cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A003500 a(n) = 4*a(n-1) - a(n-2) with a(0) = 2, a(1) = 4.

Original entry on oeis.org

2, 4, 14, 52, 194, 724, 2702, 10084, 37634, 140452, 524174, 1956244, 7300802, 27246964, 101687054, 379501252, 1416317954, 5285770564, 19726764302, 73621286644, 274758382274, 1025412242452, 3826890587534, 14282150107684, 53301709843202, 198924689265124
Offset: 0

Views

Author

Keywords

Comments

a(n) gives values of x satisfying x^2 - 3*y^2 = 4; corresponding y values are given by 2*A001353(n).
If M is any given term of the sequence, then the next one is 2*M + sqrt(3*M^2 - 12). - Lekraj Beedassy, Feb 18 2002
For n > 0, the three numbers a(n) - 1, a(n), and a(n) + 1 form a Fleenor-Heronian triangle, i.e., a Heronian triangle with consecutive sides, whose area A(n) may be obtained from the relation [4*A(n)]^2 = 3([a(2n)]^2 - 4); or A(n) = 3*A001353(2*n)/2 and whose semiperimeter is 3*a[n]/2. The sequence is symmetrical about a[0], i.e., a[-n] = a[n].
For n > 0, a(n) + 2 is the number of dimer tilings of a 2*n X 2 Klein bottle (cf. A103999).
Tsumura shows that, for prime p, a(p) is composite (contrary to a conjecture of Juricevic). - Charles R Greathouse IV, Apr 13 2010
Except for the first term, positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 12 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 192 = 0. - Colin Barker, Feb 16 2014
A268281(n) - 1 is a member of this sequence iff A268281(n) is prime. - Frank M Jackson, Feb 27 2016
a(n) gives values of x satisfying 3*x^2 - 4*y^2 = 12; corresponding y values are given by A005320. - Sture Sjöstedt, Dec 19 2017
Middle side lengths of almost-equilateral Heronian triangles. - Wesley Ivan Hurt, May 20 2020
For all elements k of the sequence, 3*(k-2)*(k+2) is a square. - Davide Rotondo, Oct 25 2020

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 82.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p.91.
  • Michael P. Cohen, Generating Heronian Triangles With Consecutive Integer Sides. Journal of Recreational Mathematics, vol. 30 no. 2 1999-2000 p. 123.
  • L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 197;198;200;201. Chelsea NY.
  • Charles R. Fleenor, Heronian Triangles with Consecutive Integer Sides, Journal of Recreational Mathematics, Volume 28, no. 2 (1996-7) 113-115.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
  • V. D. To, "Finding All Fleenor-Heronian Triangles", Journal of Recreational Mathematics vol. 32 no.4 2003-4 pp. 298-301 Baywood NY.

Crossrefs

Cf. A011945 (areas), A334277 (perimeters).
Cf. this sequence (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths).

Programs

  • Haskell
    a003500 n = a003500_list !! n
    a003500_list = 2 : 4 : zipWith (-)
       (map (* 4) $ tail a003500_list) a003500_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[2,4]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2018
  • Maple
    A003500 := proc(n) option remember; if n <= 1 then 2*n+2 else 4*procname(n-1)-procname(n-2); fi;
    end proc;
  • Mathematica
    a[0]=2; a[1]=4; a[n_]:= a[n]= 4a[n-1] -a[n-2]; Table[a[n], {n, 0, 23}]
    LinearRecurrence[{4,-1},{2,4},30] (* Harvey P. Dale, Aug 20 2011 *)
    Table[Round@LucasL[2n, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    x='x+O('x^99); Vec(-2*(-1+2*x)/(1-4*x+x^2)) \\ Altug Alkan, Apr 04 2016
    
