cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A001610 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 2.

Original entry on oeis.org

0, 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, 9348, 15126, 24475, 39602, 64078, 103681, 167760, 271442, 439203, 710646, 1149850, 1860497, 3010348, 4870846, 7881195, 12752042, 20633238, 33385281, 54018520
Offset: 0

Views

Author

Keywords

Comments

For prime p, p divides a(p-1). - T. D. Noe, Apr 11 2009 [This result follows immediately from the fact that A032190(n) = (1/n)*Sum_{d|n} a(d-1)*phi(n/d). - Petros Hadjicostas, Sep 11 2017]
Generalization. If a(0,x)=0, a(1,x)=2 and, for n>=2, a(n,x)=a(n-1,x)+x*a(n-2,x)+1, then we obtain a sequence of polynomials Q_n(x)=a(n,x) of degree floor((n-1)/2), such that p is prime iff all coefficients of Q_(p-1)(x) are multiple of p (sf. A174625). Thus a(n) is the sum of coefficients of Q_(n-1)(x). - Vladimir Shevelev, Apr 23 2010
Odd composite numbers n such that n divides a(n-1) are in A005845. - Zak Seidov, May 04 2010; comment edited by N. J. A. Sloane, Aug 10 2010
a(n) is the number of ways to modify a circular arrangement of n objects by swapping one or more adjacent pairs. E.g., for 1234, new arrangements are 2134, 2143, 1324, 4321, 1243, 4231 (taking 4 and 1 to be adjacent) and a(4) = 6. - Toby Gottfried, Aug 21 2011
For n>2, a(n) equals the number of Markov equivalence classes with skeleton the cycle on n+1 nodes. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
From Gus Wiseman, Feb 12 2019: (Start)
For n > 0, also the number of nonempty subsets of {1, ..., n + 1} containing no two cyclically successive elements (cyclically successive means 1 succeeds n + 1). For example, the a(5) = 17 stable subsets are:
{1}, {2}, {3}, {4}, {5}, {6},
{1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {2,6}, {3,5}, {3,6}, {4,6},
{1,3,5}, {2,4,6}.
(End)
Also the rank of the n-Lucas cube graph. - Eric W. Weisstein, Aug 01 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,n+1)[2] -1); # G. C. Greubel, Jul 12 2019
  • Haskell
    a001610 n = a001610_list !! n
    a001610_list =
       0 : 2 : map (+ 1) (zipWith (+) a001610_list (tail a001610_list))
    -- Reinhard Zumkeller, Aug 21 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)+1: n in [1..40]]; // Vincenzo Librandi, Mar 20 2015
    
  • Magma
    [Lucas(n+1) -1: n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    t = {0, 2}; Do[AppendTo[t, t[[-1]] + t[[-2]] + 1], {n, 2, 40}]; t
    RecurrenceTable[{a[n] == a[n - 1] +a[n - 2] +1, a[0] == 0, a[1] == 2}, a, {n, 0, 40}] (* Robert G. Wilson v, Apr 13 2013 *)
    CoefficientList[Series[x (2 - x)/((1 - x - x^2) (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    Table[Fibonacci[n] + Fibonacci[n + 2] - 1, {n, 0, 40}] (* Eric W. Weisstein, Feb 13 2018 *)
    LinearRecurrence[{2, 0, -1}, {2, 3, 6}, 20] (* Eric W. Weisstein, Feb 13 2018 *)
    Table[LucasL[n] - 1, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *)
    LucasL[Range[20]] - 1 (* Eric W. Weisstein, Aug 01 2023 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,0,2]^n*[0;2;3])[1,1] \\ Charles R Greathouse IV, Sep 08 2016
    
