cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 126 results. Next

A002266 Integers repeated 5 times.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16
Offset: 0

Views

Author

Keywords

Comments

For n > 3, number of consecutive "11's" after the (n+3) "1's" in the continued fraction for sqrt(L(n+2)/L(n)) where L(n) is the n-th Lucas number A000032 (see example). E.g., the continued fraction for sqrt(L(11)/L(9)) is [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 58, 2, 4, 1, ...] with 12 consecutive ones followed by floor(11/5)=2 elevens. - Benoit Cloitre, Jan 08 2006
Complement of A010874, since A010874(n) + 5*a(n) = n. - Hieronymus Fischer, Jun 01 2007
From Paul Curtz, May 13 2020: (Start)
Main N-S vertical of the pentagonal spiral built with this sequence is A001105:
21
20 15 15
20 14 10 10 15
20 14 9 6 6 10 15
20 14 9 5 3 3 6 10 15
20 14 9 5 2 1 1 3 6 10 16
19 14 9 5 2 0 0 0 1 3 6 11 16
19 13 9 5 2 0 0 1 3 7 11 16
19 13 8 5 2 2 1 4 7 11 16
19 13 8 4 4 4 4 7 11 16
19 13 8 8 8 7 7 11 17
18 13 12 12 12 12 12 17
18 18 18 18 17 17 17
The main S-N vertical and the next one are A000217. (End)

Crossrefs

Programs

Formula

a(n) = floor(n/5), n >= 0.
G.f.: x^5/((1-x)(1-x^5)).
a(n) = (n - A010874(n))/5. - Hieronymus Fischer, May 29 2007
For n >= 5, a(n) = floor(log_5(5^a(n-1) + 5^a(n-2) + 5^a(n-3) + 5^a(n-4) + 5^a(n-5))). - Vladimir Shevelev, Jun 22 2010
Sum_{n>=5} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, Sep 30 2022

Extensions

Incorrect formula removed by Ridouane Oudra, Oct 16 2021

A166486 Periodic sequence [0,1,1,1] of length 4; Characteristic function of numbers that are not multiples of 4.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 15 2009

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^5 + x^6 + x^7 + x^9 + x^10 + x^11 + x^13 + x^14 + ...
		

Crossrefs

Characteristic function of A042968, whose complement A008586 gives the positions of zeros (after its initial term).
Absolute values of A046978, A075553, A131729, A358839, and for n >= 1, also of A112299 and of A257196.
Sequence A152822 shifted by two terms.
Row 3 of A225145, Column 2 of A229940 (after the initial term).
First differences of A057353. Sum of A359370 and A359372.
Cf. A000035, A011655, A011558, A097325, A109720, A168181, A168182, A168184, A145568, A168185 (characteristic functions for numbers that are not multiples of k = 2, 3 and 5..12).
Cf. A010873, A033436, A069733 (inverse Möbius transform), A121262 (one's complement), A190621 [= n*a(n)], A355689 (Dirichlet inverse).

Programs

  • Magma
    [Ceiling(n/4)-Floor(n/4) : n in [0..50]]; // Wesley Ivan Hurt, Jun 20 2014
    
  • Maple
    seq(1/2*((n^3+n) mod 4), n=0..50); # Gary Detlefs, Mar 20 2010
  • Mathematica
    PadRight[{},120,{0,1,1,1}] (* Harvey P. Dale, Jul 04 2013 *)
    Table[Ceiling[n/4] - Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Jun 20 2014 *)
    a[ n_] := Sign[ Mod[n, 4]]; (* Michael Somos, May 05 2015 *)
  • PARI
    {a(n) = !!(n%4)};
    