  • Sage
    [lucas_number2(n,4,1) for n in range(0, 24)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = ( 2 + sqrt(3) )^n + ( 2 - sqrt(3) )^n.
a(n) = 2*A001075(n).
G.f.: 2*(1 - 2*x)/(1 - 4*x + x^2). Simon Plouffe in his 1992 dissertation.
a(n) = A001835(n) + A001835(n+1).
a(n) = trace of n-th power of the 2 X 2 matrix [1 2 / 1 3]. - Gary W. Adamson, Jun 30 2003 [corrected by Joerg Arndt, Jun 18 2020]
From the addition formula, a(n+m) = a(n)*a(m) - a(m-n), it is easy to derive multiplication formulas, such as: a(2*n) = (a(n))^2 - 2, a(3*n) = (a(n))^3 - 3*(a(n)), a(4*n) = (a(n))^4 - 4*(a(n))^2 + 2, a(5*n) = (a(n))^5 - 5*(a(n))^3 + 5*(a(n)), a(6*n) = (a(n))^6 - 6*(a(n))^4 + 9*(a(n))^2 - 2, etc. The absolute values of the coefficients in the expansions are given by the triangle A034807. - John Blythe Dobson, Nov 04 2007
a(n) = 2*A001353(n+1) - 4*A001353(n). - R. J. Mathar, Nov 16 2007
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..infinity} (1 + x^(4*n + 1))/(1 + x^(4*n + 3)). Let alpha = 2 - sqrt(3). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.24561 99455 06551 88869 ... = 2 + 1/(4 + 1/(14 + 1/(52 + ...))). Cf. A174500.
Also F(-alpha) = 0.74544 81786 39692 68884 ... has the continued fraction representation 1 - 1/(4 - 1/(14 - 1/(52 - ...))) and the simple continued fraction expansion 1/(1 + 1/((4 - 2) + 1/(1 + 1/((14 - 2) + 1/(1 + 1/((52 - 2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((4^2 - 4) + 1/(1 + 1/((14^2 - 4) + 1/(1 + 1/((52^2 - 4) + 1/(1 + ...))))))).
(End)
a(2^n) = A003010(n). - John Blythe Dobson, Mar 10 2014
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 12*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
E.g.f.: 2*exp(2*x)*cosh(sqrt(3)*x). - Ilya Gutkovskiy, Apr 27 2016
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n*(n - k - 1)!/(k!*(n - 2*k)!)*4^(n - 2*k) for n >= 1. - Peter Luschny, May 10 2016
From Peter Bala, Oct 15 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; -1, 4].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
2*Sum_{n >= 1} 1/( a(n) - 6/a(n) ) = 1.
6*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 2/a(n) ) = 1.
8*Sum_{n >= 1} 1/( a(n) + 24/(a(n) - 12/(a(n))) ) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/( a(n) + 8/(a(n) + 4/(a(n))) ) = 1.
Series acceleration formulas for sums of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/2 - 6*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 6)),
Sum_{n >= 1} 1/a(n) = 1/8 + 24*Sum_{n >= 1} 1/(a(n)*(a(n)^2 + 12)),
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/6 + 2*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 2)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 8*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 12)).
Sum_{n >= 1} 1/a(n) = ( theta_3(2-sqrt(3))^2 - 1 )/4 = 0.34770 07561 66992 06261 .... See Borwein and Borwein, Proposition 3.5 (i), p.91.
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - theta_3(sqrt(3)-2)^2 )/4. Cf. A003499 and A153415. (End)
a(n) = tan(Pi/12)^n + tan(5*Pi/12)^n. - Greg Dresden, Oct 01 2020
From Wolfdieter Lang, Sep 06 2021: (Start)
a(n) = S(n, 4) - S(n-2, 4) = 2*T(n, 2), for n >= 0, with S and T Chebyshev polynomials, with S(-1, x) = 0 and S(-2, x) = -1. S(n, 4) = A001353(n+1), for n >= -1, and T(n, 2) = A001075(n).
a(2*k) = A067902(k), a(2*k+1) = 4*A001570(k+1), for k >= 0. (End)
a(n) = sqrt(2 + 2*A011943(n+1)) = sqrt(2 + 2*A102344(n+1)), n>0. - Ralf Steiner, Sep 23 2021
Sum_{n>=1} arctan(3/a(n)^2) = Pi/6 - arctan(1/3) = A019673 - A105531 (Ohtskua, 2024). - Amiram Eldar, Aug 29 2024

Extensions

More terms from James Sellers, May 03 2000
Additional comments from Lekraj Beedassy, Feb 14 2002

A204514 Numbers such that floor(a(n)^2 / 8) is again a square.

