cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 77 results. Next

A019973 Decimal expansion of tangent of 75 degrees.

Original entry on oeis.org

3, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition of this sequence: decimal expansion of x > 1 satisfying x^2 - 4*x + 1 = 0. - Arkadiusz Wesolowski, Nov 28 2011
An algebraic integer of degree 2 with minimal polynomial x^2 - 4*x + 1. - Charles R Greathouse IV, Oct 17 2016
Length of the second longest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020

Examples

			3.732050807568877293527446341505872366942805253810380628...
		

Crossrefs

Programs

Formula

Equals 2 + sqrt(3) = 2+A002194 = cotangent of 15 degrees. - Rick L. Shepherd, Jul 04 2004
Equals exp(arccosh(2)). - Amiram Eldar, Aug 07 2023
c^n = A001835(n) + (1 + sqrt(3)) * A001353(n) = A001075(n) + sqrt(3) * A001353(n); where c = 2 + sqrt(3). - Gary W. Adamson, Oct 14 2023
Equals lim_{n->oo} S(n, 4)/ S(n-1, 4), with the S-Chebyshev polynomial (see A049310) S(n, 4) = A001353(n+1). See the A001353 formula from Oct 06 2002 by Gregory V. Richardson. - Wolfdieter Lang, Nov 15 2023
Equals A019884 / A019824. - R. J. Mathar, Jan 12 2024
Equals 1/A019913. - Hugo Pfoertner, Mar 24 2024

Extensions

Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008

A214992 Power ceiling-floor sequence of (golden ratio)^4.

Original entry on oeis.org

7, 47, 323, 2213, 15169, 103969, 712615, 4884335, 33477731, 229459781, 1572740737, 10779725377, 73885336903, 506417632943, 3471038093699, 23790849022949, 163064905066945, 1117663486445665, 7660579500052711
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2012, Jan 24 2013

Keywords

Comments

Let f = floor and c = ceiling. For x > 1, define four sequences as functions of x, as follows:
p1(0) = f(x), p1(n) = f(x*p1(n-1));
p2(0) = f(x), p2(n) = c(x*p2(n-1)) if n is odd and p2(n) = f(x*p1(n-1)) if n is even;
p3(0) = c(x), p3(n) = f(x*p3(n-1)) if n is odd and p3(n) = c(x*p3(n-1)) if n is even;
p4(0) = c(x), p4(n) = c(x*p4(n-1)).
The present sequence is given by a(n) = p3(n).
Following the terminology at A214986, call the four sequences power floor, power floor-ceiling, power ceiling-floor, and power ceiling sequences. In the table below, a sequence is identified with an A-numbered sequence if they appear to agree except possibly for initial terms. Notation: S(t)=sqrt(t), r = (1+S(5))/2 = golden ratio, and Limit = limit of p3(n)/p2(n).
x ......p1..... p2..... p3..... p4.......Limit
r^2.....A001519 A001654 A061646 A001906..-1+S(5)
r^3.....A024551 A001076 A015448 A049652..-1+S(5)
r^4.....A049685 A157335 A214992 A004187..-19+9*S(5)
r^5.....A214993 A049666 A015457 A214994...(-9+5*S(5))/2
r^6.....A007805 A156085 A214995 A049660..-151+68*S(5)
2+S(2)..A007052 A214996 A214997 A007070..(1+S(2))/2
1+S(3)..A057960 A002605 A028859 A077846..(1+S(3))/2
2+S(3)..A001835 A109437 A214998 A001353..-4+3*S(3)
S(5)....A214999 A215091 A218982 A218983..1.26879683...
2+S(5)..A024551 A001076 A015448 A049652..-1+S(5)
2+S(6)..A218984 A090017 A123347 A218985..S(3/2)
2+S(7)..A218986 A015530 A126473 A218987..(1+S(7))/3
2+S(8)..A218988 A057087 A086347 A218989..(1+S(2))/2
3+S(8)..A001653 A084158 A218990 A001109..-13+10*S(2)
3+S(10).A218991 A005668 A015451 A218992..-2+S(10)
...
Properties of p1, p2, p3, p4:
(1) If x > 2, the terms of p2 and p3 interlace: p2(0) < p3(0) < p2(1) < p3(1) < p2(2) < p3(2)... Also, p1(n) <= p2(n) <= p3(n) <= p4(n) <= p1(n+1) for all x>0 and n>=0.
(2) If x > 2, the limits L(x) = limit(p/x^n) exist for the four functions p(x), and L1(x) <= L2(x) <= L3(x) <= L4 (x). See the Mathematica programs for plots of the four functions; one of them also occurs in the Odlyzko and Wilf article, along with a discussion of the special case x = 3/2.
(3) Suppose that x = u + sqrt(v) where v is a nonsquare positive integer. If u = f(x) or u = c(x), then p1, p2, p3, p4 are linear recurrence sequences. Is this true for sequences p1, p2, p3, p4 obtained from x = (u + sqrt(v))^q for every positive integer q?
(4) Suppose that x is a Pisot-Vijayaraghavan number. Must p1, p2, p3, p4 then be linearly recurrent? If x is also a quadratic irrational b + c*sqrt(d), must the four limits L(x) be in the field Q(sqrt(d))?
(5) The Odlyzko and Wilf article (page 239) raises three interesting questions about the power ceiling function; it appears that they remain open.

