cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 228 results. Next

A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2014

Keywords

Comments

Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid.
On the other hand the sequence also has a symmetric representation in two dimensions, see Example.
From Omar E. Pol, Dec 31 2016: (Start)
We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593.
The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links).
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m).
Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the pyramid see A237593 and all its related sequences. (End)

Examples

			Illustration of initial terms:
----------------------------------------------------------------------
a(n)                             Diagram
----------------------------------------------------------------------
0    _
1   |_|\ _
2    \ _| |\ _
3     |_ _| | |\ _
4      \ _ _|_| | |\ _
4       |_ _|  _| | | |\ _
6        \ _ _|  _| | | | |\ _
7         |_ _ _|  _|_| | | | |\ _
8          \ _ _ _|  _ _| | | | | |\ _
6           |_ _ _| |    _| | | | | | |\ _
10           \ _ _ _|  _|  _|_| | | | | | |\ _
12            |_ _ _ _|  _|  _ _| | | | | | | |\ _
12             \ _ _ _ _|  _|  _ _| | | | | | | | |\ _
8               |_ _ _ _| |  _|  _ _|_| | | | | | | | |\ _
14               \ _ _ _ _| |  _| |  _ _| | | | | | | | | |\ _
15                |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |\ _
16                 \ _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |\
13                  |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | | |
18                   \ _ _ _ _ _| |  _|  _|    _ _| | | | | | | | | |
18                    |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | | |
20                     \ _ _ _ _ _ _| |      _| |  _ _ _| | | | | | |
12                      |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | | |
22                       \ _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | | |
28                        |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| | |
24                         \ _ _ _ _ _ _ _| |  _| |    _| |  _ _ _| |
14                          |_ _ _ _ _ _ _| | |  _|  _|  _| |  _ _ _|
26                           \ _ _ _ _ _ _ _| | |_ _|  _|  _| |
24                            |_ _ _ _ _ _ _ _| |  _ _|  _|  _|
28                             \ _ _ _ _ _ _ _ _| |  _ _|  _|
24                              |_ _ _ _ _ _ _ _| | |  _ _|
30                               \ _ _ _ _ _ _ _ _| | |
31                                |_ _ _ _ _ _ _ _ _| |
32                                 \ _ _ _ _ _ _ _ _ _|
...
a(n) is the total area of the n-th set of symmetric regions in the diagram.
.
From _Omar E. Pol_, Aug 21 2015: (Start)
The above structure contains a hidden pattern, simpler, as shown below:
Level                              _ _
1                                _| | |_
2                              _|  _|_  |_
3                            _|   | | |   |_
4                          _|    _| | |_    |_
5                        _|     |  _|_  |     |_
6                      _|      _| | | | |_      |_
7                    _|       |   | | |   |       |_
8                  _|        _|  _| | |_  |_        |_
9                _|         |   |  _|_  |   |         |_
10             _|          _|   | | | | |   |_          |_
11           _|           |    _| | | | |_    |           |_
12         _|            _|   |   | | |   |   |_            |_
13       _|             |     |  _| | |_  |     |             |_
14     _|              _|    _| |  _|_  | |_    |_              |_
15   _|               |     |   | | | | |   |     |               |_
16  |                 |     |   | | | | |   |     |                 |
...
The symmetric pattern emerges from the front view of the stepped pyramid.
Note that starting from this diagram A000203 is obtained as follows:
In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n.
The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End)
From _Omar E. Pol_, Dec 31 2016: (Start)
Illustration of the top view of the pyramid with 16 levels:
.
n   A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1      1   =      1      |_| | | | | | | | | | | | | | | |
2      3   =      3      |_ _|_| | | | | | | | | | | | | |
3      4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
4      7   =      7      |_ _ _|    _|_| | | | | | | | | |
5      6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
6     12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
7      8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
8     15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
9     13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
16    31   =     31      |_ _ _ _ _ _ _ _ _|
... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *)
    Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *)
    With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(2*n-1) + a(2n) = A224880(n).

A066186 Sum of all parts of all partitions of n.

