  • Mathematica
    a = 1; lst = {a}; Do[a = a * n^2 + 1; AppendTo[lst, a], {n, 1, 14}]; lst (* Zerinvary Lajos, Jul 08 2009 *)
    Table[Sum[(n!/(n - k)!)^2, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 15 2017 *)
  • PARI
    a(n)=sum(k=0, n, (k!*binomial(n, k))^2 ); \\ Joerg Arndt, Dec 14 2014
    
  • Sage
    def A006040_list(len):
        L = [1]
        for k in range(1,len): L.append(L[-1]*k^2+1)
        return L
    A006040_list(18) # Peter Luschny, Dec 15 2014

Formula

a(n) = n^2*a(n-1) + 1.
The following formulas will need adjusting, since I have changed the offset. - N. J. A. Sloane, Dec 17 2013
a(n+1) = Nearest integer to BesselI(0, 2)*n!*n!, n >= 1.
a(n+1) = n!^2*Sum_{k = 0..n} 1/k!^2. BesselI(0, 2*sqrt(x))/(1-x) = Sum_{n>=0} a(n+1)*x^n/n!^2. - Vladeta Jovovic, Aug 30 2002
Recurrence: a(1) = 1, a(2) = 2, a(n+1) = (n^2 + 1)*a(n) - (n - 1)^2*a(n-1), n >= 2. The sequence defined by b(n) := (n-1)!^2 satisfies the same recurrence with the initial conditions b(1) = 1, b(2) = 1. It follows that a(n+1) = n!^2*(1 + 1/(1 - 1/(5 - 4/(10 - ... - (n - 1)^2/(n^2 + 1))))). Hence BesselI(0,2) := Sum_{k >= 0} 1/k!^2 = 1 + 1/(1 - 1/(5 - 4/(10 - ... - (n - 1)^2/(n^2 + 1 - ...)))). Cf. A073701. - Peter Bala, Jul 09 2008

Extensions

Offset changed by N. J. A. Sloane, Dec 17 2013

A005568 Product of two successive Catalan numbers C(n)*C(n+1).

Original entry on oeis.org

1, 2, 10, 70, 588, 5544, 56628, 613470, 6952660, 81662152, 987369656, 12228193432, 154532114800, 1986841476000, 25928281261800, 342787130211150, 4583937702039300, 61923368957373000, 844113292629453000, 11600528392993339800, 160599522947154548400, 2238236829690383152800
Offset: 0

Views

Author

Keywords

Comments

Also equal to the number of standard tableaux of 2n cells with height less than or equal to 4. A005817(2n) - Mike Zabrocki, Feb 22 2007
Also equal to Sum binomial(2n,2i)*C(i)*C(n-i) = (4/Pi^2) Integral_{y=0..Pi} Integral_{x=0..Pi} (2*cos(x)+2*cos(y))^(2n)*sin^2(x)*sin^2(y) dx dy, since this counts walks of 2n steps in the nonnegative quadrant of an integer lattice that return to the origin (cf. R. K. Guy link below). - Andrew V. Sutherland, Nov 29 2007
Also, number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, 0), (-1, 1), (1, -1), (1, 0)}. - Manuel Kauers, Nov 18 2008 - Manuel Kauers, Nov 18 2008
Also, number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, 0), (0, -1), (0, 1), (1, 0)}. - Manuel Kauers, Nov 18 2008
a(2n-2) is also the sum of the numbers of standard Young tableaux of size 2n of (2,2) rectangular hook shapes (k+2,k+2,2^{n-2-k}, 0 <= k <= n-2. - Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010
Also, number of tree-rooted planar maps with n edges. - Noam Zeilberger, Aug 18 2017

References

  • M. Lothaire, Applied Combinatorics on Words, Cambridge, 2005. See Prop. 9.1.9, p. 452. [From N. J. A. Sloane, Apr 03 2012]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..21],n->Binomial(2*n,n)*Binomial(2*(n+1),n+1)/((n+1)*(n+2))); # Muniru A Asiru, Dec 13 2018
    