Examples

			a(0) = ceiling(r) = 7, where r = ((1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1.  A214992 and related sequences *)
    x = GoldenRatio^4; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A049685 *)
    Table[p2[n], {n, 0, z}]  (* A157335 *)
    Table[p3[n], {n, 0, z}]  (* A214992 *)
    Table[p4[n], {n, 0, z}]  (* A004187 *)
    Table[p4[n] - p1[n], {n, 0, z}]  (* A004187 *)
    Table[p3[n] - p2[n], {n, 0, z}]  (* A098305 *)
    (* Program 2.  Plot of power floor and power ceiling functions, p1(x) and p4(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]];
    p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]];
    Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]
    (* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p2[x_, 0] := f[x]; p3[x_, 0] := c[x];
    p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]]
    p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]]
    Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]

Formula

a(n) = floor(r*a(n-1)) if n is odd and a(n) = ceiling(r*a(n-1)) if n is even, where a(0) = ceiling(r), r = (golden ratio)^4 = (7 + sqrt(5))/2.
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3).
G.f.: (7 + 5*x - x^2)/((1 + x)*(1 - 7*x + x^2)).
a(n) = (10*(-2)^n+(10+3*sqrt(5))*(7-3*sqrt(5))^(n+2)+(10-3*sqrt(5))*(7+3*sqrt(5))^(n+2))/(90*2^n). - Bruno Berselli, Nov 14 2012
a(n) = 7*A157335(n) + 5*A157335(n-1) - A157335(n-2). - R. J. Mathar, Feb 05 2020
E.g.f.: exp(-x)*(5 + 2*exp(9*x/2)*(155*cosh(3*sqrt(5)*x/2) + 69*sqrt(5)*sinh(3*sqrt(5)*x/2)))/45. - Stefano Spezia, Oct 28 2024

A233320 Number A(n,k) of tilings of a k X n rectangle using trominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 3, 3, 0, 1, 1, 0, 0, 10, 0, 0, 1, 1, 1, 0, 23, 23, 0, 1, 1, 1, 0, 11, 62, 0, 62, 11, 0, 1, 1, 0, 0, 170, 0, 0, 170, 0, 0, 1, 1, 1, 0, 441, 939, 0, 939, 441, 0, 1, 1, 1, 0, 41, 1173, 0, 8342, 8342, 0, 1173, 41, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 07 2013

Keywords

Comments

Every row and column satisfies a linear recurrence. - Peter Kagey, Jul 17 2019

Examples

			Square array A(n,k) begins:
  1, 1,  1,    1,   1,    1,       1, ...
  1, 0,  0,    1,   0,    0,       1, ...
  1, 0,  0,    3,   0,    0,      11, ...
  1, 1,  3,   10,  23,   62,     170, ...
  1, 0,  0,   23,   0,    0,     939, ...
  1, 0,  0,   62,   0,    0,    8342, ...
  1, 1, 11,  170, 939, 8342,   80092, ...
  1, 0,  0,  441,   0,    0,  614581, ...
  1, 0,  0, 1173,   0,    0, 5271923, ...
		