  • Python
    def A166486(n): return (0,1,1,1)[n&3] # Chai Wah Wu, Jan 03 2023

Formula

G.f.: (x + x^2 + x^3) / (1 - x^4) = x * (1 + x + x^2) / ((1 - x) * (1 + x) * (1 + x^2)) = x * (1 - x^3) / ((1 - x) * (1 - x^4)).
a(n) = (3 - i^n - (-i)^n - (-1)^n) / 4, where i=sqrt(-1).
Sum_{k>0} a(k)/(k*3^k) = log(5)/4.
From Reinhard Zumkeller, Nov 30 2009: (Start)
Multiplicative with a(p^e) = (if p=2 then 0^(e-1) else 1), p prime and e>0.
a(n) = 1-A121262(n).
a(A042968(n))=1; a(A008586(n))=0.
A033436(n) = Sum{k=0..n} a(k)*(n-k). (End)
a(n) = 1/2*((n^3+n) mod 4). - Gary Detlefs, Mar 20 2010
a(n) = (Fibonacci(n)*Fibonacci(3n) mod 3)/2. - Gary Detlefs Dec 21 2010
Euler transform of length 4 sequence [ 1, 0, -1, 1]. - Michael Somos, Feb 12 2011
Dirichlet g.f. (1-1/4^s)*zeta(s). - R. J. Mathar, Feb 19 2011
a(n) = Fibonacci(n)^2 mod 3. - Gary Detlefs, May 16 2011
a(n) = -1/4*cos(Pi*n)-1/2*cos(1/2*Pi*n)+3/4. - Leonid Bedratyuk, May 13 2012
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = ceiling(n/4) - floor(n/4). - Wesley Ivan Hurt, Jun 20 2014
a(n) = a(-n) for all n in Z. - Michael Somos, May 05 2015
For n >= 1, a(n) = A053866(A225546(n)) = A000035(A331733(n)). - Antti Karttunen, Jul 07 2020
a(n) = signum(n mod 4). - Alois P. Heinz, May 12 2021
From Antti Karttunen, Dec 28 2022: (Start)
a(n) = [A010873(n) > 0], where [ ] is the Iverson bracket.
a(n) = abs(A046978(n)) = abs(A075553(n)) = abs(A131729(n)) = abs(A358839(n)).
For all n >= 1, a(n) = abs(A112299(n)) = abs(A257196(n))
a(n) = A152822(2+n).
a(n) = A359370(n) + A359372(n). (End)
E.g.f.: (cosh(x) - cos(x))/2 + sinh(x). - Stefano Spezia, Aug 04 2025

Extensions

Secondary definition (from Reinhard Zumkeller's Nov 30 2009 comment) added to the name by Antti Karttunen, Dec 20 2022

A276573 The infinite trunk of least squares beanstalk: The only infinite sequence such that a(0) = 0 and a(n-1) = a(n) - least number of squares (A002828) that sum to a(n).

Original entry on oeis.org

0, 3, 6, 8, 11, 15, 16, 18, 21, 24, 27, 30, 32, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 63, 64, 67, 70, 72, 75, 78, 80, 83, 85, 88, 90, 93, 96, 99, 102, 105, 108, 112, 115, 117, 120, 123, 126, 128, 131, 134, 136, 139, 143, 144, 147, 149, 152, 155, 158, 160, 162, 165, 168, 171, 173, 176, 179, 183, 186, 189, 192, 195
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2016

Keywords

Crossrefs

Cf. A002828, A005563, A255131, A260731, A260733, A262689, A276572, A276574, A276575 (first differences), A277016 (squares present), A277015 (their square roots), A277888 (primes), A278486 (numbers one more than a prime), A278265, A278487, A278488, A278491 (another subsequence), A278497, A278498, A278499, A278513, A278516, A278517, A278518, A278519, A278521, A278522.
Cf. A277890 & A277891 (number of even and odd terms in each range. The latter seem to be slightly more numerous), A277889.
Positions of nonzero terms in A278515.
Subsequence of A278489, no common terms with A278490.
Cf. also A179016, A259934, A276583, A276613, A276623 for similar constructions.

