A049280 Essentially same as A008315.
0, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins in row n=0 with 0 <= k <= n: 1; 1, 1; 1, 2, 2; 1, 3, 5, 5; 1, 4, 9, 14, 14; 1, 5, 14, 28, 42, 42; 1, 6, 20, 48, 90, 132, 132; 1, 7, 27, 75, 165, 297, 429, 429; 1, 8, 35, 110, 275, 572, 1001, 1430, 1430; 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862;
Flat(List([0..10],n->List([0..n],m->Binomial(n+m,n)*(n-m+1)/(n+1)))); # Muniru A Asiru, Feb 18 2018
a009766 n k = a009766_tabl !! n !! k a009766_row n = a009766_tabl !! n a009766_tabl = iterate (\row -> scanl1 (+) (row ++ [0])) [1] -- Reinhard Zumkeller, Jul 12 2012
[[Binomial(n+k,n)*(n-k+1)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
A009766 := proc(n,k) binomial(n+k,n)*(n-k+1)/(n+1); end proc: seq(seq(A009766(n,k), k=0..n), n=0..10); # R. J. Mathar, Dec 03 2010
Flatten[NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *) T[n_, k_] := T[n, k] = Which[k == 0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1] ]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2016 *)
{T(n, k) = if( k<0 || k>n, 0, binomial(n+1+k, k) * (n+1-k) / (n+1+k) )}; /* Michael Somos, Oct 17 2006 */
b009766=(n1=0,n2=100)->{my(q=if(!n1,0,binomial(n1+1,2)));for(w=n1,n2,for(k=0,w,write("b009766.txt",1*q" "1*(binomial(w+k,w)-binomial(w+k,w+1)));q++))} \\ R. J. Cano, Jul 22 2014
from math import comb, isqrt def A009766(n): return comb((a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))+(b:=n-comb(a+1,2)),b)*(a-b+1)//(a+1) # Chai Wah Wu, Nov 12 2024
@CachedFunction def ballot(p,q): if p == 0 and q == 0: return 1 if p < 0 or p > q: return 0 S = ballot(p-2, q) + ballot(p, q-2) if q % 2 == 1: S += ballot(p-1, q-1) return S A009766 = lambda n, k: ballot(2*k, 2*n) for n in (0..7): [A009766(n, k) for k in (0..n)] # Peter Luschny, Mar 05 2014
[[binomial(n+k,n)*(n-k+1)/(n+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 07 2019
Triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 0 1 2: 1 0 1 3: 0 2 0 1 4: 2 0 3 0 1 5: 0 5 0 4 0 1 6: 5 0 9 0 5 0 1 7: 0 14 0 14 0 6 0 1 8: 14 0 28 0 20 0 7 0 1 9: 0 42 0 48 0 27 0 8 0 1 10: 42 0 90 0 75 0 35 0 9 0 1 ... (Reformatted by _Wolfdieter Lang_, Sep 20 2013) E.g., the fourth row corresponds to the polynomial p(3,x)= 2*x + x^3. From _Paul Barry_, May 29 2009: (Start) Production matrix is 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End) Boas-Buck recurrence for column k = 2, n = 6: a(6, 2) = (3/4)*(0 + 2*a(4 ,2) + 0 + 6*a(2, 2)) = (3/4)*(2*3 + 6) = 9. - _Wolfdieter Lang_, Aug 11 2017
a053121 n k = a053121_tabl !! n !! k a053121_row n = a053121_tabl !! n a053121_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (tail row ++ [0,0])) [1] -- Reinhard Zumkeller, Feb 24 2012
T:=proc(n,k): if n+k mod 2 = 0 then (k+1)*binomial(n+1,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Oct 12 2006 F:=proc(l,p) if ((l-p) mod 2) = 1 then 0 else (p+1)*l!/( ( (l-p)/2 )! * ( (l+p)/2 +1)! ); fi; end; r:=n->[seq( F(n,p),p=0..n)]; [seq(r(n),n=0..15)]; # N. J. A. Sloane, Jan 29 2011 A053121 := proc(n,k) option remember; `if`(k>n or k<0,0,`if`(n=k,1, procname(n-1,k-1)+procname(n-1,k+1))) end proc: seq(print(seq(A053121(n,k), k=0..n)),n=0..12); # Peter Luschny, May 01 2011