Crossrefs

Formula

A(n,k) = 0 <=> n*k mod 3 > 0.

A103997 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Array begins:
  1,   1,     1,        1,          1,             1,               1,
  1,   3,     7,       18,         47,           123,             322,
  1,  11,    71,      539,       4271,         34276,          276119,
  1,  41,   769,    17753,     434657,      10894561,       275770321,
  1, 153,  8449,   603126,   46069729,    3625549353,    289625349454,
  1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
  ...
		

Crossrefs

Rows include A005248, A103998.
Columns 1..7 give A001835(n+1), A334135, A334179, A334180, A334181, A334182, A334183.
Main diagonal gives A334124.

Programs

  • Mathematica
    T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
    Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)

Formula

T(M, N) = Product_{m=1..M} (Product_{n=1..N} 4*sin(Pi*(4*n-1)/(4*N))^2 + 4*cos(Pi*m/(2*M + 1))^2).
For k > 0, T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{2*k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 15 2020

A299045 Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, -1, -1, 1, -2, 1, 1, 1, -3, 5, -1, 0, 1, -4, 11, -13, 1, -1, 1, -5, 19, -41, 34, -1, 1, 1, -6, 29, -91, 153, -89, 1, 0, 1, -7, 41, -169, 436, -571, 233, -1, -1, 1, -8, 55, -281, 985, -2089, 2131, -610, 1, 1, 1, -9, 71, -433, 1926, -5741, 10009, -7953, 1597, -1, 0
Offset: 1

Views

Author

Keywords

Comments

This array is used to compute A269252: A269252(n) = least k such that |A(n,k)| is a prime, or -1 if no such k exists.
For detailed theory, see [Hone].
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
1   0  -1     1     0      -1       1         0        -1           1
1  -1   1    -1     1      -1       1        -1         1          -1
1  -2   5   -13    34     -89     233      -610      1597       -4181
1  -3  11   -41   153    -571    2131     -7953     29681     -110771
1  -4  19   -91   436   -2089   10009    -47956    229771    -1100899
1  -5  29  -169   985   -5741   33461   -195025   1136689    -6625109
1  -6  41  -281  1926  -13201   90481   -620166   4250681   -29134601
1  -7  55  -433  3409  -26839  211303  -1663585  13097377  -103115431
1  -8  71  -631  5608  -49841  442961  -3936808  34988311  -310957991
1  -9  89  -881  8721  -86329  854569  -8459361  83739041  -828931049
		

Crossrefs

Cf. A094954 (unsigned version of this array, but missing the first row).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{-n, -1}, {1, 1 - n}, 10], {n, 10}]]
    (*Array antidiagonals flattened (gives this sequence):*)
    A299045[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] (-n)^(k - j), {j, 0, k}]; Flatten[Table[A299045[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*(-n)^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

G.f. for row n: (1 + x)/(1 + n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A294099. - Michael Somos, Jun 19 2023

A101265 a(1) = 1, a(2) = 2, a(3) = 6; a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) for n > 3.

Original entry on oeis.org

1, 2, 6, 21, 77, 286, 1066, 3977, 14841, 55386, 206702, 771421, 2878981, 10744502, 40099026, 149651601, 558507377, 2084377906, 7779004246, 29031639077, 108347552061, 404358569166, 1509086724602, 5631988329241, 21018866592361, 78443478040202, 292755045568446
Offset: 1

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 25 2005

Keywords

Comments

Let M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1 ]; then [1,0,0]*M^n = [a(n), A001353(n), A061278(n-1)] for n > 1. Further, A001353 consists of the first differences of {a(n)}, and since a(n) = A061278(n) + 1, A001353 is also the first differences of A061278. Let v(n) = [1,0,0]*M^n; then, for n >= 0, sum(v_i(n)) = A001075(n) and v_1(n) + v_3(n) = A001835(n). The characteristic polynomial of M is x^3 - 5x^2 + 5x - 1. a(n)/a(n-1) tends to 2 + sqrt(3) = 3.732.... (see A019973) (a root of the polynomial and an eigenvalue of the matrix).
Numbers k such that the RootMeanSquare([1..6*k-5]) is an integer. - Ctibor O. Zizka, Dec 17 2008
Place a(n) blue and b(n) red balls in an urn. Draw 3 balls without replacement. Then Probability(3 red balls) = Probability(1 red and 2 blue balls); binomial(b(n),3) = binomial(b(n),1)*binomial(a(n),2); b(n) = A179167(n). - Paul Weisenhorn, Jul 01 2010
Conjecture: consecutive terms of this sequence and consecutive terms of A032908 provide all the positive integer solutions of (a+b)*(a+b+1) == 0 (mod (a*b)). - Robert Israel, Aug 26 2015
Conjecture is true: see StackExchange link. - Robert Israel, Sep 06 2015
Values of a unitary Y-frieze pattern associated to the linearly oriented quiver K3 (i.e., the quiver whose underlying graph is the complete graph on the vertices {1,2,3}, oriented such that i -> j whenever i < j). - Antoine de Saint Germain, Dec 30 2024