Programs

Formula

a(n) = A276574(A276572(n)).
Other identities and observations. For all n >= 0:
A260731(a(n)) = n.
a(A260733(n+1)) = A005563(n).
A278517(n) <= a(n) <= A278519(n).
A010873(a(n)) = A278499(n). [Terms reduced modulo 4.]
A010877(a(n)) = A278488(n). [modulo 8.]
A046523(a(n)) = A278497(n). [Least number with the same prime signature.]
A008683(a(n)) = A278513(n).
A065338(a(n)) = A278498(n).
A278509(a(n)) = A278265(n).
A278216(a(n)) = A278516(n). [Number of children the n-th node of the trunk has.]

Extensions

Definition clarified and more identities added to the Formula section by Antti Karttunen, Nov 28 2016

A010877 a(n) = n mod 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0
Offset: 0

Views

Author

Keywords

Comments

The rightmost digit in the base-8 representation of n. Also, the equivalent value of the three rightmost digits in the base-2 representation of n. - Hieronymus Fischer, Jun 12 2007

Crossrefs

Partial sums: A130486. Other related sequences A130481, A130482, A130483, A130484, A130485.

Programs

Formula

Complex representation: a(n) = (1/8)*(1-r^n)*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (1 - r^(n-m)) where r = exp(Pi/4*i) = (1+i)*sqrt(2)/2 and i=sqrt(-1).
Trigonometric representation: a(n) = 256*(sin(n*Pi/8))^2*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (sin((n-m)*Pi/8))^2.
G.f.: g(x) = (Sum_{k=1..7}, k*x^k)/(1-x^8).
Also: g(x) = x(7x^8-8x^7+1)/((1-x^8)(1-x)^2). - Hieronymus Fischer, May 31 2007
a(n) = n mod 2 + 2*(floor(n/2) mod 4) = A000035(n) + 2*A010873(A004526(n)).
a(n) = n mod 4 + 4*(floor(n/4) mod 2) = A010873(n) + 4*A000035(A002265(n)).
a(n) = n mod 2 + 2*(floor(n/2) mod 2) + 4*(floor(n/4) mod 2) = A000035(n) + 2*A000035(A004526(n)) + 4*A000035(A002265(n)). - Hieronymus Fischer, Jun 12 2007
a(n) = (1/2)*(7 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n. - Hieronymus Fischer, Jun 12 2007
General formula for period 2^k: a(n) = (1/2)*(2^k - 1 - Sum_{j=0..k-1} 2^j*(-1)^p(j,n)) where p(j,n) is defined recursively by p(0,n)=n, p(j,n) = (1/4)*(2*p(j-1,n) - 1 + (-1)^p(j-1,n)). - Hieronymus Fischer, Jun 14 2007
a(n) = floor(1234567/99999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor(48913/2396745*8^(n+1)) mod 8. - Hieronymus Fischer, Jan 04 2013

Extensions

Formula section re-edited for better readability by Hieronymus Fischer

A130481 a(n) = Sum_{k=0..n} (k mod 3) (i.e., partial sums of A010872).

Original entry on oeis.org

0, 1, 3, 3, 4, 6, 6, 7, 9, 9, 10, 12, 12, 13, 15, 15, 16, 18, 18, 19, 21, 21, 22, 24, 24, 25, 27, 27, 28, 30, 30, 31, 33, 33, 34, 36, 36, 37, 39, 39, 40, 42, 42, 43, 45, 45, 46, 48, 48, 49, 51, 51, 52, 54, 54, 55, 57, 57, 58, 60, 60, 61, 63, 63, 64, 66, 66, 67, 69, 69, 70, 72, 72
Offset: 0

Views

Author

Hieronymus Fischer, May 29 2007

Keywords

Comments

Essentially the same as A092200. - R. J. Mathar, Jun 13 2008
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 3, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010
2-adic valuation of A104537(n+1). - Gerry Martens, Jul 14 2015
Conjecture: a(n) is the exponent of the largest power of 2 that divides all the entries of the matrix {{3,1},{1,-1}}^n. - Greg Dresden, Sep 09 2018