  • Magma
    [Catalan(n)*Catalan(n+1): n in [0..21]]; // Vincenzo Librandi, Feb 06 2020
  • Maple
    A000108:=n->binomial(2*n,n)/(n+1):
    seq(A000108(n)*A000108(n+1),n=0..21); # Emeric Deutsch, Mar 05 2007
  • Mathematica
    f[n_] := CatalanNumber[n] CatalanNumber[n + 1] (* Or *) (4n + 2) Binomial[2 n, n]^2/(n^3 + 4n^2 +5n + 2) (* Or *) (2 n)! (2 + 2 n)!/(n! ((1 + n)!)^2 (2 + n)!); Array[f, 22, 0] (* Robert G. Wilson v *)
    Times@@@Partition[CatalanNumber[Range[0,30]],2,1] (* Harvey P. Dale, Jul 23 2012 *)
  • PARI
    (alias(C,binomial));a(n)=(C(2*n,n)-C(2*n,n-1))*(C(2*n+2,n+1)-C(2*n+2,n)) /* Michael Somos, Jun 22 2005 */
    
  • Sage
    [catalan_number(i)*catalan_number(i+1) for i in range(0,22)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = binomial(2*n,n)*binomial(2*n+2,n+1)/((n+1)(n+2)).
a(n) = 2*(2*n+1)*binomial(2*n,n)^2/((n+2)(n+1)^2).
D-finite with recurrence (n+2)*(n+1)*a(n) = 4*(2*n-1)*(2*n+1)*a(n-1). - Corrected R. J. Mathar, Feb 05 2020
G.f. in Maple notation: (1/2)/x+1/768/(x^2*Pi)*((32-512*x)*EllipticK(4*x^(1/2))+(-32-512*x)*EllipticE(4*x^(1/2))). - Karol A. Penson, Oct 24 2003
G.f.: 3F2( (1, 1/2, 3/2); (2, 3))(16*x) = (1 - 2F1((-1/2, 1/2); (2))( 16*x))/(2*x). - Olivier Gérard Feb 16 2011
G.f.: (1/(6*x))*(3+(16*x-1)*(2*hypergeom([1/2, 1/2],[1],16*x) + (16*x+1)*hypergeom([3/2, 3/2],[2],16*x))). - Mark van Hoeij, Nov 02 2009
G.f.: (1-hypergeom([-1/2,1/2],[2],16*x))/(2*x). - Mark van Hoeij, Aug 14 2014
E.g.f.: (1/3)*(8*x^2*BesselI(0, 2*x)^2 - 4*BesselI(0, 2*x)*BesselI(1, 2*x)*x - BesselI(1, 2*x)^2 - 8*BesselI(1, 2*x)^2*x^2)/x. - Vladeta Jovovic, Dec 29 2003
E.g.f. Sum_{n>=0} a(n)*x^(2n)/(2n)! = BesselI(1, 2x)^2/x^2. - Michael Somos, Jun 22 2005
From Paul D. Hanna, Nov 26 2009: (Start)
G.f.: A(x) = [(1/x)*Series_Reversion(x/F(x)^2)]^(1/2) where F(x) = g.f. of A004304, where A004304(n) is the number of nonseparable planar tree-rooted maps with n edges.
G.f.: A(x) = F(x*A(x)^2) where A(x/F(x)^2) = F(x) where F(x) = g.f. of A004304.
G.f.: A(x) = G(x*A(x)) where A(x/G(x)) = G(x) where G(x) = g.f. of A168450.
G.f.: A(x) = (1/x)*Series_Reversion(x/G(x)) where G(x) = g.f. of A168450.
Self-convolution yields A168452.
(End)
Representation of a(n) as the n-th power moment of a positive function on the segment [0,16]; in Mathematica notation, a(n) = NIntegrate[x^n*(8 ((1+x/16)*EllipticE[1-x/16]-1/8*x*EllipticK[1-x/16]))/(3*(Pi^2)*Sqrt[x]),{x,0,16}]. This solution of the Hausdorff power moment problem is unique. - Karol A. Penson, Oct 05 2011
G.f. y=A(x) satisfies: 0 = x^2*(16*x-1)*y''' + 6*x*(16*x-1)*y'' + 6*(18*x-1)*y' + 12*y. - Gheorghe Coserea, Jun 14 2018
Sum_{n>=0} a(n)/4^(2*n+1) = 2 - 16/(3*Pi). - Amiram Eldar, Apr 02 2022

Extensions

More terms from Emeric Deutsch, Feb 20 2004
More terms from Manuel Kauers, Nov 18 2008
Two hypergeometric g.f.s, van Hoeij's formula checked and formula field edited by Olivier Gérard, Feb 16 2011

A006039 Primitive nondeficient numbers.