Crossrefs

Programs

  • GAP
    a:=[1,2,6];; for n in [4..20] do a[n]:=5a[n-1]-5*a[n-2]+a[n-3]; od; a; #
    G. C. Greubel, Dec 23 2019
  • Haskell
    a101265 n = a101265_list !! (n-1)
    a101265_list = 1 : 2 : 6 : zipWith (+) a101265_list
        (map (* 5) $ tail $ zipWith (-) (tail a101265_list) a101265_list)
    -- Reinhard Zumkeller, May 18 2014
    
  • Magma
    I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1) - 5*Self(n-2) + Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 07 2015
    
  • Maple
    r:=sqrt(3): for n from 1 to 100 do a[n]:=(6+(3+r)*(2+r)^(n-1)+(3-r)*(2-r)^(n-1))/12: end do: # Paul Weisenhorn, Jul 01 2010
    r:=sqrt(3): a[n]:=round((6+(3+r)*(2+r)^(n-1))/12): # Paul Weisenhorn, Jul 01 2010
    f:= proc(n)
      option remember; local x;
      x:= procname(n-1);
      2*x + (sqrt(12*x^2 - 12*x + 1) - 1)/2
    end proc:
    f(1):= 1:
    map(f, [$1..30]); # Robert Israel, Aug 26 2015
    seq( simplify((ChebyshevU(n,2) - Chebyshev(n-1,2) + 1)/2), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,2,6},25] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[(1-3x+x^2)/((1-x)(1-4x+x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 07 2015 *)
    Table[(ChebyshevU[n, 2] - ChebyshevU[n-1, 2] + 1)/2, {n, 0, 20}] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=1,30,print1(([1,0,0]*M^i)[1],","))
    
  • PARI
    {a(n)=polcoeff(x*(1-3*x+x^2)/((1-x)*(1-4*x+x^2)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,if(n==1,1,a(n-1)*(a(n-1)+1)/a(n-2)))} /* Paul D. Hanna, Apr 08 2012 */
    
  • PARI
    vector(21, n, (polchebyshev(n, 2, 2) - polchebyshev(n-1, 2, 2) + 1)/2 ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [(chebyshev_U(n,2) - chebyshev_U(n-1,2) + 1)/2 for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = A005246(n)*A005246(n+1). a(n+1) = a(n)*(a(n)+1)/a(n-1). - Franklin T. Adams-Watters, Apr 24 2006
a(n) = (A001835(n) + 1) / 2. - Ralf Stephan, May 16 2007
O.g.f.: x*(1-3*x+x^2)/((1-x)*(1-4*x+x^2)). - R. J. Mathar, Aug 22 2008
a(n) = 1 + A061278(n). - Ctibor O. Zizka, Dec 17 2008
a(n) = 4*a(n-1) - a(n-2) - 1. - N. Sato, Jan 21 2010
a(n) = (6+(3+r)*(2+r)^(n-1) + (3-r)*(2-r)^(n-1))/12; r=sqrt(3). - Paul Weisenhorn, Jul 01 2010
a(n+1) = a(n) * (a(n) + 1) / a(n-1) for n>1 with a(0)=1, a(1)=1. - Paul D. Hanna, Apr 08 2012
From Peter Bala, May 01 2012: (Start)
a(n+1) = 1 + Sum {k = 1..n} 2^(k-1)*binomial(n+k,2*k).
Row sums of A211955.
a(n) = T(n,u)*T(n+1,u)/u with u = sqrt(3) and T(n,x) denotes the Chebyshev polynomial of the first kind.
Sum_{n >= 0} 1/a(n) = sqrt(3). In fact, 3 - (Sum_{n = 0..2*N} 1/a(n))^2 = 2/(A001835(N+1))^2 and 3 - (Sum_{n = 0..2*N+1} 1/a(n))^2 = 3/(A001075(N+1))^2. (End)
From Robert Israel, Aug 26 2015: (Start)
(a(n) + a(n+1))*(a(n) + a(n+1) + 1) = 6 * a(n) * a(n+1).
a(n+1) = 2*a(n) + (sqrt(12*a(n)^2 - 12*a(n) + 1) - 1)/2. (End)
a(n) = (ChebyshevU(n, 2) - ChebyshevU(n-1, 2) + 1)/2 = (ChebyshevT(n, 2) + ChebyshevU(n, 2) + 2)/4. - G. C. Greubel, Dec 23 2019
a(n) = (1+a(n-1))*(1+a(n-2))/a(n-3) for n > 3. - Antoine de Saint Germain, Dec 30 2024