Crossrefs

Programs

  • GAP
    List([0..80], n-> Int((n+1)/3) + Int(2*(n+1)/3)); # G. C. Greubel, Aug 31 2019
  • Magma
    [Floor((n+1)/3) + Floor(2*(n+1)/3): n in [0..80]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1+2*x)/((1-x^3)*(1-x)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Aug 31 2019
  • Mathematica
    a[n_]:= Floor[(n+1)/3] + Floor[2(n+1)/3]; Table[a[n], {n, 0, 80}] (* Clark Kimberling, May 28 2012 *)
    a[n_]:= IntegerExponent[A104537[n + 1], 2];
    Table[a[n], {n, 0, 80}]  (* Gerry Martens, Jul 14 2015 *)
    CoefficientList[Series[x(1+2x)/((1-x^3)(1-x)), {x, 0, 80}], x] (* Stefano Spezia, Sep 09 2018 *)
    LinearRecurrence[{1,0,1,-1},{0,1,3,3},100] (* Harvey P. Dale, Jun 14 2021 *)
  • PARI
    main(size)=my(n,k);vector(size,n,sum(k=0,n,k%3)) \\ Anders Hellström, Jul 14 2015
    
  • PARI
    first(n)=my(s); concat(0, vector(n,k,s+=k%3)) \\ Charles R Greathouse IV, Jul 14 2015
    
  • PARI
    a(n)=n\3*3+[0,1,3][n%3+1] \\ Charles R Greathouse IV, Jul 14 2015
    
  • Sage
    def A130481_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+2*x)/((1-x^3)*(1-x))).list()
    A130481_list(80) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 3*floor(n/3) + A010872(n)*(A010872(n) + 1)/2.
G.f.: x*(1 + 2*x)/((1-x^3)*(1-x)).
a(n) = n + 1 - (Fibonacci(n+1) mod 2). - Gary Detlefs, Mar 13 2011
a(n) = floor((n+1)/3) + floor(2*(n+1)/3). - Clark Kimberling, May 28 2010
a(n) = n when n+1 is not a multiple of 3, and a(n) = n+1 when n+1 is a multiple of 3. - Dennis P. Walsh, Aug 06 2012
a(n) = n + 1 - sign((n+1) mod 3). - Wesley Ivan Hurt, Sep 25 2017
a(n) = n + (1-cos(2*(n+2)*Pi/3))/3 + sin(2*(n+2)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017
a(n) = n + 1 - (n+1)^2 mod 3. - Ammar Khatab, Aug 14 2020
E.g.f.: ((1 + 3*x)*cosh(x) - (cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))*(cosh(x/2) - sinh(x/2)) + (1 + 3*x)*sinh(x))/3. - Stefano Spezia, May 28 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) + log(2)/3. - Amiram Eldar, Sep 17 2022

A039702 a(n) = n-th prime modulo 4.

Original entry on oeis.org

2, 3, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Except for the first term, A100672(n) = (a(n)-1)/2 = parity of A005097. - Jeremy Gardiner, May 17 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ 2*n. - Amiram Eldar, Dec 11 2024

A130483 a(n) = Sum_{k=0..n} (k mod 5) (Partial sums of A010874).

Original entry on oeis.org

0, 1, 3, 6, 10, 10, 11, 13, 16, 20, 20, 21, 23, 26, 30, 30, 31, 33, 36, 40, 40, 41, 43, 46, 50, 50, 51, 53, 56, 60, 60, 61, 63, 66, 70, 70, 71, 73, 76, 80, 80, 81, 83, 86, 90, 90, 91, 93, 96, 100, 100, 101, 103, 106, 110, 110, 111, 113, 116, 120, 120, 121, 123, 126, 130, 130
Offset: 0

Views

Author

Hieronymus Fischer, May 29 2007

Keywords

Comments

Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 5, A[i,i]=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010