  • PARI
    vector(40, n, f=fibonacci; f(n+1)+f(n-1)-1) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    [lucas_number2(n+1,1,-1) -1 for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = A000204(n)-1 = A000032(n+1)-1 = A000071(n+1) + A000045(n).
G.f.: x*(2-x)/((1-x-x^2)*(1-x)) = (2*x-x^2)/(1-2*x+x^3). [Simon Plouffe in his 1992 dissertation]
a(n) = F(n) + F(n+2) - 1 where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Jan 31 2008
a(n) = A014217(n+1) - A000035(n+1). - Paul Curtz, Sep 21 2008
a(n) = Sum_{i=1..floor((n+1)/2)} ((n+1)/i)*C(n-i,i-1). In more general case of polynomials Q_n(x)=a(n,x) (see our comment) we have Q_n(x) = Sum_{i=1..floor((n+1)/2)}((n+1)/i)*C(n-i,i-1)*x^(i-1). - Vladimir Shevelev, Apr 23 2010
a(n) = Sum_{k=0..n-1} Lucas(k), where Lucas(n) = A000032(n). - Gary Detlefs, Dec 07 2010
a(0)=0, a(1)=2, a(2)=3; for n>=3, a(n) = 2*a(n-1) - a(n-3). - George F. Johnson, Jan 28 2013
For n > 1, a(n) = A048162(n+1) + 3. - Toby Gottfried, Apr 13 2013
For n > 0, a(n) = A169985(n + 1) - 1. - Gus Wiseman, Feb 12 2019

A001606 Indices of prime Lucas numbers.

Original entry on oeis.org

0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, 10691, 12251, 13963, 14449, 19469, 35449, 36779, 44507, 51169, 56003, 81671, 89849, 94823, 140057, 148091, 159521, 183089, 193201, 202667, 344293, 387433, 443609, 532277, 574219, 616787, 631181, 637751, 651821, 692147, 901657, 1051849
Offset: 1

Views

Author

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
Since (as noted under A000032) L(n) divides L(mn) whenever m is odd, L(n) cannot be prime unless n is itself prime, or else n contains no odd divisor, i.e., is a power of 2. Potential divisors of L(n) must satisfy certain linear forms dependent upon the parity of n, as shown in Vajda (1989), p. 82 (with a slight typographical error in the proof). - John Blythe Dobson, Oct 22 2007
Powers of 2 in this sequence are 2, 4, 8, 16; for 5 <= m <= 24, L(2^m) is composite; no factors of L(2^m) are known for m = 25, 26, 27, 29, 32, 33... (See Link section). - Serge Batalov, May 30 2017
2316773 is in the sequence, but its position is not yet defined. L(2316773) is a 484177-digit PRP. - Serge Batalov, Jun 11 2017

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 246.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section: Theory and Applications. Chichester: Ellis Horwood Ltd., 1989.

Crossrefs

Cf. A080327 (n for which Lucas(n) and Fibonacci(n) are both prime).
Subsequence of A076697 (indices for which gpf(A000032(n)) sets a new record).

Programs

  • Mathematica
    Reap[For[k = 0, k < 20000, k++, If[PrimeQ[LucasL[k]], Print[k]; Sow[k]]] ][[2, 1]] (* Jean-François Alcover, Feb 27 2016 *)
  • PARI
    is(n)=ispseudoprime(fibonacci(n-1)+fibonacci(n+1)) \\ Charles R Greathouse IV, Apr 24 2015

Extensions

4 more terms from David Broadhurst, Jun 08 2001
More terms from T. D. Noe, Feb 15 2003 and Mar 04 2003; see link to The Prime Glossary.
387433, 443609, 532277 and 574219 found by Renaud Lifchitz, contributed by Eric W. Weisstein, Nov 29 2005
616787, 631181, 637751, 651821, 692147 found by Henri Lifchitz, circa Oct 01 2008, contributed by Alexander Adamchuk, Nov 28 2008
901657 and 1051849 found by Renaud Lifchitz, circa Nov 2008 and Mar 2009, contributed by Alexander Adamchuk, May 15 2010
1 more term from Serge Batalov, Jun 11 2017

A000057 Primes dividing all Fibonacci sequences.