Original entry on oeis.org

6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550, 572, 650, 748, 836, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4030
Offset: 1

Views

Author

Keywords

Comments

A number n is nondeficient (A023196) iff it is abundant or perfect, that is iff A001065(n) is >= n. Since any multiple of a nondeficient number is itself nondeficient, we call a nondeficient number primitive iff all its proper divisors are deficient. - Jeppe Stig Nielsen, Nov 23 2003
Numbers whose proper multiples are all abundant, and whose proper divisors are all deficient. - Peter Munn, Sep 08 2020
As a set, shares with the sets of k-almost primes this property: no member divides another member and each positive integer not in the set is either a divisor of 1 or more members of the set or a multiple of 1 or more members of the set, but not both. See A337814 for proof etc. - Peter Munn, Apr 13 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001065 (aliquot function), A023196 (nondeficient), A005101 (abundant), A091191.
Subsequences: A000396 (perfect), A071395 (primitive abundant), A006038 (odd primitive abundant), A333967, A352739.
Positions of 1's in A341620 and in A337690.
Cf. A180332, A337479, A337688, A337689, A337691, A337814, A338133 (sorted by largest prime factor), A338427 (largest prime(n)-smooth), A341619 (characteristic function), A342669.

Programs

  • Mathematica
    k = 1; lst = {}; While[k < 4050, If[DivisorSigma[1, k] >= 2 k && Min@Mod[k, lst] > 0, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 09 2017 *)

Formula

Union of A000396 (perfect numbers) and A071395 (primitive abundant numbers). - M. F. Hasler, Jul 30 2016
Sum_{n>=1} 1/a(n) is in the interval (0.34842, 0.37937) (Lichtman, 2018). - Amiram Eldar, Jul 15 2020

A001600 Harmonic means of divisors of harmonic numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 5, 8, 9, 11, 10, 7, 15, 15, 14, 17, 24, 24, 21, 13, 19, 27, 25, 29, 26, 44, 44, 29, 46, 39, 46, 27, 42, 47, 47, 54, 35, 41, 60, 51, 37, 48, 45, 49, 50, 49, 53, 77, 86, 86, 51, 96, 75, 70, 80, 99, 110, 81, 84, 13, 102, 82, 96, 114, 53, 108, 115, 105, 116, 91, 85, 105
Offset: 1

Views

Author

Keywords

Comments

Values of n*tau(n)/sigma(n) corresponding to terms of A001599, where tau(n) (A000005) is the number of divisors of n and sigma(n) is the sum of the divisors of n (A000203).
Kanold (1957) proved that each term appears only a finite number of times. - Amiram Eldar, Jun 01 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001599, A090240 (sorted values).

Programs

  • Haskell
    a001600 n = a001600_list !! (n-1)
    a001600_list =
       [numerator m | x <- [1..], let m = hm x, denominator m == 1] where
       hm x = genericLength divs * recip (sum $ map recip divs)
              where divs = map fromIntegral $ a027750_row x
    -- Reinhard Zumkeller, Apr 01 2014
    
  • Mathematica
    A001600 = Reap[Do[tau = DivisorSigma[0, n]; sigma = DivisorSigma[1, n]; h = n*tau/sigma; If[IntegerQ[h], Print[h]; Sow[h]], {n, 1, 90000000}]][[2, 1]](* Jean-François Alcover, May 11 2012 *)
  • PARI
    lista(nn) = for (n=1, nn, if (denominator(q=n*numdiv(n)/sigma(n)) == 1, print1(q, ", "))); \\ Michel Marcus, Jan 13 2016

Extensions

More terms from Matthew Conroy, Jan 15 2006
Previous Showing 21-30 of 118 results. Next