Original entry on oeis.org

0, 1, 2, 3, 6, 17, 34, 99, 198, 577, 1154, 3363, 6726, 19601, 39202, 114243, 228486, 665857, 1331714, 3880899, 7761798, 22619537, 45239074, 131836323, 263672646, 768398401, 1536796802, 4478554083, 8957108166, 26102926097, 52205852194, 152139002499, 304278004998, 886731088897
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square, with its last base-8 digit dropped, is again a square. (Except maybe for the 3 initial terms whose square has only 1 digit in base 8.)
See A204504 for the squares resulting from truncation of a(n)^2, and A204512 for their square roots. - M. F. Hasler, Sep 28 2014

Crossrefs

Cf. A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • Maple
    A204514 := proc(n) coeftayl((x^2+2*x^3-3*x^4-6*x^5)/(1-6*x^2+x^4), x=0, n); end proc: seq(A204514(n), n=1..30); # Wesley Ivan Hurt, Sep 28 2014
  • Mathematica
    CoefficientList[Series[(x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(x (1 - 6*x^2 + x^4)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 28 2014 *)
    LinearRecurrence[{0,6,0,-1},{0,1,2,3,6},40] (* Harvey P. Dale, Nov 23 2022 *)
  • PARI
    b=8;for(n=0,1e7,issquare(n^2\b) & print1(n","))
    
  • PARI
    A204514(n)=polcoeff((x + 2*x^2 - 3*x^3 - 6*x^4)/(1 - 6*x^2 + x^4+O(x^(n+!n))),n-1,x)

Formula

G.f. = (x^2 + 2*x^3 - 3*x^4 - 6*x^5)/(1 - 6*x^2 + x^4).
a(n) = sqrt(A055872(n)). - M. F. Hasler, Sep 28 2014
a(2n) = A001541(n-1). a(2n+1) = A003499(n-1). - R. J. Mathar, Feb 05 2020

A084158 a(n) = A000129(n) * A000129(n+1)/2.

Original entry on oeis.org

0, 1, 5, 30, 174, 1015, 5915, 34476, 200940, 1171165, 6826049, 39785130, 231884730, 1351523251, 7877254775, 45912005400, 267594777624, 1559656660345, 9090345184445, 52982414446326, 308804141493510, 1799842434514735, 10490250465594899, 61141660359054660, 356359711688733060
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

May be called Pell triangles.

Crossrefs

Programs

  • Magma
    [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n)/16): n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Maple
    with(combinat): a:=n->fibonacci(n,2)*fibonacci(n-1,2)/2: seq(a(n), n=1..22); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{5,5,-1},{0,1,5},30] (* Harvey P. Dale, Sep 07 2011 *)
  • PARI
    Pell(n)=([2, 1; 1, 0]^n)[2, 1];
    a(n)=Pell(n)*Pell(n+1)/2 \\ Charles R Greathouse IV, Mar 21 2016
    
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,5,5]^n*[0;1;5])[1,1] \\ Charles R Greathouse IV, Mar 21 2016
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/16 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) - 2*(-1)^n)/16.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Mohamed Bouhamida, Sep 02 2006; corrected by Antonio Alberto Olivares, Mar 29 2008
a(n) = (-1/8)*(-1)^n + (( sqrt(2)+1)/16)*(3+2*sqrt(2))^n + ((-sqrt(2)+1)/16)*(3-2*sqrt(2))^n. - Antonio Alberto Olivares, Mar 30 2008
sqrt(a(n) - a(n-1)) = A000129(n). - Antonio Alberto Olivares, Mar 30 2008
O.g.f.: x/((1+x)(1-6*x+x^2)). - R. J. Mathar, May 18 2008
a(n) = A041011(n)*A041011(n+1). - R. K. Guy, May 18 2008
From Mohamed Bouhamida, Aug 30 2008: (Start)
a(n) = 6*a(n-1) - a(n-2) - (-1)^n.
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3) - 2*(-1)^n. (End)
In general, for n>k+1, a(n+k) = A003499(k+1)*a(n-1) - a(n-k-2) - (-1)^n A000129(k+1)^2. - Charlie Marion, Jan 04 2012
For n>0, a(2n-1)*a(2n+1) = oblong(a(2n)); a(2n)*a(2n+2) = oblong(a(2n+1)-1). - Charlie Marion, Jan 09 2012
a(n) = A046729(n)/4. - Wolfdieter Lang, Mar 07 2012
a(n) = sum of squares of first n Pell numbers A000129 (A079291). - N. J. A. Sloane, Jun 18 2012
a(n) = (A002315(n) - (-1)^n)/8. - Adam Mohamed, Sep 05 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(2)-1) (A163960). - Amiram Eldar, Dec 02 2024
G.f.: x * exp( Sum_{k>=1} Pell(3*k)/Pell(k) * x^k/k ). - Seiichi Manyama, May 07 2025

A077444 Numbers k such that (k^2 + 4)/2 is a square.