Crossrefs

Programs

  • GAP
    a:=[0,1,3,6,10,10];; for n in [7..71] do a[n]:=a[n-1]+a[n-5]-a[n-6]; od; a; # G. C. Greubel, Aug 31 2019
  • Magma
    I:=[0,1,3,6,10,10]; [n le 6 select I[n] else Self(n-1) + Self(n-5) - Self(n-6): n in [1..71]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1+2*x+3*x^2+4*x^3)/((1-x^5)*(1-x)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Aug 31 2019
  • Mathematica
    Accumulate[Mod[Range[0,70],5]] (* or *) Accumulate[PadRight[{},70,{0,1,2,3,4}]] (* Harvey P. Dale, Nov 11 2016 *)
  • PARI
    a(n) = sum(k=0, n, k % 5); \\ Michel Marcus, Apr 28 2018
    
  • Sage
    def A130483_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+2*x+3*x^2+4*x^3)/((1-x^5)*(1-x))).list()
    A130483_list(70) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 10*floor(n/5) + A010874(n)*(A010874(n)+1)/2.
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3)/((1-x^5)*(1-x)).
From Wesley Ivan Hurt, Jul 23 2016: (Start)
a(n) = a(n-5) - a(n-6) for n>5; a(n) = a(n-5) + 10 for n>4.
a(n) = 10 + Sum_{k=1..4} k*floor((n-k)/5). (End)
a(n) = ((n mod 5)^2 - 3*(n mod 5) + 4*n)/2. - Ammar Khatab, Aug 13 2020

A130519 a(n) = Sum_{k=0..n} floor(k/4). (Partial sums of A002265.)

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180, 190, 200, 210, 220, 231, 242, 253, 264, 276, 288, 300, 312, 325, 338, 351, 364, 378, 392, 406, 420, 435, 450
Offset: 0

Views

Author

Hieronymus Fischer, Jun 01 2007

Keywords

Comments

Complementary to A130482 with respect to triangular numbers, in that A130482(n) + 4*a(n) = n(n+1)/2 = A000217(n).
Disregarding the first three 0's the resulting sequence a'(n) is the sum of the positive integers <= n that have the same residue modulo 4 as n. This is the additive counterpart of the quadruple factorial numbers. - Peter Luschny, Jul 06 2011
From Heinrich Ludwig, Dec 23 2017: (Start)
Column sums of (shift of rows = 4):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
1 2 3 4 5 6 7 8 9 10 ...
1 2 3 4 5 6 ...
1 2 ...
.......................................
---------------------------------------
1 2 3 4 6 8 10 12 15 18 21 24 28 32 ...
shift of rows = 1 see A000217
shift of rows = 2 see A002620
shift of rows = 3 see A001840
shift of rows = 5 see A130520
(End)
Conjecture: a(n+2) is the maximum effective weight of a numerical semigroup S of genus n (see Nathan Pflueger). - Stefano Spezia, Jan 04 2019

Examples

			G.f. = x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 6*x^8 + 8*x^9 + 10*x^10 + 12*x^11 + ...
[ n] a(n)
---------
[ 4] 1
[ 5] 2
[ 6] 3
[ 7] 4
[ 8] 1 + 5
[ 9] 2 + 6
[10] 3 + 7
[11] 4 + 8
		

Crossrefs

Programs

  • GAP
    a:=List([0..65],n->Sum([0..n],k->Int(k/4)));; Print(a); # Muniru A Asiru, Jan 04 2019
    
  • Magma
    [Round(n*(n-2)/8): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    quadsum := n -> add(k, k = select(k -> k mod 4 = n mod 4, [$1 .. n])):
    A130519 := n ->`if`(n<3,0,quadsum(n-3)); seq(A130519(n),n=0..58); # Peter Luschny, Jul 06 2011
  • Mathematica
    a[ n_] := Quotient[ (n - 1)^2, 8]; (* Michael Somos, Oct 14 2011 *)
  • Maxima
    makelist(floor((n-1)^2/8), n, 0, 70); /* Stefano Spezia, Jan 04 2019 */
    
