cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 203 results. Next

A130519 a(n) = Sum_{k=0..n} floor(k/4). (Partial sums of A002265.)

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180, 190, 200, 210, 220, 231, 242, 253, 264, 276, 288, 300, 312, 325, 338, 351, 364, 378, 392, 406, 420, 435, 450
Offset: 0

Views

Author

Hieronymus Fischer, Jun 01 2007

Keywords

Comments

Complementary to A130482 with respect to triangular numbers, in that A130482(n) + 4*a(n) = n(n+1)/2 = A000217(n).
Disregarding the first three 0's the resulting sequence a'(n) is the sum of the positive integers <= n that have the same residue modulo 4 as n. This is the additive counterpart of the quadruple factorial numbers. - Peter Luschny, Jul 06 2011
From Heinrich Ludwig, Dec 23 2017: (Start)
Column sums of (shift of rows = 4):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
1 2 3 4 5 6 7 8 9 10 ...
1 2 3 4 5 6 ...
1 2 ...
.......................................
---------------------------------------
1 2 3 4 6 8 10 12 15 18 21 24 28 32 ...
shift of rows = 1 see A000217
shift of rows = 2 see A002620
shift of rows = 3 see A001840
shift of rows = 5 see A130520
(End)
Conjecture: a(n+2) is the maximum effective weight of a numerical semigroup S of genus n (see Nathan Pflueger). - Stefano Spezia, Jan 04 2019

Examples

			G.f. = x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 6*x^8 + 8*x^9 + 10*x^10 + 12*x^11 + ...
[ n] a(n)
---------
[ 4] 1
[ 5] 2
[ 6] 3
[ 7] 4
[ 8] 1 + 5
[ 9] 2 + 6
[10] 3 + 7
[11] 4 + 8
		

Crossrefs

Programs

  • GAP
    a:=List([0..65],n->Sum([0..n],k->Int(k/4)));; Print(a); # Muniru A Asiru, Jan 04 2019
    
  • Magma
    [Round(n*(n-2)/8): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    quadsum := n -> add(k, k = select(k -> k mod 4 = n mod 4, [$1 .. n])):
    A130519 := n ->`if`(n<3,0,quadsum(n-3)); seq(A130519(n),n=0..58); # Peter Luschny, Jul 06 2011
  • Mathematica
    a[ n_] := Quotient[ (n - 1)^2, 8]; (* Michael Somos, Oct 14 2011 *)
  • Maxima
    makelist(floor((n-1)^2/8), n, 0, 70); /* Stefano Spezia, Jan 04 2019 */
    