Original entry on oeis.org

2, 14, 82, 478, 2786, 16238, 94642, 551614, 3215042, 18738638, 109216786, 636562078, 3710155682, 21624372014, 126036076402, 734592086398, 4281516441986, 24954506565518, 145445522951122, 847718631141214, 4940866263896162, 28797478952235758, 167844007449518386
Offset: 1

Views

Author

Gregory V. Richardson, Nov 09 2002

Keywords

Comments

The equation "(k^2 + 4)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = -4.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(2)). - Thomas Baruchel, Sep 15 2003
Equivalently, 2*n^2 + 8 is a square.
Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 2 + n^2/2. - Ctibor O. Zizka, Nov 09 2009
The continued fraction [a(n);a(n),a(n),...] = (1 + sqrt(2))^(2*n-1). - Thomas Ordowski, Jun 07 2013
a((p+1)/2) == 2 (mod p) where p is an odd prime. - Altug Alkan, Mar 17 2016

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

(A077445(n))^2 - 2*a(n) = 8.
First differences of A001541.
Pairwise sums of A001542.
Bisection of A002203 and A080039.
Cf. A001653.

Programs

  • Magma
    [n: n in [0..10^8] | IsSquare((n^2 + 4) div 2)]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    LinearRecurrence[{6,-1},{2,14},30] (* Harvey P. Dale, Jul 25 2018 *)
  • PARI
    for(n=1,20,q=(1+sqrt(2))^(2*n-1);print1(contfrac(q)[1],", ")) \\ Derek Orr, Jun 18 2015
    
  • PARI
    Vec(2*x*(1+x)/(1-6*x+x^2) + O(x^100)) \\ Altug Alkan, Mar 17 2016
    

Formula

a(n) = (((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) + ((3 + 2*sqrt(2))^(n-1) - (3 - 2*sqrt(2))^(n-1))) / (2*sqrt(2)).
a(n) = 2*A002315(n-1).
Recurrence: a(n) = 6*a(n-1) - a(n-2), starting 2, 14.
Offset 0, with a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = a^((2n+1)/2) - b^((2n+1)/2). a(n) = 2*(A001109(n+1) + A001109(n)) = (A003499(n+1) - A003499(n))/2 = 2*sqrt(A001108(2n+1)) = sqrt(A003499(2n+1)-2). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Limit_{n->oo} a(n)/a(n-1) = 5.82842712474619009760... = 3 + 2*sqrt(2). See A156035.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: 2*x*(1+x)/(1-6*x+x^2).
a(n) = 2*(7*A001109(n) - A001109(n+1)). (End)
a(n) = (1+sqrt(2))^(2*n-1) - (1+sqrt(2))^(1-2*n). - Gerson Washiski Barbosa, Sep 19 2010
a(n) = floor((1 + sqrt(2))^(2*n-1)). - Thomas Ordowski, Jun 07 2013
a(n) = sqrt(2*A075870(n)^2-4). - Derek Orr, Jun 18 2015
a(n) = 2*sqrt((2*A001653(n)^2)-1). - César Aguilera, Jul 13 2023
E.g.f.: 2*(1 + exp(3*x)*(sqrt(2)*sinh(2*sqrt(2)*x) - cosh(2*sqrt(2)*x))). - Stefano Spezia, Aug 27 2024

A077420 Bisection of Chebyshev sequence T(n,3) (odd part) with Diophantine property.

Original entry on oeis.org

1, 33, 1121, 38081, 1293633, 43945441, 1492851361, 50713000833, 1722749176961, 58522759015841, 1988051057361633, 67535213191279681, 2294209197446147521, 77935577499977736033, 2647515425801796877601
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

(3*a(n))^2 - 2*(2*b(n))^2 = 1 with companion sequence b(n)= A046176(n+1), n>=0 (special solutions of Pell equation).

Crossrefs

Cf. A056771 (even part).
Row 34 of array A094954.
Row 3 of array A188646.
Cf. similar sequences listed in A238379.
Similar sequences of the type cosh((2*n+1)*arccosh(k))/k are listed in A302329. This is the case k=3.

