1, 2, 0, 3, 2, 0, 4, 6, 6, 0, 5, 12, 24, 12, 0, 6, 20, 60, 72, 30, 0, 7, 30, 120, 240, 240, 54, 0, 8, 42, 210, 600, 1020, 696, 126, 0, 9, 56, 336, 1260, 3120, 4020, 2184, 240, 0, 10, 72, 504, 2352, 7770, 15480, 16380, 6480, 504, 0, 11, 90, 720, 4032, 16800, 46410, 78120, 65280, 19656, 990, 0
Offset: 1
T(2,3)=6, because there are 6 primitive words of length 2 over 3-letter alphabet {a,b,c}: ab, ac, ba, bc, ca, cb; note that the non-primitive words aa, bb and cc don't belong to the list; secondly note that the words in the list need not be Lyndon words, for example ba can be derived from ab by a cyclic rotation of the positions.
Table begins:
1, 2, 3, 4, 5, ...
0, 2, 6, 12, 20, ...
0, 6, 24, 60, 120, ...
0, 12, 72, 240, 600, ...
0, 30, 240, 1020, 3120, ...
A011886
a(n) = floor(n*(n-1)*(n-2)/4).
Original entry on oeis.org
0, 0, 0, 1, 6, 15, 30, 52, 84, 126, 180, 247, 330, 429, 546, 682, 840, 1020, 1224, 1453, 1710, 1995, 2310, 2656, 3036, 3450, 3900, 4387, 4914, 5481, 6090, 6742, 7440, 8184, 8976, 9817, 10710, 11655, 12654, 13708, 14820, 15990, 17220, 18511, 19866, 21285
Offset: 0
Sequences of the form floor(n*(n-1)*(n-2)/m):
A007531 (m=1),
A135503 (m=2),
A007290 (m=3), this sequence (m=4),
A011887 (m=5),
A000292 (m=6),
A011889 (m=7),
A011890 (m=8),
A011891 (m=9),
A011892 (m=10),
A011893 (m=11),
A011894 (m=12),
A011895 (m=13),
A011896 (m=14),
A011897 (m=15),
A011898 (m=16),
A011899 (m=17),
A011849 (m=18),
A011901 (m=19),
A011902 (m=20),
A011903 (m=21),
A011904 (m=22),
A011905 (m=23),
A011842 (m=24),
A011907 (m=25),
A011908 (m=26),
A011909 (m=27),
A011910 (m=28),
A011911 (m=29),
A011912 (m=30),
A011912 (m=31),
A011913 (m=32).
-
[Floor(n*(n-1)*(n-2)/4): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
-
Table[Floor[(n(n-1)(n-2))/4],{n,0,50}] (* or *) LinearRecurrence[{3,-3,1,1, -3,3,-1},{0,0,0,1,6,15,30}, 50] (* Harvey P. Dale, Feb 25 2012 *)
CoefficientList[Series[x^3*(1+3*x+2*x^3)/((1-x)^3*(1-x^4)),{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
-
[3*binomial(n,3)//2 for n in range(51)] # G. C. Greubel, Oct 06 2024
Original entry on oeis.org
1, 3, 6, 11, 18, 27, 39, 54, 72, 94, 120, 150, 185, 225, 270, 321, 378, 441, 511, 588, 672, 764, 864, 972, 1089, 1215, 1350, 1495, 1650, 1815, 1991, 2178, 2376, 2586, 2808, 3042, 3289, 3549, 3822, 4109, 4410, 4725, 5055, 5400, 5760, 6136, 6528, 6936, 7361, 7803
Offset: 0
Polynomials: p(0)=x+1, p(1)=x^3+x^2+1, p(2)=x^6+x^5+x^3+x^2+2x+1, ...
a(12)=185: A000217(13)=91 + a(9)=94 == 91+55+28+10+1 = 185. - _Bob Selcoe_, Sep 27 2015
a(3)=11: the 11 partitions of 3 are {1a,1a,1a}, {1a,1a,1b}, {1a,1a,1c}, {1a,1b,1b}, {1a,1b,1c}, {1a,1c,1c}, {1b,1b,1b}, {1b,1b,1c}, {1b,1c,1c}, {1c,1c,1c}, {3}. - _Bob Selcoe_, Oct 04 2015
- W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- L. Smiley, Hidden Hexagons (preprint).
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Joshua Alman, Cesar Cuenca, and Jiaoyang Huang, Laurent phenomenon sequences, Journal of Algebraic Combinatorics 43(3) (2015), 589-633.
- Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Z. Che and K. L. Collins, An upper bound on Wiener indices of maximal planar graphs, Discrete Appl. Math. 258 (2019), 76-86.
- Éva Czabarka, Peter Dankelmann, Trevor Olsen, and László A. Székely, Wiener Index and Remoteness in Triangulations and Quadrangulations, arXiv:1905.06753 [math.CO], 2019.
- S. Fomin and A. Zelevinsky, The Laurent Phenomenon, Advances in Applied Mathematics, 28 (2002), 119-144.
- D. Ghosh, E. Győri, A. Paulos, N. Salia, and O. Zamora, The maximum Wiener index of maximal planar graphs, Journal of Combinatorial Optimization 40, (2020), 1121-1135.
- H. R. Henze and C. M. Blair, The number of structurally isomeric hydrocarbons of the ethylene series, J. Amer. Chem. Soc., 55 (1933), 680-685.
- H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-685. (Annotated scanned copy)
- A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painlevé transcendent, arXiv:0807.2538 [nlin.SI], 2008; Proceedings of SIDE 6, Helsinki, Finland, 2004. [Set a(n)=d(n+3) on p. 8]
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 10a, lambda=3]
- Index entries for two-way infinite sequences
- Index entries for covering numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).
-
[n^3/18+n^2/2+4*n/3+1+(((n+1) mod 3)-1)/9 : n in [0..50]]; // Wesley Ivan Hurt, Apr 14 2015
-
I:=[1,3,6,11,18,27]; [n le 6 select I[n] else 3*Self(n-1) -3*Self(n-2) +2*Self(n-3)-3*Self(n-4)+3*Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Apr 15 2015
-
L := proc(v,k,t,l) local i,t1; t1 := l; for i from v-t+1 to v do t1 := ceil(t1*i/(i-(v-k))); od: t1; end; # gives Schoenheim bound L_l(v,k,t). Current sequence is L_1(n,n-3,n-4,1).
-
CoefficientList[Series[1/((1 - x)^3*(1 - x^3)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Apr 14 2015 *)
-
a(n)=if(n<-5,-a(-6-n),polcoeff(1/(1-x)^3/(1-x^3)+x^n*O(x),n)) /* Michael Somos, Jul 21 2004 */
-
my(x='x+O('x^50)); Vec(1/((1-x)^3*(1-x^3))) \\ Altug Alkan, Oct 16 2015
-
a(n)=(n^3 + 9*n^2 + 24*n + 19)\/18 \\ Charles R Greathouse IV, Jun 29 2020
-
[(binomial(n+4,3) - ((n+4)//3))/3 for n in (0..50)] # G. C. Greubel, Apr 28 2019
A143325
Table T(n,k) by antidiagonals. T(n,k) is the number of length n primitive (=aperiodic or period n) k-ary words (n,k >= 1) which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 6, 0, 1, 4, 15, 24, 15, 0, 1, 5, 24, 60, 80, 27, 0, 1, 6, 35, 120, 255, 232, 63, 0, 1, 7, 48, 210, 624, 1005, 728, 120, 0, 1, 8, 63, 336, 1295, 3096, 4095, 2160, 252, 0, 1, 9, 80, 504, 2400, 7735, 15624, 16320, 6552, 495, 0, 1, 10, 99
Offset: 1
T(4,2)=6, because 6 words of length 4 over 2-letter alphabet {a,b} are primitive and earlier than others derived by cyclic shifts of the alphabet: aaab, aaba, aabb, abaa, abba, abbb; note that aaaa and abab are not primitive and words beginning with b can be derived by shifts of the alphabet from words in the list; secondly note that the words in the list need not be Lyndon words, for example aaba can be derived from aaab by a cyclic rotation of the positions.
Table begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 3, 8, 15, 24, 35, 48, 63, ...
0, 6, 24, 60, 120, 210, 336, 504, ...
0, 15, 80, 255, 624, 1295, 2400, 4095, ...
0, 27, 232, 1005, 3096, 7735, 16752, 32697, ...
0, 63, 728, 4095, 15624, 46655, 117648, 262143, ...
0, 120, 2160, 16320, 78000, 279720, 823200, 2096640, ...
-
with(numtheory):
f1:= proc(n) option remember;
unapply(k^(n-1)-add(f1(d)(k), d=divisors(n)minus{n}), k)
end;
T:= (n,k)-> f1(n)(k);
seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
t[n_, k_] := Sum[k^(d-1)*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 21 2014, from first formula *)
Previous
Showing 11-20 of 103 results.
Next
Comments