Original entry on oeis.org

2, 3, 7, 23, 43, 67, 83, 103, 127, 163, 167, 223, 227, 283, 367, 383, 443, 463, 467, 487, 503, 523, 547, 587, 607, 643, 647, 683, 727, 787, 823, 827, 863, 883, 887, 907, 947, 983, 1063, 1123, 1163, 1187, 1283, 1303, 1327, 1367, 1423, 1447, 1487, 1543, 1567, 1583
Offset: 1

Views

Author

Keywords

Comments

Here a Fibonacci sequence is a sequence which begins with any two integers and continues using the rule s(n+2) = s(n+1) + s(n). These primes divide at least one number in each such sequence. - Don Reble, Dec 15 2006
Primes p such that the smallest positive m for which Fibonacci(m) == 0 (mod p) is m = p + 1. In other words, the n-th prime p is in this sequence iff A001602(n) = p + 1. - Max Alekseyev, Nov 23 2007
Cubre and Rouse comment that this sequence is not known to be infinite. - Charles R Greathouse IV, Jan 02 2013
Number of terms up to 10^n: 3, 7, 38, 249, 1894, 15456, 130824, 1134404, 10007875, 89562047, .... - Charles R Greathouse IV, Nov 19 2014
These are also the fixed points of sequence A213648 which gives the minimal number of 1's such that n*[n; 1,..., 1, n] = [x; ..., x], where [...] denotes simple continued fractions. - M. F. Hasler, Sep 15 2015
It appears that for n >= 2, all first differences are congruent to 0 (mod 4). - Christopher Hohl, Dec 28 2018
The comment above is equivalent to a(n) == 3 (mod 4) for n >= 2. This is indeed correct. Actually it can be proved that a(n) == 3, 7 (mod 20) for n >= 2. Let p != 2, 5 be a prime, then: A001175(p) divides (p - 1)/2 if p == 1, 9 (mod 20); p - 1 if p == 11, 19 (mod 20); (p + 1)/2 if p == 13, 17 (mod 20). So the remaining cases are p == 3, 7 (mod 20). - Jianing Song, Dec 29 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A064414.

Programs

  • Mathematica
    Select[Prime[Range[1000]], Function[p, a=0; b=1; n=1; While[b != 0, t=b; b = Mod[(a+b), p]; a=t; n++]; n>p]] (* Jean-François Alcover, Aug 05 2018, after Charles R Greathouse IV *)
  • PARI
    select(p->my(a=0,b=1,n=1,t);while(b,t=b;b=(a+b)%p; a=t; n++); n>p, primes(1000)) \\ Charles R Greathouse IV, Jan 02 2013
    
  • PARI
    is(p)=fordiv(p-1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(0)));fordiv(p+1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(d==p+1 && isprime(p)))) \\ Charles R Greathouse IV, Jan 02 2013
    
  • PARI
    is(p)=if((p-2)%5>1, return(0)); my(f=factor(p+1)); for(i=1, #f~, if((Mod([1, 1; 1, 0], p)^((p+1)/f[i, 1]))[1, 2]==0, return(0))); isprime(p) \\ Charles R Greathouse IV, Nov 19 2014

Extensions

More terms from Don Reble, Nov 14 2006

A053028 Odd primes p with 4 zeros in any period of the Fibonacci numbers mod p.