  • PARI
    {a(n) = (n - 1)^2 \ 8}; /* Michael Somos, Oct 14 2011 */
    
  • Python
    def A130519(n): return (n-1)**2>>3  # Chai Wah Wu, Jul 30 2022

Formula

G.f.: x^4/((1-x^4)*(1-x)^2) = x^4/((1+x)*(1+x^2)*(1-x)^3).
a(n) = +2*a(n-1) -1*a(n-2) +1*a(n-4) -2*a(n-5) +1*a(n-6).
a(n) = floor(n/4)*(n - 1 - 2*floor(n/4)) = A002265(n)*(n - 1 - 2*A002265(n)).
a(n) = (1/2)*A002265(n)*(n - 2 + A010873(n)).
a(n) = floor((n-1)^2/8). - Mitch Harris, Sep 08 2008
a(n) = round(n*(n-2)/8) = round((n^2-2*n-1)/8) = ceiling((n+1)*(n-3)/8). - Mircea Merca, Nov 28 2010
a(n) = A001972(n-4), n>3. - Franklin T. Adams-Watters, Jul 10 2009
a(n) = a(n-4)+n-3, n>3. - Mircea Merca, Nov 28 2010
Euler transform of length 4 sequence [ 2, 0, 0, 1]. - Michael Somos, Oct 14 2011
a(n) = a(2-n) for all n in Z. - Michael Somos, Oct 14 2011
a(n) = A214734(n, 1, 4). - Renzo Benedetti, Aug 27 2012
a(4n) = A000384(n), a(4n+1) = A001105(n), a(4n+2) = A014105(n), a(4n+3) = A046092(n). - Philippe Deléham, Mar 26 2013
a(n) = Sum_{i=1..ceiling(n/2)-1} (i mod 2) * (n - 2*i - 1). - Wesley Ivan Hurt, Jan 23 2014
a(n) = ( 2*n^2-4*n-1+(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)-(-1)^((6*n-1+(-1)^n)/4)) )/16 = ( 2*n*(n-2) - (1-(-1)^n)*(1-2*i^(n*(n-1))) )/16, where i=sqrt(-1). - Luce ETIENNE, Aug 29 2014
E.g.f.: (1/8)*((- 1 + x)*x*cosh(x) + 2*sin(x) + (- 1 - x + x^2)*sinh(x)). - Stefano Spezia, Jan 15 2019
a(n) = (A002620(n-1) - A011765(n+1)) / 2, for n > 0. - Yuchun Ji, Feb 05 2021
Sum_{n>=4} 1/a(n) = Pi^2/12 + 5/2. - Amiram Eldar, Aug 13 2022

Extensions

Partially edited by R. J. Mathar, Jul 11 2009

A016814 a(n) = (4*n + 1)^2.

Original entry on oeis.org

1, 25, 81, 169, 289, 441, 625, 841, 1089, 1369, 1681, 2025, 2401, 2809, 3249, 3721, 4225, 4761, 5329, 5929, 6561, 7225, 7921, 8649, 9409, 10201, 11025, 11881, 12769, 13689, 14641, 15625, 16641, 17689, 18769, 19881, 21025, 22201, 23409, 24649, 25921, 27225, 28561, 29929
Offset: 0

Views

Author

Keywords

Comments

A bisection of A016754. Sequence arises from reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m-3), this sequence (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), A134934 (m=14).

Programs

Formula

a(n) = a(n-1) + 32*n - 8, n > 0. - Vincenzo Librandi, Dec 15 2010
From George F. Johnson, Sep 28 2012: (Start)
G.f.: (1 + 22*x + 9*x^2)/(1 - x)^3.
a(n+1) = a(n) + 16 + 8*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 32 = 3*a(n) - 3*a(n-1) + a(n-2).
a(n-1)*a(n+1) = (a(n) - 16)^2 ; a(n+1) - a(n-1) = 16*sqrt(a(n)).
a(n) = A016754(2*n) = (A016813(n))^2. (End)
Sum_{n>=0} 1/a(n) = G/2 + Pi^2/16, where G is the Catalan constant (A006752). - Amiram Eldar, Jun 28 2020
Product_{n>=1} (1 - 1/a(n)) = 2*Gamma(5/4)^2/sqrt(Pi) = 2 * A068467^2 * A087197. - Amiram Eldar, Feb 01 2021
From G. C. Greubel, Dec 28 2022: (Start)
a(2*n) = A017078(n).
a(2*n+1) = A017126(n).
E.g.f.: (1 + 24*x + 16*x^2)*exp(x). (End)
a(n) = A272399(n+1) - A014105(n). - Leo Tavares, Dec 24 2023

A033586 a(n) = 4*n*(2*n + 1).