a[n_, m_] /; n < m || OddQ[n-m] = 0; a[n_, m_] = (m+1) Binomial[n+1, (n-m)/2]/(n+1); Flatten[Table[a[n, m], {n, 0, 12}, {m, 0, n}]] [[1 ;; 90]] (* Jean-François Alcover, May 18 2011 *) T[0, 0] := 1; T[n_, k_]/;0<=k<=n := T[n, k] = T[n-1, k-1]+T[n-1, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Dec 31 2024 *)
T(n, m)=if(nCharles R Greathouse IV, Mar 09 2016
def A053121_triangle(dim): M = matrix(ZZ,dim,dim) for n in (0..dim-1): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1] + M[n-1,k+1] return M A053121_triangle(13) # Peter Luschny, Sep 19 2012
From _Gus Wiseman_, Aug 20 2021: (Start) The a(0) = 1 through a(4) = 11 binary numbers with a majority of 1-bits (Gottfried's comment) are: 1 11 101 1011 10011 110 1101 10101 111 1110 10110 1111 10111 11001 11010 11011 11100 11101 11110 11111 The version allowing an initial zero is A058622. (End)
List([0..35],n->Sum([0..Int(n/2)],k->Binomial(n,k))); # Muniru A Asiru, Nov 27 2018
a027306 n = a008949 n (n `div` 2) -- Reinhard Zumkeller, Nov 14 2014
[2^(n-1)+(1+(-1)^n)/4*Binomial(n, n div 2): n in [0..40]]; // Vincenzo Librandi, Jun 19 2016
a:= proc(n) add(binomial(n, j), j=0..n/2) end: seq(a(n), n=0..32); # Zerinvary Lajos, Mar 29 2009
Table[Sum[Binomial[n, k], {k, 0, Floor[n/2]}], {n, 1, 35}] (* Second program: *) a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = (2(n-1)(2a[n-2] + a[n-1]) - 8(n-2) a[n-3])/n; Array[a, 33, 0] (* Jean-François Alcover, Sep 04 2016 *)
a(n)=if(n<0,0,(2^n+if(n%2,0,binomial(n, n/2)))/2)
Triangle begins 1; 1, 2; 2, 3, 5; 5, 7, 9, 14; 14, 19, 23, 28, 42;
b:= proc(n, i) option remember; `if`(n=0, 1, add( expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b((n+1)$2)): seq(T(n), n=0..10); # Alois P. Heinz, Nov 28 2015
t[n_, k_] = Sum[CatalanNumber[n-j]*CatalanNumber[j], {j, 0, k}]; Flatten[Table[t[n, k], {n, 0, 8}, {k, 0, n}]] (* Jean-François Alcover, Jul 22 2011 *)
From _Paul Barry_, Mar 15 2010: (Start) Triangle begins in row n=0 with columns 0<=k<=n as: 1; 1, 1; 3, 2, 1; 10, 6, 3, 1; 35, 20, 10, 4, 1; 126, 70, 35, 15, 5, 1; 462, 252, 126, 56, 21, 6, 1; Production matrix begins 1, 1; 2, 1, 1; 3, 1, 1, 1; 4, 1, 1, 1, 1; 5, 1, 1, 1, 1, 1; 6, 1, 1, 1, 1, 1, 1; 7, 1, 1, 1, 1, 1, 1, 1; (End) A092392 as a square array = A100100 * square Pascal matrix: /1 1 1 1 ...\ / 1 \/1 1 1 1 ...\ |2 3 4 5 ...| | 1 1 ||1 2 3 4 ...| |6 10 15 21 ...| = | 3 2 1 ||1 3 6 10 ...| |20 35 56 84 ...| |10 6 3 1 ||1 4 10 20 ...| |70 ... | |35 ... ||1 ... | - _Peter Bala_, Nov 03 2015
a100100 n k = a100100_tabl !! n !! n a100100_row n = a100100_tabl !! n a100100_tabl = [1] : f a092392_tabl where f (us : wss'@(vs : wss)) = (vs !! 1 : us) : f wss' -- Reinhard Zumkeller, Jan 15 2014
/* As triangle */ [[Binomial(2*n - k - 1, n - k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 21 2018
A100100 := proc(n,k) binomial(2*n-k-1,n-1) ; end proc: seq(seq(A100100(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
Flatten[Table[Binomial[2 n - k - 1, n - k], {n, 0, 11}, {k, 0, n}]] (* Vincenzo Librandi, Nov 21 2018 *)
T(n,k)=binomial(2*n-k-1,n-k) \\ Charles R Greathouse IV, Jan 16 2012