  • PARI
    {a(n) = (n - 1)^2 \ 8}; /* Michael Somos, Oct 14 2011 */
    
  • Python
    def A130519(n): return (n-1)**2>>3  # Chai Wah Wu, Jul 30 2022

Formula

G.f.: x^4/((1-x^4)*(1-x)^2) = x^4/((1+x)*(1+x^2)*(1-x)^3).
a(n) = +2*a(n-1) -1*a(n-2) +1*a(n-4) -2*a(n-5) +1*a(n-6).
a(n) = floor(n/4)*(n - 1 - 2*floor(n/4)) = A002265(n)*(n - 1 - 2*A002265(n)).
a(n) = (1/2)*A002265(n)*(n - 2 + A010873(n)).
a(n) = floor((n-1)^2/8). - Mitch Harris, Sep 08 2008
a(n) = round(n*(n-2)/8) = round((n^2-2*n-1)/8) = ceiling((n+1)*(n-3)/8). - Mircea Merca, Nov 28 2010
a(n) = A001972(n-4), n>3. - Franklin T. Adams-Watters, Jul 10 2009
a(n) = a(n-4)+n-3, n>3. - Mircea Merca, Nov 28 2010
Euler transform of length 4 sequence [ 2, 0, 0, 1]. - Michael Somos, Oct 14 2011
a(n) = a(2-n) for all n in Z. - Michael Somos, Oct 14 2011
a(n) = A214734(n, 1, 4). - Renzo Benedetti, Aug 27 2012
a(4n) = A000384(n), a(4n+1) = A001105(n), a(4n+2) = A014105(n), a(4n+3) = A046092(n). - Philippe Deléham, Mar 26 2013
a(n) = Sum_{i=1..ceiling(n/2)-1} (i mod 2) * (n - 2*i - 1). - Wesley Ivan Hurt, Jan 23 2014
a(n) = ( 2*n^2-4*n-1+(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)-(-1)^((6*n-1+(-1)^n)/4)) )/16 = ( 2*n*(n-2) - (1-(-1)^n)*(1-2*i^(n*(n-1))) )/16, where i=sqrt(-1). - Luce ETIENNE, Aug 29 2014
E.g.f.: (1/8)*((- 1 + x)*x*cosh(x) + 2*sin(x) + (- 1 - x + x^2)*sinh(x)). - Stefano Spezia, Jan 15 2019
a(n) = (A002620(n-1) - A011765(n+1)) / 2, for n > 0. - Yuchun Ji, Feb 05 2021
Sum_{n>=4} 1/a(n) = Pi^2/12 + 5/2. - Amiram Eldar, Aug 13 2022

Extensions

Partially edited by R. J. Mathar, Jul 11 2009

A264977 a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 6, 7, 8, 5, 2, 7, 12, 1, 14, 15, 16, 13, 10, 7, 4, 5, 14, 11, 24, 13, 2, 15, 28, 1, 30, 31, 32, 29, 26, 7, 20, 13, 14, 3, 8, 1, 10, 11, 28, 5, 22, 19, 48, 21, 26, 15, 4, 13, 30, 19, 56, 29, 2, 31, 60, 1, 62, 63, 64, 61, 58, 7, 52, 29, 14, 19, 40, 25, 26, 3, 28, 13, 6, 11, 16, 9, 2, 11, 20, 1, 22
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2015

Keywords

Comments

a(n) is the n-th Stern polynomial (cf. A260443, A125184) evaluated at X = 2 over the field GF(2).
For n >= 1, a(n) gives the index of the row where n occurs in array A277710.

Examples

			In this example, binary numbers are given zero-padded to four bits.
a(2) = 2a(1) = 2 * 1 = 2.
a(3) = a(1) XOR a(2) = 1 XOR 2 = 0001 XOR 0010 = 0011 = 3.
a(4) = 2a(2) = 2 * 2 = 4.
a(5) = a(2) XOR a(3) = 2 XOR 3 = 0010 XOR 0011 = 0001 = 1.
a(6) = 2a(3) = 2 * 3 = 6.
a(7) = a(3) XOR a(4) = 3 XOR 4 = 0011 XOR 0100 = 0111 = 7.
		