Original entry on oeis.org

0, 12, 40, 84, 144, 220, 312, 420, 544, 684, 840, 1012, 1200, 1404, 1624, 1860, 2112, 2380, 2664, 2964, 3280, 3612, 3960, 4324, 4704, 5100, 5512, 5940, 6384, 6844, 7320, 7812, 8320, 8844, 9384, 9940, 10512, 11100, 11704, 12324, 12960, 13612, 14280
Offset: 0

Views

Author

Keywords

Comments

Number of possible king moves on an (n+1) X (n+1) chessboard. E.g., for a 3 X 3 board: king has 4*5 moves, 4*3 moves and 1*8 moves, so a(2)=40. - Ulrich Schimke (ulrschimke(AT)aol.com)
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A085250 in the same spiral. - Omar E. Pol, Sep 03 2011
Sum of the numbers from 3n to 5n. - Wesley Ivan Hurt, Dec 22 2015
From Emeric Deutsch, Nov 09 2016: (Start)
a(n) is the second Zagreb index of the friendship graph F[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The friendship graph (or Dutch windmill graph) F[n] can be constructed by joining n copies of the cycle graph C[3] with a common vertex.
For instance, a(2)=40. Indeed, the friendship graph F[2] has 2 edges with end-point degrees 2,2 and 4 edges with end-point degrees 2,4. Then the second Zagreb index is 2*4 + 4*8 = 40. (End)
a(n) is the number of vertices in conjoined n X n dodecagons which are arranged into a square array, a.k.a. 3-4-3-12 tiling. - Donghwi Park, Dec 20 2020

References

  • E. Bonsdorff, K. Fabel and O. Riihimaa, Schach und Zahl (Chess and numbers), Walter Rau Verlag, Dusseldorf, 1966.

Crossrefs

Cf. A035005 (Queen), A035006 (Rook), A035008 (Knight), A002492 (Bishop) and A049450 (Pawn).

Programs

Formula

Binomial transform of [12, 28, 16, 0, 0, 0, ...] = (12, 40, 84, 144, 220, ...). - Gary W. Adamson, Oct 24 2007
a(n) = 4 * A014105(n). - Johannes W. Meijer, Feb 04 2010
a(n) = 16*n + a(n-1) - 4 (with a(0)=0). - Vincenzo Librandi, Aug 05 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. - Harvey P. Dale, May 10 2011
G.f.: 4*x*(3+x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
From Wesley Ivan Hurt, Feb 25 2014, Dec 22 2015: (Start)
a(n) = A008586(n) * A005408(n).
a(n) = Sum_{i=3n..5n} i.
a(-n) = A085250(n). (End)
E.g.f.: (8*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 16 2017
From Vaclav Kotesovec, Dec 21 2020: (Start)
Sum_{n>=1} 1/a(n) = (1 - log(2))/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2 - Pi/8 - log(2)/4. (End)

Extensions

More terms from Erich Friedman
Crossref added, minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010

A081266 Staggered diagonal of triangular spiral in A051682.

Original entry on oeis.org

0, 6, 21, 45, 78, 120, 171, 231, 300, 378, 465, 561, 666, 780, 903, 1035, 1176, 1326, 1485, 1653, 1830, 2016, 2211, 2415, 2628, 2850, 3081, 3321, 3570, 3828, 4095, 4371, 4656, 4950, 5253, 5565, 5886, 6216, 6555, 6903, 7260, 7626, 8001, 8385, 8778, 9180
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Staggered diagonal of triangular spiral in A051682, between (0,4,17) spoke and (0,7,23) spoke.
Binomial transform of (0, 6, 9, 0, 0, 0, ...).
If Y is a fixed 3-subset of a (3n+1)-set X then a(n) is the number of (3n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
Partial sums give A085788. - Leo Tavares, Nov 23 2023

Examples

			a(1)=9*1+0-3=6, a(2)=9*2+6-3=21, a(3)=9*3+21-3=45.
For n=3, a(3) = -0^2+1^2-2^2+3^2-4^2+5^2-6^2+7^2-8^2+9^2 = 45.
		