Original entry on oeis.org

5, 13, 17, 37, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 193, 197, 233, 257, 269, 277, 293, 313, 317, 337, 353, 373, 389, 397, 421, 433, 457, 557, 577, 593, 613, 617, 653, 661, 673, 677, 701, 733, 757, 761, 773, 797, 821, 829, 853, 857, 877, 937, 953
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Also, primes that do not divide any Lucas number. - T. D. Noe, Jul 25 2003
Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. In fact, exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. The Lucas numbers separate the primes into three disjoint sets: (A053028) primes that do not divide any Lucas number, (A053027) primes that divide Lucas numbers of even index and (A053032) primes that divide Lucas numbers of odd index. - T. D. Noe, Jul 25 2003; revised by N. J. A. Sloane, Feb 21 2004
From Jianing Song, Jun 16 2024: (Start)
Primes p such that A001176(p) = 4.
For p > 2, p is in this sequence if and only if A001175(p) == 4 (mod 8), and if and only if A001177(p) is odd. For a proof of the equivalence between A001176(p) = 4 and A001177(p) being odd, see Section 2 of my link below.
This sequence contains all primes congruent to 13, 17 (mod 20). This corresponds to case (1) for k = 3 in the Conclusion of Section 1 of my link below. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | this seq | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Mathematica
    Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; badP={}; Do[p=Prime[n]; k=1; While[k0, k++ ]; If[k==p, AppendTo[badP, p]], {n, 200}]; badP

Formula

A prime p = prime(i) is in this sequence if p > 2 and A001602(i) is odd. - T. D. Noe, Jul 25 2003

Extensions

Edited: Name clarified. Moree and Renault link updated. Ballot and Elia reference linked. - Wolfdieter Lang, Jan 20 2015

A053032 Odd primes p with one zero in Fibonacci numbers mod p.

Original entry on oeis.org

11, 19, 29, 31, 59, 71, 79, 101, 131, 139, 151, 179, 181, 191, 199, 211, 229, 239, 251, 271, 311, 331, 349, 359, 379, 419, 431, 439, 461, 479, 491, 499, 509, 521, 541, 571, 599, 619, 631, 659, 691, 709, 719, 739, 751, 809, 811, 839, 859, 911, 919, 941, 971
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Also, odd primes that divide Lucas numbers of odd index. - T. D. Noe, Jul 25 2003
From Charles R Greathouse IV, Dec 14 2016: (Start)
It seems that this sequence contains about 1/3 of the primes. In particular, members of this sequence constitute:
35 of the first 10^2 primes
330 of the first 10^3 primes
3328 of the first 10^4 primes
33371 of the first 10^5 primes
333329 of the first 10^6 primes
3333720 of the first 10^7 primes
33333463 of the first 10^8 primes
etc. (End)
Of the Fibonacci-like sequences modulo a prime p that are not A000004, one of them has a period length less than A001175(p) if and only if p = 5 or p is in this sequence. - Isaac Saffold, Dec 18 2018
Odd primes in A053031. - Jianing Song, Jun 19 2019

Examples

			From _Michael B. Porter_, Jan 25 2019: (Start)
The Fibonacci numbers (mod 7) repeat the pattern 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1. Since there are two zeros, 7 is not in the sequence.
The Fibonacci numbers (mod 11) repeat the pattern 0, 1, 1, 2, 3, 5, 8, 2, 10, 1 which has only one zero, so 11 is in the sequence.
(End)
		

Crossrefs

Cf. A001175, A001177. See A112860 for another version.
Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+------------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027** | A309581 | A309587
Primes p such that w(p) = 4 | A053028*** | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also this sequence U {2}
** also primes dividing Lucas numbers of even index
*** also primes dividing no Lucas number

Programs

  • Mathematica
    Prime@ Rest@ Position[Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, Prime@ Range@ 168}], 1][[All, 1]] (* Michael De Vlieger, Aug 08 2018 *)
  • PARI
    fibmod(n,m)=(Mod([1, 1; 1, 0], m)^n)[1, 2]
    is(n)=my(k=n+[0, -1, 1, 1, -1][n%5+1]); k>>=valuation(k,2)-1; fibmod(k,n)==0 && fibmod(k/2,n) && isprime(n) \\ Charles R Greathouse IV, Dec 14 2016

Formula

A prime p = prime(i) is in this sequence if p > 2 and A001602(i)/2 is odd. - T. D. Noe, Jul 25 2003

A053027 Odd primes p with 2 zeros in Fibonacci numbers mod p.