Crossrefs

Cf. A023758 (the fixed points).
Cf. also A068156, A168081, A265407.
Cf. A277700 (binary weight of terms).
Cf. A277701, A277712, A277713 (positions of 1's, 2's and 3's in this sequence).
Cf. A277711 (position of the first occurrence of each n in this sequence).
Cf. also arrays A277710, A099884.

Programs

  • Mathematica
    recurXOR[0] = 0; recurXOR[1] = 1; recurXOR[n_] := recurXOR[n] = If[EvenQ[n], 2recurXOR[n/2], BitXor[recurXOR[(n - 1)/2 + 1], recurXOR[(n - 1)/2]]]; Table[recurXOR[n], {n, 0, 100}] (* Jean-François Alcover, Oct 23 2016 *)
  • Python
    class Memoize:
        def _init_(self, func):
            self.func=func
            self.cache={}
        def _call_(self, arg):
            if arg not in self.cache:
                self.cache[arg] = self.func(arg)
            return self.cache[arg]
    @Memoize
    def a(n): return n if n<2 else 2*a(n//2) if n%2==0 else a((n - 1)//2)^a((n + 1)//2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 27 2017

Formula

a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).
a(n) = A248663(A260443(n)).
a(n) = A048675(A277330(n)). - Antti Karttunen, Oct 27 2016
Other identities. For all n >= 0:
a(n) = n - A265397(n).
From Antti Karttunen, Oct 28 2016: (Start)
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A010873(a(n)) = A010873(n). [a(n) mod 4 = n mod 4.]
A001511(a(n)) = A001511(n) = A055396(A277330(n)). [In general, the 2-adic valuation of n is preserved.]
A010060(a(n)) = A011655(n).
a(n) <= n.
For n >= 2, a((2^n)+1) = (2^n) - 3.
The following two identities are so far unproved:
For n >= 2, a(3*A000225(n)) = a(A068156(n)) = 5.
For n >= 2, a(A068156(n)-2) = A062709(n) = 2^n + 3.
(End)

A010882 Period 3: repeat [1, 2, 3].

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130481(n)+n+1. - Hieronymus Fischer, Jun 08 2007
41/333 = 0.123123123... - Eric Desbiaux, Nov 03 2008
Terms of the simple continued fraction for 3/(sqrt(37)-4). - Paolo P. Lava, Feb 16 2009
This is the lexicographically earliest sequence with no substring of more than 1 term being a palindrome. - Franklin T. Adams-Watters, Nov 24 2013

Crossrefs

Cf. A010872, A010873, A010874, A010875, A010876, A004526, A002264, A002265, A002266, A177036 (decimal expansion of (4+sqrt(37))/7), A214090.

Programs

Formula

G.f.: (1+2x+3x^2)/(1-x^3). - Paul Barry, May 25 2003
a(n) = 1 + (n mod 3). - Paolo P. Lava, Nov 21 2006
a(n) = A010872(n) + 1. - Hieronymus Fischer, Jun 08 2007
a(n) = 6 - a(n-1) - a(n-2) for n > 1. - Reinhard Zumkeller, Apr 13 2008
a(n) = n+1-3*floor(n/3) = floor(41*10^(n+1)/333)-floor(41*10^n/333)*10; a(n)-a(n-3)=0 with n>2. - Bruno Berselli, Jun 28 2010
a(n) = A180593(n+1)/3. - Reinhard Zumkeller, Oct 25 2010
a(n) = floor((4*n+3)/3) mod 4. - Gary Detlefs, May 15 2011
a(n) = -cos(2/3*Pi*n)-1/3*3^(1/2)*sin(2/3*Pi*n)+2. - Leonid Bedratyuk, May 13 2012
E.g.f.: 2*(3*exp(3*x/2) - sqrt(3)*cos(Pi/6-sqrt(3)*x/2))*exp(-x/2)/3. - Ilya Gutkovskiy, Jul 05 2016
Previous Showing 11-20 of 126 results. Next