Programs

  • Magma
    I:=[1,33]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Mathematica
    LinearRecurrence[{34,-1},{1,33},20] (* Vincenzo Librandi, Nov 22 2011 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A041027 *)
    a[18, 20] (* Gerry Martens, Jun 07 2015 *)
  • Maxima
    makelist(expand(((1+sqrt(2))^(4*n+2)+(1-sqrt(2))^(4*n+2))/6),n,0,14);  /* _Bruno Berselli, Nov 22 2011 */
  • PARI
    Vec((1-x)/(1-34*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

a(n) = 34*a(n-1) - a(n-2), a(-1)=1, a(0)=1.
a(n) = T(2*n+1, 3)/3 = S(n, 34) - S(n-1, 34), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 34)= A029547(n), T(n, 3)=A001541(n).
G.f.: (1-x)/(1-34*x+x^2).
a(n) = sqrt(8*A046176(n+1)^2 + 1)/3.
a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(2*n)-a(n-1), where k = (sqrt(2)+1)^4 = 17+12*sqrt(2) and a(0)=1. - Charles L. Hohn, Apr 05 2011
a(n) = a(-n-1) = A029547(n)-A029547(n-1) = ((1+sqrt(2))^(4n+2)+(1-sqrt(2))^(4n+2))/6. - Bruno Berselli, Nov 22 2011

A087215 Lucas(6*n): a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.

Original entry on oeis.org

2, 18, 322, 5778, 103682, 1860498, 33385282, 599074578, 10749957122, 192900153618, 3461452808002, 62113250390418, 1114577054219522, 20000273725560978, 358890350005878082, 6440026026380244498, 115561578124838522882, 2073668380220713167378
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

Keywords

Comments

a(n+1)/a(n) converges to 9 + sqrt(80) = 17.9442719... a(0)/a(1) = 2/18; a(1)/a(2) = 18/322; a(2)/a(3) = 322/5778; a(3)/a(4) = 5778/103682; etc.
Lim_{n -> oo} a(n)/a(n+1) = 0.05572809000084... = 1/(9 + sqrt(80)) = 9 - sqrt(80).
From Peter Bala, Oct 13 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = (1/2)*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^6) = 1.0555459720... = 1 + 1/(18 + 1/(322 + 1/(5778 + ...))).
Also F(-Phi^6) = 0.9444348576... has the continued fraction representation 1 - 1/(18 - 1/(322 - 1/(5788 - ...))) and the simple continued fraction expansion 1/(1 + 1/((18 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/((5788 - 2) + 1/(1 + ...))))))).
F(Phi^6)*F(-Phi^6) = 0.9968944099... has the simple continued fraction expansion 1/(1 + 1/((18^2 - 4) + 1/(1 + 1/((322^2 - 4) + 1/(1 + 1/((5788^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^6)/F(-Phi^6) = 1.0588241282... has the simple continued fraction expansion 1 + 1/((18 - 2) + 1/(1 + 1/((5778 - 2) + 1/(1 + 1/(1860498 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 103682 = 18*a(3) - a(2) = 18*5778 - 322 = (9 + sqrt(80))^4 + (9 - sqrt(80))^4 = 103681.99999035512... + 0.00000964487... = 103682.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A074919.
Row 2 * 2 of array A188645.
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [ Lucas(6*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    a[0] = 2; a[1] = 18; a[n_] := 18a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[LucasL[6n], {n, 0, 18}]  (* or *) CoefficientList[Series[2*(1 - 9*x)/(1 - 18*x + x^2), {x, 0, 17}], x] (* Indranil Ghosh, Mar 15 2017 *)
  • PARI
    Vec(2*(1-9*x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
    
  • PARI
    a(n) = if(n<2, 17^n + 1, 18*a(n - 1) - a(n - 2));
    for(n=0, 17, print1(a(n),", ")) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = A000032(6*n).
a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.
a(n) = (9 + sqrt(80))^n + (9 - sqrt(80))^n.
G.f.: 2*(1-9*x)/(1-18*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = 2*A023039(n). - R. J. Mathar, Oct 22 2010
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(6*n+6)/F(6) - F(6*n-6)/F(6) = A049660(n+1) - A049660(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^6 = [5, 8; 8, 13].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
16*Sum_{n >= 1} 1/(a(n) - 20/a(n)) = 1: (20 = Lucas(6) + 2 and 16 = Lucas(6) - 2)
20*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 16/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/16 - 20*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 20)).
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/20 + 16*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 16)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(9-4*sqrt(5)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(4*sqrt(5)-9))^2 )/4,
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 18*x^2 + 323*x^3 + ... is the o.g.f. for A049660. (End)
E.g.f.: 2*exp(9*x)*cosh(4*sqrt(5)*x). - Stefano Spezia, Oct 18 2019
a(n) = L(2n-1)^2 * F(2n+1) + L(2n+1)^2 * F(2n-1), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^3 - 3*Lucas(2*n) = 2*T(3, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind; more generally, for k >= 0, Lucas(2*k*n) = 2*T(k, Lucas(2*n)/2).
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3(9 - sqrt(80))^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3(sqrt(80) - 9)^2), where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