Crossrefs

Programs

Formula

a(n) = 6*C(n,1) + 9*C(n,2).
a(n) = 3*n*(3*n+1)/2.
G.f.: (6*x+3*x^2)/(1-x)^3.
a(n) = A000217(3*n); a(2*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = 3*A005449(n). - R. J. Mathar, Mar 27 2009
a(n) = 9*n+a(n-1)-3 for n>0, a(0)=0. - Vincenzo Librandi, Aug 08 2010
a(n) = A218470(9n+5). - Philippe Deléham, Mar 27 2013
a(n) = Sum_{k=0..3n} (-1)^(n+k)*k^2. - Bruno Berselli, Aug 29 2013
E.g.f.: 3*exp(x)*x*(4 + 3*x)/2. - Stefano Spezia, Jun 06 2021
From Amiram Eldar, Aug 11 2022: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/(3*sqrt(3)) - log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(3*sqrt(3)) + 4*log(2)/3 - 2. (End)
From Leo Tavares, Nov 23 2023: (Start)
a(n) = 3*A000217(n) + 3*A000290(n).
a(n) = A003154(n+1) - A133694(n+1). (End)

A191363 Numbers m such that sigma(m) = 2*m - 2.

Original entry on oeis.org

3, 10, 136, 32896, 2147516416
Offset: 1

Views

Author

Luis H. Gallardo, May 31 2011

Keywords

Comments

Let k be a nonnegative integer such that F(k) = 2^(2^k) + 1 is prime (a Fermat prime A019434), then m = (F(k)-1)*F(k)/2 appears in the sequence.
Conjecture: a(1)=3 is the only odd term of the sequence.
Conjecture: All terms of the sequence are of the above form derived from Fermat primes.
The sequence has 5 (known) terms in common with sequences A055708 (k-1 | sigma(k)) and A056006 (k | sigma(k)+2) since {a(n)} is a subsequence of both.
The first five terms of the sequence are respectively congruent to 3, 4, 4, 4, 4 modulo 6.
After a(5) there are no further terms < 8*10^9.
Up to m = 1312*10^8 there are no further terms in the class congruent to 4 modulo 6.
a(6) > 10^12. - Donovan Johnson, Dec 08 2011
a(6) > 10^13. - Giovanni Resta, Mar 29 2013
a(6) > 10^18. - Hiroaki Yamanouchi, Aug 21 2018
See A125246 for numbers with deficiency 4, i.e., sigma(m) = 2*m - 4, and A141548 for numbers with deficiency 6. - M. F. Hasler, Jun 29 2016 and Jul 17 2016
A term m of this sequence multiplied by a prime p not dividing it is abundant if and only if p < m-1. For each of a(2..5) there is such a prime near this limit (here: 7, 127, 30197, 2147483647) such that a(k)*p is a primitive weird number, cf. A002975. - M. F. Hasler, Jul 19 2016
Any term m of this sequence can be combined with any term j of A088831 to satisfy the property (sigma(m) + sigma(j))/(m+j) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable. [Proof: If m = a(n) and j = A088831(k), then sigma(m) = 2m-2 and sigma(j) = 2j+2. Thus, sigma(m) + sigma(j) = (2m-2) + (2j+2) = 2m + 2j = 2(m+j), which implies that (sigma(m) + sigma(j))/(m+j) = 2(m+j)/(m+j) = 2.] - Timothy L. Tiffin, Sep 13 2016
At least the first five terms are a subsequence of A295296 and of A295298. - David A. Corneth, Antti Karttunen, Nov 26 2017
Conjectures: all terms are second hexagonal numbers (A014105). There are no terms with middle divisors. - Omar E. Pol, Oct 31 2018
The symmetric representation of sigma(m) of each of the 5 numbers in the sequence consists of 2 parts of width 1 that meet at the diagonal (subsequence of A246955). - Hartmut F. W. Hoft, Mar 04 2022
The first five terms coincide with the sum of two successive terms of A058891. The same is not true for a(6), if such exists. - Omar E. Pol, Mar 03 2023

Examples

			For n=1, a(1) = 3 since sigma(3) = 4 = 2*3 - 2.
		

Crossrefs

Cf. A000203, A002975, A056006, A055708, A088831 (abundance 2).
Cf. A033880, A125246 (deficiency 4), A141548 (deficiency 6), A125247 (deficiency 8), A125248 (deficiency 16).
Cf. A058891.