Extensions

a(26)-a(27) from Vincenzo Librandi, Sep 07 2015

A165253 Triangle T(n,k), read by rows given by [1,0,1,0,0,0,0,0,0,...] DELTA [0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 15, 7, 1, 0, 1, 15, 35, 28, 9, 1, 0, 1, 21, 70, 84, 45, 11, 1, 0, 1, 28, 126, 210, 165, 66, 13, 1, 0, 1, 36, 210, 462, 495, 286, 91, 15, 1, 0, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 0, 1, 55, 495, 1716, 3003, 3003, 1820, 680
Offset: 0

Views

Author

Philippe Deléham, Sep 10 2009

Keywords

Comments

Mirror image of triangle in A121314.

Examples

			Triangle begins:
  1;
  1,    0;
  1,    1,    0;
  1,    3,    1,    0;
  1,    6,    5,    1,    0;
  1,   10,   15,    7,    1,    0;
  1,   15,   35,   28,    9,    1,    0;
  1,   21,   70,   84,   45,   11,    1,    0;
  1,   28,  126,  210,  165,   66,   13,    1,    0;
  1,   36,  210,  462,  495,  286,   91,   15,    1,    0,
  1,   45,  330,  924, 1287, 1001,  455,  120,   17,    1,    0;
		

Crossrefs

Programs

  • Mathematica
    m = 13;
    (* DELTA is defined in A084938 *)
    DELTA[Join[{1, 0, 1}, Table[0, {m}]], Join[{0, 1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)

Formula

T(0,0)=1, T(n,k) = binomial(n-1+k,2k) for n >= 1.
Sum {k=0..n} T(n,k)*x^k = A000012(n), A001519(n), A001835(n), A004253(n), A001653(n), A049685(n-1), A070997(n-1), A070998(n-1), A072256(n), A078922(n), A077417(n-1), A085260(n), A001570(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001519(n), A047849(n), A165310(n), A165311(n), A165312(n), A165314(n), A165322(n), A165323(n), A165324(n) for x= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 26 2009
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=T(1,0)=1, T(1,1)=0. - Philippe Deléham, Feb 18 2012
G.f.: (1-x-y*x)/((1-x)^2-y*x). - Philippe Deléham, Feb 19 2012

A003699 Number of Hamiltonian cycles in C_4 X P_n.

Original entry on oeis.org

1, 6, 22, 82, 306, 1142, 4262, 15906, 59362, 221542, 826806, 3085682, 11515922, 42978006, 160396102, 598606402, 2234029506, 8337511622, 31116016982, 116126556306, 433390208242, 1617434276662, 6036346898406, 22527953316962, 84075466369442, 313773912160806
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of generalized compositions of n when there are i^2+i-1 different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
Is this the same as the sequence visible in Table 5 of Pettersson, 2014? - N. J. A. Sloane, Jun 05 2015

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Column k=4 of A359855.
First differences of A052530 and A071954.