Original entry on oeis.org

3, 7, 23, 41, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 241, 263, 281, 283, 307, 347, 367, 383, 401, 409, 443, 449, 463, 467, 487, 503, 523, 547, 563, 569, 587, 601, 607, 641, 643, 647, 683, 727, 743, 769, 787, 823, 827, 863, 881, 883, 887, 907, 929
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Also, odd primes that divide Lucas numbers of even index. - T. D. Noe, Jul 25 2003
Primes in A053030. - Jianing Song, Jun 19 2019
From Jianing Song, Jun 16 2024: (Start)
Primes p such that A001176(p) = 2.
For p > 2, p is in this sequence if and only if 8 divides of A001175(p), and if and only if 4 divides A001177(p). For a proof of the equivalence between A001176(p) = 2 and 4 dividing A001177(p), see Section 2 of my link below.
This sequence contains all primes congruent to 3, 7 (mod 20). This corresponds to case (2) for k = 3 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+-----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | this seq | A309581 | A309587
Primes p such that w(p) = 4 | A053028** | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 (primes dividing Lucas numbers of odd index) U {2}
** also primes dividing no Lucas number

Formula

A prime p = prime(i) is in this sequence if p > 2 and A001602(i)/2 is even. - T. D. Noe, Jul 25 2003

A001609 a(1) = a(2) = 1, a(3) = 4; thereafter a(n) = a(n-1) + a(n-3).

Original entry on oeis.org

1, 1, 4, 5, 6, 10, 15, 21, 31, 46, 67, 98, 144, 211, 309, 453, 664, 973, 1426, 2090, 3063, 4489, 6579, 9642, 14131, 20710, 30352, 44483, 65193, 95545, 140028, 205221, 300766, 440794, 646015, 946781, 1387575, 2033590, 2980371, 4367946, 6401536, 9381907
Offset: 1

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m + 1. The generating function is (x + m*x^m)/(1 - x - x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.
The sequence defined by {a(n) - 1} plays a role for the computation of A065414, A146486, A146487, and A146488 equivalent to the role of A001610 for A005596, A146482, A146483 and A146484, see the variable a_{2,n} in arXiv:0903.2514. - R. J. Mathar, Mar 28 2009
Except for n = 2, a(n) is the number of digits in n-th term of A049064. This can be derived form the T. Sillke link below. - Jianing Song, Apr 28 2019

Examples

			G.f. = x + x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 21*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,1,4]; [n le 3 select I[n] else Self(n-1)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Jun 28 2015
  • Maple
    A001609:=-(1+3*z**2)/(-1+z+z**3); # Simon Plouffe in his 1992 dissertation
    f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-3), a(1)=1,a(2)=1,a(3)=4},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Jun 29 2015
  • Mathematica
    Table[Tr[MatrixPower[{{0, 0, 1}, {1, 0, 0}, {0, 1, 1}}, n]], {n, 1, 60}] (* Artur Jasinski, Jan 10 2007 *)
    Table[ HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -(n/3)}, {1/2 - n/2, 1 - n/2}, -(27/4)], {n, 20}] (* Alexander R. Povolotsky, Nov 21 2008 *)
    a[1] = a[2] = 1; a[3] = 4; m = 3; a[n_] := 1 + n*Sum [Binomial [n - 1 - (m - 1)*i, i - 1]/i, {i, n/m}] A001609 = Table[a[n], {n, 100}] (* Zak Seidov, Nov 21 2008 *)
    LinearRecurrence[{1, 0, 1}, {1, 1, 4}, 50] (* Vincenzo Librandi, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<1, n=-n; polcoeff( (3 + x^2) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( x * (1 + 3*x^2) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Aug 15 2016 */
    

Formula

G.f.: x*(1 + 3*x^2)/(1 - x - x^3).
a(n) = trace of successive powers of matrix ({{0,0,1},{1,0,0},{0,1,1}})^n. - Artur Jasinski, Jan 10 2007
a(n) = A000930(n) + 3*A000930(n-2). - R. J. Mathar, Nov 16 2007
Logarithmic derivative of Narayana's cows sequence A000930. - Paul D. Hanna, Oct 28 2012
a(n) = w1^n + w2^n + w3^n, where w1,w2,w3 are the roots of the cubic: (-1 - x^2 + x^3), see A092526. - Gerry Martens, Jun 27 2015

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
More terms from Michael Somos, Oct 03 2002
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A016089 Numbers n such that n divides n-th Lucas number A000032(n).