Programs

  • Magma
    [n: n in [1..9*10^6] | (SumOfDivisors(n)-2*n) eq -2]; // Vincenzo Librandi, Sep 15 2016
  • Mathematica
    ok[n_] := DivisorSigma[1,n] == 2*n-2; Select[ Table[ 2^(2^k-1) * (2^(2^k)+1), {k, 0, 5}], ok] (* Jean-François Alcover, Sep 14 2011, after conjecture *)
    Select[Range[10^6], DivisorSigma[1, #] == 2 # - 2 &] (* Michael De Vlieger, Sep 14 2016 *)
  • PARI
    zp(a,b) = {my(c,c1,s); c = a; c1 = 2*c-2;
    while(c
    				
  • PARI
    a(k)=(2^2^k+1)<<(2^k-1) \\ For k<6. - M. F. Hasler, Jul 27 2016
    

Formula

a(n) = (A019434(n)-1)*A019434(n)/2 for all terms known so far. - M. F. Hasler, Jun 29 2016

A306186 Array read by antidiagonals upwards where A(n, k) is the number of non-isomorphic multiset partitions of weight n with k levels of brackets.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 33, 21, 8, 1, 11, 91, 104, 36, 10, 1, 15, 298, 452, 238, 55, 12, 1, 22, 910, 2335, 1430, 455, 78, 14, 1, 30, 3017, 11992, 10179, 3505, 775, 105, 16, 1, 42, 9945, 66810, 74299, 31881, 7297, 1218, 136, 18, 1, 56
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Examples

			Array begins:
      k=1:  k=2:  k=3:  k=4:  k=5:  k=6:
  n=1:  1     1     1     1     1     1
  n=2:  2     4     6     8    10    12
  n=3:  3    10    21    36    55    78
  n=4:  5    33   104   238   455   775
  n=5:  7    91   452  1430  3505  7297
  n=6: 11   298  2335 10179 31881 80897
Non-isomorphic representatives of the A(3,3) = 21 multiset partitions:
  {{111}}          {{112}}          {{123}}
  {{1}{11}}        {{1}{12}}        {{1}{23}}
  {{1}}{{11}}      {{2}{11}}        {{1}}{{23}}
  {{1}{1}{1}}      {{1}}{{12}}      {{1}{2}{3}}
  {{1}}{{1}{1}}    {{1}{1}{2}}      {{1}}{{2}{3}}
  {{1}}{{1}}{{1}}  {{2}}{{11}}      {{1}}{{2}}{{3}}
                   {{1}}{{1}{2}}
                   {{2}}{{1}{1}}
                   {{1}}{{1}}{{2}}
		

Crossrefs

Columns: A000041 (k=1), A007716 (k=2), A318566 (k=3).
Rows: A000012 (n=1), A005843 (n=2), A014105 (n=3).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]];
    expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Apply[Rule,Table[{undats[m][[i]],i},{i,Length[undats[m]]}],{1}]],First[Sort[expnorm[m,1]]]]];
    expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#1>=aft&]}]},Union@@(expnorm[#1,aft+1]&)/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,[__]]],{par,First/@Position[mx,Max[mx]]}]]]];
    strnorm[n_]:=(Flatten[MapIndexed[Table[#2,{#1}]&,#1]]&)/@IntegerPartitions[n];
    kmp[n_,k_]:=kmp[n,k]=If[k==1,strnorm[n],Union[expnorm/@Join@@mps/@kmp[n,k-1]]];
    Table[Length[kmp[sum-k,k]],{sum,1,7},{k,1,sum-1}]

Extensions

a(46)-a(56) from Robert Price, May 11 2021

A033570 Pentagonal numbers with odd index: a(n) = (2*n+1)*(3*n+1).