Programs

  • GAP
    a:=[6,22];; for n in [3..20] do a[n]:=4a[n-1]-a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[1,6,22]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
    
  • Maple
    seq( simplify( `if`(n=1, 1, 2*(ChebyshevU(n-1,2) - ChebyshevU(n-2,2))) ), n=1..30); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Join[{1},LinearRecurrence[{4,-1},{6,22},30]] (* Harvey P. Dale, Jul 19 2011 *)
    Table[If[n<2, n, 2*(ChebyshevU[n-1, 2] - ChebyshevU[n-2, 2])], {n,30}] (* G. C. Greubel, Dec 23 2019 *)
  • Maxima
    (a[1] : 1, a[2] : 6, a[3] : 22, a[n] := 4*a[n - 1] - a[n - 2], makelist(a[n], n, 1, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */
    
  • PARI
    vector(30, n, if(n==1, 1, 2*(polchebyshev(n-1, 2, 2) - polchebyshev(n-2, 2, 2))) ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [1]+[2*(chebyshev_U(n-1,2) - chebyshev_U(n-2,2)) for n in (2..30)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = 2 * A001835(n), n > 1.
From Benoit Cloitre, Mar 28 2003: (Start)
a(n) = ceiling((1 - sqrt(1/3))*(2 + sqrt(3))^n) for n > 1.
a(1) = 1, a(2) = 6, a(3) = 22 and for n > 3, a(n) = 4*a(n-1) - a(n-2). (End)
O.g.f.: x*(1 + 2*x - x^2)/(1-4*x+x^2) = -2 - x + 2*(1 - 3*x)/(1-4*x+x^2). - R. J. Mathar, Nov 23 2007
From Franck Maminirina Ramaharo, Nov 12 2018: (Start)
a(n) = ((1 + sqrt(3))*(2 - sqrt(3))^n - (1 - sqrt(3))*(2 + sqrt(3))^n)/sqrt(3), n > 1.
E.g.f.: ((1 + sqrt(3))*exp((2 - sqrt(3))*x) - (1 - sqrt(3))*exp((2 + sqrt(3))*x) - (2 + x)*sqrt(3))/sqrt(3). (End)
a(n) = 2*(ChebyshevU(n-1, 2) - ChebyshevU(n-2, 2)) for n >1, with a(1)=1. - G. C. Greubel, Dec 23 2019

A048788 a(2n+1) = a(2n) + a(2n-1), a(2n) = 2*a(2n-1) + a(2n-2); a(n) = n for n = 0, 1.

Original entry on oeis.org

0, 1, 2, 3, 8, 11, 30, 41, 112, 153, 418, 571, 1560, 2131, 5822, 7953, 21728, 29681, 81090, 110771, 302632, 413403, 1129438, 1542841, 4215120, 5757961, 15731042, 21489003, 58709048, 80198051, 219105150, 299303201, 817711552, 1117014753
Offset: 0

Views

Author

Robin Trew (trew(AT)hcs.harvard.edu), Dec 11 1999

Keywords

Comments

Numerators of continued fraction convergents to sqrt(3) - 1 (A160390). See A002530 for denominators. - N. J. A. Sloane, Dec 17 2007
Convergents are 1, 2/3, 3/4, 8/11, 11/15, 30/41, 41/56, 112/153, ... - Clark Kimberling, Sep 21 2013
A strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. - Peter Bala, Jun 06 2014
From Sarah-Marie Belcastro, Feb 15 2022: (Start)
a(n) is also the number of perfect matchings of an edge-labeled 2 X (n-1) Mobius band grid graph, or equivalently the number of domino tilings of a 2 X (n-1) Mobius band grid. (The twist is on the length-n side.)
a(n) is also the output of Lu and Wu's formula for the number of perfect matchings of an m X n Mobius band grid, specialized to m = 2 with the twist on the length-n side.
2*a(n) is the number of perfect matchings of an edge-labeled 2 X (n-1) projective planar grid graph, or equivalently the number of domino tilings of a 2 X (n-1) projective planar grid. (End)

References

  • Russell Lyons, A bird's-eye view of uniform spanning trees and forests, in Microsurveys in Discrete Probability, AMS, 1998.

Crossrefs

Bisections are A001835 and A052530.