The irregular triangle T(n,k) begins: n\k 0 1 2 3 4 5 ... 0: 1 1: 1 2: 1 1 3: 1 3 4: 1 6 2 5: 1 10 10 6: 1 15 30 5 7: 1 21 70 35 8: 1 28 140 140 14 9: 1 36 252 420 126 10: 1 45 420 1050 630 42 ... reformatted. - _Wolfdieter Lang_, Aug 24 2015
b:= proc(x, y) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, expand( b(x-1, y) +b(x-1, y+1) +b(x-1, y-1)*t))) end: T:= n-> (p-> seq(coeff(p, t, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..20); # Alois P. Heinz, Feb 05 2014
m=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y); Map[Select[#,#>0&]&, CoefficientList[ Series[m,{x,0,15}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *) p[n_] := Hypergeometric2F1[(1-n)/2, -n/2, 2, 4 x]; Table[CoefficientList[p[n], x], {n, 0, 13}] // Flatten (* Peter Luschny, Jan 23 2018 *)
{T(n, k) = if( k<0 || 2*k>n, 0, n! / ((n-2*k)! * k! * (k+1)!))}
{T(n, k) = if( k<0 || 2*k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt((1 - x)^2 - 4*y*x^2 + x * O(x^n))), n), k))} /* Michael Somos, Feb 14 2006 */
{T(n, k) = n++; if( k<0 || 2*k>n, 0, polcoeff( polcoeff( serreverse( x / (1 + x + y*x^2) + x * O(x^n)), n), k))} /* Michael Somos, Feb 14 2006 */
Triangle starts: 1; 1; 1, 2; 1, 4; 1, 6, 4; 1, 8, 12; 1, 10, 24, 8; 1, 12, 40, 32;
T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # Johannes W. Meijer, Aug 28 2013
Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten (* G. C. Greubel, Dec 28 2016 *) t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
ogf := ((8*x-1)*(8*x+1)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)-3*Int((16*x-5)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)^2,x)+1)/(16*x); series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
a(n)=sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3) /* Michael Somos, Jun 02 2005 */
.|...1 .|.......1 .|...1.......1 .|.......2.......1 .|...2.......3.......1 .|.......5.......4.......1 .|...5.......9.......5.......1 .|......14......14.......6.......1 .|..14......28......20.......7.......1 .|......42......48......27.......8.......1
a008313 n k = a008313_tabf !! n !! k a008313_row n = a008313_tabf !! n a008313_tabf = map (filter (> 0)) a053121_tabl -- Reinhard Zumkeller, Feb 24 2012
T := proc(n, k): if n=0 then 1 else binomial(n-1, floor(n/2 )-k) -binomial(n-1, floor(n/2) -k-2) fi: end: seq(seq(T(n, k), k = 0..floor(n/2)), n = 0..14); # Johannes W. Meijer, Jul 10 2011, revised Nov 22 2012
t[n_, k_] /; n < k || OddQ[n - k] = 0; t[n_, k_] := (k+1)*Binomial[n+1, (n-k)/2]/(n+1); Flatten[ Table[ t[n, k], {n, 0, 15}, {k, Mod[n, 2], n + Mod[n, 2], 2}]] (* Jean-François Alcover, Jan 12 2012 *)
{T(n, k) = if( k<0 || 2*k>n, 0, polcoeff((1 - x) * (1 + x)^n, n\2 - k))}; /* Michael Somos, May 28 2005 */
T(n, k) = binomial(n-1, n\2-k)-binomial(n-1, n\2-k-2); for(n=0, 14, for(k=0, n\2, print1(T(n,k),", "))); \\ Seiichi Manyama, Mar 24 2025
# Algorithm of L. Seidel (1877) # Prints the first n rows of the triangle. def A008313_triangle(n) : D = [0]*((n+5)//2); D[1] = 1 b = True; h = 1 for i in range(n) : if b : for k in range(h,0,-1) : D[k] += D[k-1] h += 1 else : for k in range(1,h, 1) : D[k] += D[k+1] b = not b print([D[z] for z in (1..h-1)]) A008313_triangle(13) # Peter Luschny, May 01 2012
Comments