Original entry on oeis.org

1, 12, 35, 70, 117, 176, 247, 330, 425, 532, 651, 782, 925, 1080, 1247, 1426, 1617, 1820, 2035, 2262, 2501, 2752, 3015, 3290, 3577, 3876, 4187, 4510, 4845, 5192, 5551, 5922, 6305, 6700, 7107, 7526, 7957, 8400, 8855, 9322, 9801, 10292, 10795, 11310, 11837
Offset: 0

Views

Author

Keywords

Comments

If Y is a 3-subset of an 2*n-set X then, for n >= 4, a(n-2) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
Sequence found by reading the line (one of the diagonal axes) from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that 2 <= x/(n*y) < 3 is given by n/a(n) (for n>1). - Andres Cicuttin, Dec 11 2016
a(n) is the sum of 2*n+1 consecutive integers starting from 2*n+1. - Bruno Berselli, Jan 16 2018

Crossrefs

Programs

  • GAP
    List([0..50], n-> (2*n+1)*(3*n+1)); # G. C. Greubel, Oct 12 2019
  • Magma
    [(2*n+1)*(3*n+1) : n in [0..50]]; // Wesley Ivan Hurt, Dec 11 2016
    
  • Maple
    A033570:=n->(2*n+1)*(3*n+1); seq(A033570(n), n=0..40); # Wesley Ivan Hurt, Mar 18 2014
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,12,35},50]
    Table[(2 n + 1) (3 n + 1), {n, 0, 50}] (* or *)
    CoefficientList[Series[(1 + 9 x + 2 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Dec 12 2016 *)
    PolygonalNumber[5,Range[1,101,2]] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n)=(2*n+1)*(3*n+1) \\ Charles R Greathouse IV, Jun 11 2015
    
  • Sage
    [(2*n+1)*(3*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
    

Formula

G.f.: (1 + 9*x + 2*x^2)/(1-x)^3.
a(n) = a(n-1) + 12*n-1 for n > 0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
a(n) = A000326(2*n+1) = A191967(2*n+1). - Reinhard Zumkeller, Jul 07 2012
a(n) = Sum_{i=1..2*(n+1)-1} 4*(n+1) - 2 - i. - Wesley Ivan Hurt, Mar 18 2014
E.g.f.: (1 + 11*x + 6*x^2)*exp(x). - G. C. Greubel, Oct 12 2019
From Amiram Eldar, Feb 20 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi/(2*sqrt(3)) - 2*log(2) + 3*log(3)/2.
Sum_{n>=0} (-1)^n/a(n) = (1/sqrt(3) - 1/2)*Pi + log(2). (End)
a(n) = A016754(n) + A014105(n). - Leo Tavares, May 24 2022

Extensions

More terms from Ray Chandler, Dec 08 2011

A126890 Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 30 2006

Keywords

Comments

T(n,k) + T(n,n-k) = A014105(n);
row sums give A059270; Sum_{k=0..n-1} T(n,k) = A000578(n);
central terms give A007742; T(2*n+1,n) = A016754(n);
T(n,0) = A000217(n);
T(n,1) = A000096(n) for n > 0;
T(n,2) = A055998(n) for n > 1;
T(n,3) = A055999(n) for n > 2;
T(n,4) = A056000(n) for n > 3;
T(n,5) = A056115(n) for n > 4;
T(n,6) = A056119(n) for n > 5;
T(n,7) = A056121(n) for n > 6;
T(n,8) = A056126(n) for n > 7;
T(n,10) = A101859(n-1) for n > 9;
T(n,n-3) = A095794(n-1) for n > 2;
T(n,n-2) = A045943(n-1) for n > 1;
T(n,n-1) = A000326(n) for n > 0;
T(n,n) = A005449(n).

Examples

			From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
   0;
   1,  2;
   3,  5,  7;
   6,  9, 12, 15;
  10, 14, 18, 22, 26;
  15, 20, 25, 30, 35, 40;
  21, 27, 33, 39, 45, 51, 57;
  28, 35, 42, 49, 56, 63, 70, 77; (End)
		

References

  • Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.