A056771 a(n) = a(-n) = 34*a(n-1) - a(n-2), and a(0)=1, a(1)=17.

Original entry on oeis.org

1, 17, 577, 19601, 665857, 22619537, 768398401, 26102926097, 886731088897, 30122754096401, 1023286908188737, 34761632124320657, 1180872205318713601, 40114893348711941777, 1362725501650887306817, 46292552162781456490001
Offset: 0

Views

Author

Henry Bottomley, Aug 16 2000

Keywords

Comments

The sequence satisfies the Pell equation a(n)^2 - 18 * A202299(n+1)^2 = 1. - Vincenzo Librandi, Dec 19 2011
Also numbers n such that n - 1 and 2*n + 2 are squares. - Arkadiusz Wesolowski, Mar 15 2015
And they, n - 1 and 2*n + 2, are the squares of A005319 and A003499. - Michel Marcus, Mar 15 2015
This sequence {a(n)} gives all the nonnegative integer solutions of the Pell equation a(n)^2 - 32*(3*A091761(n))^2 = +1. - Wolfdieter Lang, Mar 09 2019

Examples

			G.f. = 1 + 17*x + 577*x^2 + 19601*x^3 + 665857*x^4 + 22619537*x^5 + ...
		

Crossrefs

Cf. A001075, A001541, A001091, A001079, A023038, A011943, A001081, A023039, A001085 and note relationship with square triangular number sequences A001110 and A001109. A091761.
Row 3 of array A188644.

Programs

  • Magma
    I:=[1, 17]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 18 2011
    
  • Mathematica
    LinearRecurrence[{34,-1},{1,17},30] (* Vincenzo Librandi, Dec 18 2011 *)
    a[ n_] := ChebyshevT[ 2 n, 3]; (* Michael Somos, May 28 2014 *)
  • Maxima
    makelist(expand(((17+sqrt(288))^n+(17-sqrt(288))^n))/2, n, 0, 15); /* Vincenzo Librandi, Dec 18 2011 */
    
  • PARI
    {a(n) = polchebyshev( n, 1, 17)}; /* Michael Somos, Apr 05 2019 */
  • Sage
    [lucas_number2(n,34,1)/2 for n in range(0,15)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = (r^n + 1/r^n)/2 with r = 17 + sqrt(17^2-1).
a(n) = 16*A001110(n) + 1 = A001541(2n) = (4*A001109(n))^2 + 1 = 3*A001109(2n-1) - A001109(2n-2) = A001109(2n) - 3*A001109(2n-1).
a(n) = T(n, 17) = T(2*n, 3) with T(n, x) Chebyshev's polynomials of the first kind. See A053120. T(n, 3)= A001541(n).
G.f.: (1-17*x)/(1-34*x+x^2).
G.f.: (1 - 17*x / (1 - 288*x / (17 - x))). - Michael Somos, Apr 05 2019
a(n) = cosh(2n*arcsinh(sqrt(8))). - Herbert Kociemba, Apr 24 2008
a(n) = (a^n + b^n)/2 where a = 17 + 12*sqrt(2) and b = 17 - 12*sqrt(2); sqrt(a(n)-1)/4 = A001109(n). - James R. Buddenhagen, Dec 09 2011
a(-n) = a(n). - Michael Somos, May 28 2014
a(n) = sqrt(1 + 32*9*A091761(n)^2), n >= 0. See one of the Pell comments above. - Wolfdieter Lang, Mar 09 2019

Extensions

More terms from James Sellers, Sep 07 2000
Chebyshev comments from Wolfdieter Lang, Nov 29 2002

A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1.