Programs

  • GAP
    a:=[0,1,2,3];; for n in [5..40] do a[n]:=4a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Magma
    I:=[0,1,2,3]; [n le 4 select I[n] else 4*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 10 2013
    
  • Maple
    seq( simplify( `if`(`mod`(n,2)=0, 2*ChebyshevU((n-2)/2, 2), ChebyshevU((n-1)/2, 2) - ChebyshevU((n-3)/2, 2)) ), n=0..40); # G. C. Greubel, Dec 23 2019
  • Mathematica
    Numerator[NestList[(2/(2 + #))&, 0, 40]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    CoefficientList[Series[x(1+2x-x^2)/(1-4x^2+x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
    a0[n_]:= ((3+Sqrt[3])*(2-Sqrt[3])^n-((-3+Sqrt[3])*(2+Sqrt[3])^n))/6 // Simplify
    a1[n_]:= 2*Sum[a0[i], {i, 1, n}]
    Flatten[MapIndexed[{a1[#-1],a0[#]}&,Range[20]]] (* Gerry Martens, Jul 10 2015 *)
    Round@Table[With[{r=1+Sqrt[2], s=1+Sqrt[3]}, ((r + (-1)^n/r) s^n/2^(n/2) - (1/r + (-1)^n r) 2^(n/2)/s^n) Sqrt[6]/12], {n, 0, 20}] (* or *) LinearRecurrence[ {0,4,0,-1}, {0,1,2,3}, 40] (* Vladimir Reshetnikov, May 11 2016 *)
    Table[If[EvenQ[n], 2*ChebyshevU[(n-2)/2, 2], ChebyshevU[(n-1)/2, 2] - ChebyshevU[(n-3)/2, 2]], {n, 0, 40}] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    main(size)=v=vector(size); v[1]=0;v[2]=1;v[3]=2;v[4]=3;for(i=5, size, v[i]=4*v[i-2] - v[i-4]); v; \\ Anders Hellström, Jul 11 2015
    
  • PARI
    a=vector(50); a[1]=1; a[2]=2; for(n=3, #a, if(n%2==1, a[n]=a[n-1]+a[n-2], a[n]=2*a[n-1]+a[n-2])); concat(0, a) \\ Colin Barker, Jan 30 2016
    
  • PARI
    a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,4,0]^n*[0;1;2;3])[1,1] \\ Charles R Greathouse IV, Mar 16 2017
    
  • PARI
    apply( {A048788(n)=imag((2+quadgen(12))^(n\/2)*if(bittest(n, 0), quadgen(12)-1, 2))}, [0..30]) \\ M. F. Hasler, Nov 04 2019
    
  • PARI
    {a(n) = my(s=1,m=n); if(n<0,s=-(-1)^n; m=-n); polcoeff(x*(1+2*x-x^2)/(1-4*x^2+x^4) + x*O(x^m), m)*s}; /* Michael Somos, Sep 17 2020 */
    
  • Sage
    @CachedFunction
    def a(n):
        if (mod(n,2)==0): return 2*chebyshev_U((n-2)/2, 2)
        else: return chebyshev_U((n-1)/2, 2) - chebyshev_U((n-3)/2, 2)
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: x*(1+2*x-x^2)/(1-4*x^2+x^4). - Paul Barry, Sep 18 2009
a(n) = 4*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013
a(2*n-1) = A001835(n); a(2*n) = 2*A001353(n). - Peter Bala, Jun 06 2014
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a1(n-1),a0(n)] for n>0:
a0(n) = ((3+sqrt(3))*(2-sqrt(3))^n-((-3+sqrt(3))*(2+sqrt(3))^n))/6.
a1(n) = 2*Sum_{i=1..n} a0(i). (End)
a(n) = ((r + (-1)^n/r)*s^n/2^(n/2) - (1/r + (-1)^n*r)*2^(n/2)/s^n)*sqrt(6)/12, where r = 1 + sqrt(2), s = 1 + sqrt(3). - Vladimir Reshetnikov, May 11 2016
a(n) = 2*ChebyshevU(n-1, 2) if n is even and ChebyshevU(n, 2) - ChebyshevU(n-1, 2) if n in odd. - G. C. Greubel, Dec 23 2019
a(n) = -(-1)^n*a(-n) for all n in Z. - Michael Somos, Sep 17 2020

Extensions

Denominator of g.f. corrected by Paul Barry, Sep 18 2009
Incorrect g.f. deleted by Colin Barker, Aug 10 2012

A082630 Limit of the sequence obtained from S(0) = (1,1) and, for n > 0, S(n) = I(S(n-1)), where I consists of inserting, for i = 1, 2, 3..., the term a(i) + a(i+1) between any two terms for which 7*a(i+1) <= 11*a(i).