Crossrefs

Cf. A110449.

Programs

  • Haskell
    a126890 n k = a126890_tabl !! n !! k
    a126890_row n = a126890_tabl !! n
    a126890_tabl = map fst $ iterate
       (\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)

Formula

T(n,k) = T(n,k-1) + n, for k <= n. - Philippe Deléham, Oct 03 2011

A094416 Array read by antidiagonals: generalized ordered Bell numbers Bo(r,n).

Original entry on oeis.org

1, 2, 3, 3, 10, 13, 4, 21, 74, 75, 5, 36, 219, 730, 541, 6, 55, 484, 3045, 9002, 4683, 7, 78, 905, 8676, 52923, 133210, 47293, 8, 105, 1518, 19855, 194404, 1103781, 2299754, 545835, 9, 136, 2359, 39390, 544505, 5227236, 26857659, 45375130, 7087261
Offset: 1

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Also, r times the number of (r+1)-level labeled linear rooted trees with n leaves.
"AIJ" (ordered, indistinct, labeled) transform of {r,r,r,...}.
Stirling transform of r^n*n!, i.e. of e.g.f. 1/(1-r*x).
Also, Bo(r,s) is ((x*d/dx)^n)(1/(1+r-r*x)) evaluated at x=1.
r-th ordered Bell polynomial (A019538) evaluated at n.
Bo(r,n) is the n-th moment of a geometric distribution with probability parameter = 1/(r+1). Here, geometric distribution is the number of failures prior to the first success. - Geoffrey Critzer, Jan 01 2019
Row r (starting at r=0), Bo(r+1, n), is the Akiyama-Tanigawa algorithm applied to the powers of r+1. See Python program below. - Shel Kaphan, May 03 2024

Examples

			Array begins as:
  1,  3,   13,    75,     541,     4683,      47293, ...
  2, 10,   74,   730,    9002,   133210,    2299754, ...
  3, 21,  219,  3045,   52923,  1103781,   26857659, ...
  4, 36,  484,  8676,  194404,  5227236,  163978084, ...
  5, 55,  905, 19855,  544505, 17919055,  687978905, ...
  6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ...
		

Crossrefs

Columns include A014105, A094421.
Main diagonal is A094420.
Antidiagonal sums are A094422.

Programs

  • Magma
    A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
    [A094416(n-k+1,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 12 2024
    
  • Mathematica
    Bo[, 0]=1; Bo[r, n_]:= Bo[r, n]= r*Sum[Binomial[n,k] Bo[r,n-k], {k, n}];
    Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
  • Python
    # The Akiyama-Tanigawa algorithm applied to the powers of r + 1
    # generates the rows. Adds one row (r=0) and one column (n=0).
    # Adapted from Peter Luschny on A371568.
    def f(n, r): return (r + 1)**n
    def ATtransform(r, len, f):
      A = [0] * len
      R = [0] * len
      for n in range(len):
          R[n] = f(n, r)
          for j in range(n, 0, -1):
              R[j - 1] = j * (R[j] - R[j - 1])
          A[n] = R[0]
      return A
    for r in range(8): print([r], ATtransform(r, 8, f)) # Shel Kaphan, May 03 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    flatten([[A094416(n-k+1,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(1 + r*(1 - exp(x))).
Bo(r, n) = Sum_{k=0..n} k!*r^k*Stirling2(n, k) = 1/(r+1) * Sum_{k>=1} k^n * (r/(r+1))^k, for r>0, n>0.
Recurrence: Bo(r, n) = r * Sum_{k=1..n} C(n, k)*Bo(r, n-k), with Bo(r, 0) = 1.
Bo(r,0) = 1, Bo(r,n) = r*Bo(r,n-1) - (r+1)*Sum_{j=1..n-1} (-1)^j * binomial(n-1,j) * Bo(r,n-j). - Seiichi Manyama, Nov 17 2023

Extensions

Offset corrected by Geoffrey Critzer, Jan 01 2019

A053123 Triangle of coefficients of shifted Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in decreasing order).