Original entry on oeis.org

1, 3, 1, 17, 9, 1, 99, 161, 19, 1, 577, 2889, 721, 33, 1, 3363, 51841, 27379, 2177, 51, 1, 19601, 930249, 1039681, 143649, 5201, 73, 1, 114243, 16692641, 39480499, 9478657, 530451, 10657, 99, 1, 665857, 299537289, 1499219281, 625447713, 54100801, 1555849, 19601, 129, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; and constant k=f(x, y); then for all integers x>=1 and y=[+-]1, k may be irrational, but ((k^n)+(k^(-n)))/2 always produces integer sequences; y=1 results shown here; y=-1 results are A188644.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{k}(x), evaluated at x=2*n^2+1. - Seiichi Manyama, Jan 01 2019

Examples

			Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   3,     17,        99,          577, ...
   2 | 1,   9,    161,      2889,        51841, ...
   3 | 1,  19,    721,     27379,      1039681, ...
   4 | 1,  33,   2177,    143649,      9478657, ...
   5 | 1,  51,   5201,    530451,     54100801, ...
   6 | 1,  73,  10657,   1555849,    227143297, ...
   7 | 1,  99,  19601,   3880899,    768398401, ...
   8 | 1, 129,  33281,   8586369,   2215249921, ...
   9 | 1, 163,  53137,  17322499,   5647081537, ...
  10 | 1, 201,  80801,  32481801,  13057603201, ...
  11 | 1, 243, 118097,  57394899,  27893802817, ...
  12 | 1, 289, 167041,  96549409,  55805391361, ...
  13 | 1, 339, 229841, 155831859, 105653770561, ...
  14 | 1, 393, 308897, 242792649, 190834713217, ...
  15 | 1, 451, 406801, 366934051, 330974107201, ...
  ...
		

Crossrefs

Row 1 is A001541, row 2 is A023039, row 3 is A078986, row 4 is A099370, row 5 is A099397, row 6 is A174747, row 8 is A176368, (row 1)*2 is A003499, (row 2)*2 is A087215.
Column 1 is A058331, (column 1)*2 is A005899.
A188644 (f(x, y) as above with y=-1).
Diagonal gives A173128.
Cf. A188647.

Programs

  • Mathematica
    max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)

Formula

A(n,k) = (A188647(n,k-1) + A188647(n,k))/2.
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited and extended by Seiichi Manyama, Jan 01 2019

A087265 Lucas numbers L(8*n).

Original entry on oeis.org

2, 47, 2207, 103682, 4870847, 228826127, 10749957122, 505019158607, 23725150497407, 1114577054219522, 52361396397820127, 2459871053643326447, 115561578124838522882, 5428934300813767249007, 255044350560122222180447
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

Keywords

Comments

a(n+1)/a(n) converges to (47+sqrt(2205))/2 = 46.9787137... a(0)/a(1)=2/47; a(1)/a(2)=47/2207; a(2)/a(3)=2207/103682; a(3)/a(4)=103682/4870847; etc. Lim_{n->infinity} a(n)/a(n+1) = 0.02128623625... = 2/(47+sqrt(2205)) = (47-sqrt(2205))/2.
a(n) = a(-n). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^8) = 1.0212763906... = 1 + 1/(47 + 1/(2207 + 1/(103682 + ...))).
Also F(-Phi^8) = 0.9787231991... has the continued fraction representation 1 - 1/(47 - 1/(2207 - 1/(103682 - ...))) and the simple continued fraction expansion 1/(1 + 1/((47 - 2) + 1/(1 + 1/((2207 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + ...))))))).
F(Phi^8)*F(-Phi^8) = 0.9995468962... has the simple continued fraction expansion 1/(1 + 1/((47^2 - 4) + 1/(1 + 1/((2207^2 - 4) + 1/(1 + 1/((103682^2 - 4) + 1/(1 + ...))))))).
1/2 + 1/2*F(Phi^8)/F(-Phi^8) = 1.0217391349... has the simple continued fraction expansion 1 + 1/((47 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + 1/(228826127 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 4870847 = 47*a(3) - a(2) = 47*103682 - 2207=((47+sqrt(2205))/2)^4 + ( (47-sqrt(2205))/2)^4 =4870846.999999794696 + 0.000000205303 = 4870847.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032. Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).
a(n) = A000032(8n).