Original entry on oeis.org

1, 2, 5, 8, 19, 30, 71, 112, 265, 418, 989, 1560, 3691, 5822, 13775, 21728, 51409, 81090, 191861, 302632, 716035, 1129438, 2672279, 4215120, 9973081, 15731042, 37220045, 58709048, 138907099, 219105150, 518408351, 817711552, 1934726305, 3051741058, 7220496869
Offset: 1

Views

Author

John W. Layman, May 23 2003

Keywords

Comments

The bisection {1,5,19,265,...} appears to be A001834 and to satisfy the recurrence a(n) = 4*a(n-1) - a(n-2) and the condition that 3*a(n)^2 + 6 is a square. The other bisection {2,8,30,112,...} appears to be A052530 and one-half of this bisection, {1,4,15,56,...}, appears to be A001353 and to satisfy a(n) = 4*a(n-1) - a(n-2) and the condition that 3*a(n)^2 + 1 is a square.
Conjecturally, a(n) = x + y, where these values solve x^2 - floor(y^2/3) = 1, see related sequences and formula below. - Richard R. Forberg, Sep 08 2013
Let alpha be an algebraic integer and define a sequence of integers a(alpha,n) by the condition a(alpha,n) = max { integer d : alpha^n = = 1 (mod d)}. Silverman shows that a(alpha,n) is a strong-divisibility sequence, that is gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). This sequence appears to be the strong divisibility sequence a(2 + sqrt(3),n) (Silverman, Example 4). - Peter Bala, Jan 10 2014
This sequence appears as the coefficients of the defining inequalities of a polyhedral realization of the B(infinity) crystal of the Kac-Moody Lie algebra with Cartan matrix [2,-2;-3,2] (see Nakashima-Zelevinsky reference). - Paul E. Gunnells, May 05 2019
From Zhuorui He, Jul 16 2025: (Start)
This sequence is Ratio-determined insertion sequence I(7/11) (see the Layman link below).
If S(0) in the definition is (1,1,a,b,c...) (all numbers >= 0) instead of (1,1), the resulting sequence is still the same.
For a finite sequence S, let k be the least i such that 7*S(i+1) <= 11*S(i). If k didn't exist then I(S)=S. Else, let k' be the least i such that 7*I(S)(i+1) <= 11*I(S)(i). Then k <= k' <= k+1.
This sequence can be generated by this process:
Step 1: Let X=1 and Y=1.
Step 2: If 7*(X+Y)<=11*X, then Y:=X+Y, repeat this step. Else go to step 3.
Step 3: Append X to the sequence. Let X:=X+Y, go back to step 2. (End)

Examples

			Let S(0) = (1,1). Since 7*1 <= 11*1 we obtain S(1) = (1,2,1). Then since 7*2 > 11*1 and 7*1 <= 11*2, we obtain S(2) = (1,2,3,1). Continuing, we get S(3) = (1,2,5,3,4,1), S(4) = (1,2,5,8,3,7,4,5,1), S(5) = (1,2,5,8,11,3,...), S(6) =(1,2,5,8,19,11,...), etc.
		

Crossrefs

Programs

  • Python
    def A082630_list(n):
      a = []
      x = y = 1
      while len(a) < n:
        a.append(x)
        while 7*(x+y) <= 11*x:
          y += x
        x += y
      return a # Zhuorui He, Jul 16 2025

Formula

The sequence appears to satisfy a(n) = 4*a(n-2) - a(n-4).
Apparently a(n)*a(n+3) = -2 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
Conjecturally, a(n) = A143643(n-1) + A005246(n), for n => 2, as derived from comment above. - Richard R. Forberg, Sep 08 2013
If the above conjectures are true, then a(n) = A001353(n)/A005246(n+1). - Andrey Zabolotskiy, Sep 26 2024

Extensions

Edited by M. F. Hasler, Nov 06 2018
Previous Showing 21-30 of 77 results. Next