Original entry on oeis.org

1, 1, -2, 1, -4, 3, 1, -6, 10, -4, 1, -8, 21, -20, 5, 1, -10, 36, -56, 35, -6, 1, -12, 55, -120, 126, -56, 7, 1, -14, 78, -220, 330, -252, 84, -8, 1, -16, 105, -364, 715, -792, 462, -120, 9, 1, -18, 136, -560, 1365, -2002, 1716, -792, 165, -10, 1, -20, 171, -816, 2380, -4368, 5005, -3432, 1287, -220, 11, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,m) = A053122(n,n-m).
G.f. for row polynomials and row sums same as in A053122.
Unsigned column sequences are A000012, A005843, A014105, A002492 for m=0..3, resp. and A053126-A053131 for m=4..9.
This is also the coefficient triangle for Chebyshev's U(2*n+1,x) polynomials expanded in decreasing odd powers of (2*x): U(2*n+1,x) = Sum_{m=0..n} T(n,m)*(2*x)^(2*(n-m)+1). See the W. Lang link given in A053125.
Unsigned version is mirror image of A078812. - Philippe Deléham, Dec 02 2008

Examples

			Triangle begins:
  1;
  1,  -2;
  1,  -4,  3;
  1,  -6, 10,   -4;
  1,  -8, 21,  -20,   5;
  1, -10, 36,  -56,  35,  -6;
  1, -12, 55, -120, 126, -56, 7; ...
E.g. fourth row (n=3) {1,-6,10,-4} corresponds to polynomial S(3,x-2) = x^3-6*x^2+10*x-4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Stephen Barnett, "Matrices: Methods and Applications", Oxford University Press, 1990, p. 132, 343.

Crossrefs

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> (-1)^k*Binomial(2*n-k+1,k) ))); # G. C. Greubel, Jul 23 2019
  • Magma
    [(-1)^k*Binomial(2*n-k+1,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    A053123 := proc(n,m)
        (-1)^m*binomial(2*n+1-m,m) ;
    end proc: # R. J. Mathar, Sep 08 2013
  • Mathematica
    T[n_, m_]:= (-1)^m*Binomial[2*n+1-m, m]; Table[T[n, m], {n, 0, 11}, {m, 0, n}]//Flatten (* Jean-François Alcover, Mar 05 2014, after R. J. Mathar *)
  • PARI
    for(n=0,10, for(k=0,n, print1((-1)^k*binomial(2*n-k+1,k), ", "))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    [[(-1)^k*binomial(2*n-k+1,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 23 2019
    

Formula

T(n, m) = 0 if n
T(n, m) = -2*T(n-1, m-1) + T(n-1, m) - T(n-2, m-2), T(n, -2) = 0, T(-2, m) = 0, T(n, -1) = 0 = T(-1, m), T(0, 0) = 1, T(n, m) = 0 if n
G.f. for m-th column (signed triangle): ((-1)^m)*x^m*Po(m+1, x)/(1-x)^(m+1), with Po(k, x) := Sum_{j=0..floor(k/2)} binomial(k, 2*j+1)*x^j.
The n-th degree polynomial is the characteristic equation for an n X n tridiagonal matrix with (diagonal = all 2's, sub and superdiagonals all -1's and the rest 0's), exemplified by the 4X4 matrix M = [2 -1 0 0 / -1 2 -1 0 / 0 -1 2 -1 / 0 0 -1 2]. - Gary W. Adamson, Jan 05 2005
Sum_{m=0..n} T(n,m)*(c(n))^(2*n-2*m) = 1/c(n), where c(n) = 2*cos(Pi/(2*n+3)). - L. Edson Jeffery, Sep 13 2013
Previous Showing 51-60 of 203 results. Next