Programs

  • Magma
    [ Lucas(8*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Maple
    a:= n-> (Matrix([[2,47]]). Matrix([[47,1],[ -1,0]])^(n))[1,1]:
    seq(a(n), n=0..14);  # Alois P. Heinz, Aug 07 2008
  • Mathematica
    LucasL[8*Range[0,20]] (* or *) LinearRecurrence[{47,-1},{2,47},20] (* Harvey P. Dale, Oct 23 2017 *)

Formula

a(n) = 47*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 47.
a(n) = ((47+sqrt(2205))/2)^n + ((47-sqrt(2205))/2)^n
(a(n))^2 = a(2n)+2.
G.f.: (2-47*x)/(1-47*x+x^2). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(8*n+8)/F(8) - F(8*n-8)/F(8) = A049668(n+1) - A049668(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^8 = [13, 21; 21, 34].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
45*Sum_{n >= 1} 1/(a(n) - 49/a(n)) = 1: (49 = Lucas(8) + 2 and 45 = Lucas(8) - 2)
49*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 45/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 47*x^2 + 2208*x^3 + ... is the o.g.f. for A049668. (End)
E.g.f.: 2*exp(47*x/2)*cosh(21*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^4 - 4*Lucas(2*n)^2 + 2 = 2*T(4, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind; more generally, for k >= 0, Lucas(2*k*n) = 2*T(k, Lucas(2*n)/2).
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (47 - sqrt(2205))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(2205) - 47)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

Extensions

Terms a(22)-a(27) from John W. Layman, Jun 14 2004

A065705 a(n) = Lucas(10*n).

Original entry on oeis.org

2, 123, 15127, 1860498, 228826127, 28143753123, 3461452808002, 425730551631123, 52361396397820127, 6440026026380244498, 792070839848372253127, 97418273275323406890123, 11981655542024930675232002, 1473646213395791149646646123, 181246502592140286475862241127
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 25 2003

Keywords

Comments

Lim_{n->infinity} a(n+1)/a(n) = (123 + sqrt(15125))/2 = 122.9918693812...
Lim_{n->infinity} a(n)/a(n+1) = (123 - sqrt(15125))/2 = 0.00813061875578...
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^10) = 1.0081300769... = 1 + 1/(123 + 1/(15127 + 1/(1860498 + ...))).
Also F(-Phi^10) = 0.9918699143... has the continued fraction representation 1 - 1/(123 - 1/(15127 - 1/(1860498 - ...))) and the simple continued fraction expansion 1/(1 + 1/((123 - 2) + 1/(1 + 1/((15127 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + ...))))))).
F(Phi^10)*F(-Phi^10) = 0.9999338930... has the simple continued fraction expansion 1/(1 + 1/((123^2 - 4) + 1/(1 + 1/((15127^2 - 4) + 1/(1 + 1/((1860498^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^10)/F(-Phi^10) = 1.0081967213... has the simple continued fraction expansion 1 + 1/((123 - 2) + 1/(1 + 1/((1860498 - 2) + 1/(1 + 1/(28143753123 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 228826127 = 123*a(3) - a(2) = 123*1860498 - 15127=((123+sqrt(15125))/2)^4 + ( (123-sqrt(15125))/2)^4 =228826126.99999999562986 + 0.00000000437013 = 228826127.
a(4) = L(10 * 4) = L(40) = 228826127. - _Indranil Ghosh_, Feb 08 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032: a(n) = A000032(10*n).
Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A089772 (k = 11), A089775 (k = 12).

Programs

Formula

a(n) = 123*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 123.
a(n) = ((123 + sqrt(15125))/2)^n + ((123 - sqrt(15125))/2)^n.
a(n)^2 = a(2*n) + 2.
G.f.: (2 - 123*x)/(1 - 123*x + x^2). - Philippe Deléham, Nov 18 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(10*n+10)/F(10) - F(10*n-10)/F(10) = A049670(n+1) - A049670(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^10 = [34, 55; 55, 89].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
121*Sum_{n >= 1} 1/(a(n) - 125/a(n)) = 1: (125 = Lucas(10) + 2 and 121 = Lucas(10) - 2)
125*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 121/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 123*x^2 + 15128*x^3 + ... is the o.g.f. for A049670. (End)
E.g.f.: exp((1/2)*(123 - 55*sqrt(5))*x)*(1 + exp(55*sqrt(5)*x)). - Stefano Spezia, Oct 18 2019
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^5 - 5*Lucas(2*n)^3 + 5*Lucas(2*n) = 2*T(5, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (123 - sqrt(15125))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(15125) - 123)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)
Previous Showing 11-20 of 39 results. Next