Original entry on oeis.org

1, 6, 18, 54, 162, 486, 1458, 1926, 4374, 5778, 13122, 17334, 39366, 52002, 118098, 156006, 206082, 354294, 468018, 618246, 1062882, 1404054, 1854738, 2471058, 3188646, 4212162, 5564214, 7413174, 9565938, 12636486, 16692642, 22050774
Offset: 1

Views

Author

Keywords

Comments

Note that if n divides A000032(n) and p is an odd prime divisor of A000032(n), then pn divides A000032(pn) and, furthermore, p^k*n divides A000032(p^k*n) for every integer k>=0.
In particular, since 6 divides A000032(6) = 2*3^2, A016089 includes all terms of the geometric progression 2*3^k for k>0 (see A099856); since 18 divides A000032(18) = 2*3^3*107, A016089 includes all terms of the form 2*107^m*3^k for k>1 and m>=0; etc.
Terms of A016089 starting with 18 are multiples of 18. There are no other terms of the form 18p where p is prime, except for p=3 and p=107. - Alexander Adamchuk, May 11 2007

Crossrefs

Cf. A099856, A072378 = numbers n such that 12n divides Fibonacci(12n), A023172 = numbers n such that n divides Fibonacci(n).

Programs

  • Mathematica
    a = 1; b = 3; Do[c = a + b; a = b; b = c; If[Mod[c, n] == 0, Print[n]], {n, 3, 2, 10^6}]
  • PARI
    is(n)=(Mod([0,1;1,1],n)^n*[2;1])[1,1]==0 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

Extended and revised by Max Alekseyev, May 13 2007, May 15 2008, May 16 2008

A001601 a(n) = 2*a(n-1)^2 - 1, if n>1. a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 17, 577, 665857, 886731088897, 1572584048032918633353217, 4946041176255201878775086487573351061418968498177
Offset: 0

Views

Author

Keywords

Comments

Reduced numerators of Newton's iteration for sqrt(2). - Eric W. Weisstein
An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
Evaluation of the 2^n - 1 degree interpolating polynomial of 1/x at Chebyshev nodes in the interval (1,2): v = 1.0; for(i = 1, n, v *= 4*(a(i) - x*v)); v *= 2/a(n+1). - Jose Hortal, Apr 07 2012
Smallest positive integer x satisfying the Pell equation x^2 - 2^(2*n+1) * y^2 = 1, for n > 0. - A.H.M. Smeets, Sep 29 2017

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 376.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A001333(2^n).

Programs

  • Mathematica
    Table[Simplify[Expand[(1/2) ((1 + Sqrt[2])^(2^n) + (1 - Sqrt[2])^(2^n))]], {n, 0, 7}]  (* Artur Jasinski, Oct 10 2008 *)
    Join[{1},NestList[2#^2-1&,3,7]]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    a(n)=if(n<1,n==0,2*a(n-1)^2-1)

Formula

From Mario Catalani (mario.catalani(AT)unito.it), May 27 2003, May 30 2003: (Start)
a(n) = a(n-1)^2 + 2*A051009(n)^2 for n > 0.
a(n)^2 = 2*A051009(n+1)^2 + 1.
a(n) = Sum_{r=0..2^(n-1)} binomial(2^n, 2*r)*2^r. (End)
Expansion of 1/sqrt(2) as an infinite product: 1/sqrt(2) = Product_{k>=1} (1 - 1/(a(n)+1)). a(1)=3; a(n) = floor(1/(1-1/(sqrt(2)*Product_{k=1..n-1} 1-1/(a(k)+1)))). - Thomas Baruchel, Nov 06 2003
2*a(n+1) = A003423(n).
a(n) = (1/2)*((1 + sqrt(2))^(2^n) + (1 - sqrt(2))^(2^n)). - Artur Jasinski, Oct 10 2008
For n > 1: a(n) - 1 = 4^n * Product_{i=1..n-2} a(i)^2. - Jose Hortal, Apr 13 2012
From Peter Bala, Nov 11 2012: (Start)
4*sqrt(2)/7 = Product_{n>=1} (1 - 1/(2*a(n))).
sqrt(2) = Product_{n>=1} (1 + 1/a(n)).
a(n) = (1/2)*A003423(n-1). (End)
a(n) = cos(2^(n-1) * arccos(3)) = cosh(2^(n-1) * log(3 + 2*sqrt(2))) for n >= 1. - Daniel Suteu, Jul 28 2016
a(n+1) = T(2^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Feb 01 2017
a(n) = A001541(2^(n-1)). - A.H.M. Smeets, May 28 2017

A001607 a(n) = -a(n-1) - 2*a(n-2).

Original entry on oeis.org

0, 1, -1, -1, 3, -1, -5, 7, 3, -17, 11, 23, -45, -1, 91, -89, -93, 271, -85, -457, 627, 287, -1541, 967, 2115, -4049, -181, 8279, -7917, -8641, 24475, -7193, -41757, 56143, 27371, -139657, 84915, 194399, -364229, -24569, 753027, -703889
Offset: 0

Views

Author

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
Apart from the sign, this is an example of a sequence of Lehmer numbers. In this case, the two parameters, alpha and beta, are (1 +- i*sqrt(7))/2. Bilu, Hanrot, Voutier and Mignotte show that all terms of a Lehmer sequence a(n) have a primitive factor for n > 30. Note that for this sequence, a(30) = 24475 = 5*5*11*89 has no primitive factors. - T. D. Noe, Oct 29 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from signs, same as A077020.
Cf. A172250.

Programs

  • Magma
    [n eq 1 select 0 else n eq 2 select 1 else -Self(n-1)-2*Self(n-2): n in [1..50]]; // Vincenzo Librandi, Aug 22 2011
    
  • Mathematica
    LinearRecurrence[{-1,-2},{0,1},60] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x/(1+x+2*x^2)+x*O(x^n),n))
    
  • PARI
    a(n)=if(n<0,0,2*imag(((-1+quadgen(-28))/2)^n))
    
  • SageMath
    A001607=BinaryRecurrenceSequence(-1,-2,0,1)
    [A001607(n) for n in range(51)] # G. C. Greubel, Mar 24 2024

Formula

G.f.: x/(1+x+2*x^2).
a(n) = Sum_{k=0..n-1} (-1)^(n-k-1)*binomial(n-k-1, k)*2^k = -2/sqrt(7)*(-sqrt(2))^n*(sin(n*arctan(sqrt(7)))). - Vladeta Jovovic, Feb 05 2003
x/(x^2+x+2) = Sum_{n>=0} a(n)*(x/2)^n. - Benoit Cloitre, Mar 12 2002
4*2^n = A002249(n)^2 + 7*A001607(n)^2. See A077020, A077021.
a(n+1) = Sum_{k=0..n} A172250(n,k)*(-1)^k. - Philippe Deléham, Feb 15 2012
G.f.: x - 2*x^2 + 2*x^2/(G(0)+1) where G(k) = 1 + x/(1 - x/(x - 1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
a(n) = 2^((n-1)/2)*ChebyshevU(n-1, -1/(2*sqrt(2))). - G. C. Greubel, Mar 24 2024
a(n) = (i*(((-1 - i*sqrt(7))/2)^n - ((-1 + i*sqrt(7))/2)^n))/sqrt(7). - Alan Michael Gómez Calderón, Jul 09 2024; after T. D. Noe, Oct 29 2003
Previous Showing 11-20 of 52 results. Next