Original entry on oeis.org

0, 1, 4, 9, 20, 35, 66, 105, 176, 270, 420, 616, 924, 1313, 1890, 2640, 3696, 5049, 6930, 9310, 12540, 16632, 22044, 28865, 37800, 48950, 63336, 81270, 104104, 132385, 168120, 212102, 267168, 334719, 418540, 520905, 647172, 800569, 988570, 1216215, 1493520
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

Sum of the zeroth moments of all partitions of n.
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that any part z is composed of labeled elements of amount 1, i.e., z = 1_1 + 1_2 + ... + 1_z. Then one can take from z a single element in z different ways. E.g., for n=3 to n=2 we have A066186(3) = 9 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [111], [12] --> [111], [12] --> [2], [3] --> 2, [3] --> 2, [3] --> 2. For the unlabeled case, one can take a single element from z in only one way. Then the number of one-element transitions from the integer partitions of n to the partitions of n-1 is given by A000070. E.g., A000070(3) = 4 and for the transition from n=3 to n=2 one has [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. - Thomas Wieder, May 20 2004
Also sum of all parts of all regions of n (Cf. A206437). - Omar E. Pol, Jan 13 2013
From Omar E. Pol, Jan 19 2021: (Start)
Apart from initial zero this is also as follows:
Convolution of A000203 and A000041.
Convolution of A024916 and A002865.
For n >= 1, a(n) is also the number of cells in a symmetric polycube in which the terraces are the symmetric representation of sigma(k), for k = n..1, (cf. A237593) starting from the base and located at the levels A000041(0)..A000041(n-1) respectively. The polycube looks like a symmetric tower (cf. A221529). A dissection is a three-dimensional spiral whose top view is described in A239660. The growth of the volume of the polycube represents each convolution mentioned above. (End)
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the sum of all divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also the convolution of A340793 and A000070. (End)

Examples

			a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9.
a(4)=20 because A000041(4)=5 and 4*5=20.
		

Crossrefs

Cf. A000041, A093694, A000070, A132825, A001787 (same for ordered partitions), A277029, A000203, A221529, A237593, A239660.
First differences give A138879. - Omar E. Pol, Aug 16 2013

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
  • Mathematica
    PartitionsP[ Range[0, 60] ] * Range[0, 60]
  • PARI
    a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
    
  • Python
    from sympy import npartitions
    def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
  • Sage
    [n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
    

Formula

a(n) = n * A000041(n). - Omar E. Pol, Oct 10 2011
G.f.: x * (d/dx) Product_{k>=1} 1/(1-x^k), i.e., derivative of g.f. for A000041. - Jon Perry, Mar 17 2004 (adjusted to match the offset by Geoffrey Critzer, Nov 29 2014)
Equals A132825 * [1, 2, 3, ...]. - Gary W. Adamson, Sep 02 2007
a(n) = A066967(n) + A066966(n). - Omar E. Pol, Mar 10 2012
a(n) = A207381(n) + A207382(n). - Omar E. Pol, Mar 13 2012
a(n) = A006128(n) + A196087(n). - Omar E. Pol, Apr 22 2012
a(n) = A220909(n)/2. - Omar E. Pol, Jan 13 2013
a(n) = Sum_{k=1..n} A000203(k)*A000041(n-k), n >= 1. - Omar E. Pol, Jan 20 2013
a(n) = Sum_{k=1..n} k*A036043(n,n-k+1). - L. Edson Jeffery, Aug 03 2013
a(n) = Sum_{k=1..n} A024916(k)*A002865(n-k), n >= 1. - Omar E. Pol, Jul 13 2014
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016
a(n) = Sum_{k=1..n} A340793(k)*A000070(n-k), n >= 1. - Omar E. Pol, Feb 04 2021

Extensions

a(0) added by Franklin T. Adams-Watters, Jul 28 2014

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A002088 Sum of totient function: a(n) = Sum_{k=1..n} phi(k), cf. A000010.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 18, 22, 28, 32, 42, 46, 58, 64, 72, 80, 96, 102, 120, 128, 140, 150, 172, 180, 200, 212, 230, 242, 270, 278, 308, 324, 344, 360, 384, 396, 432, 450, 474, 490, 530, 542, 584, 604, 628, 650, 696, 712, 754, 774, 806, 830, 882, 900, 940, 964
Offset: 0

Views

Author

Keywords

Comments

Number of elements in the set {(x,y): 1 <= x <= y <= n, 1=gcd(x,y)}. - Michael Somos, Jun 13 1999
Sum_{k=1..n} phi(k) gives the number of distinct arithmetic progressions which contain an infinite number of primes and whose difference does not exceed n. E.g., {1k+1}, {2k+1}, {3k+1, 3k+2}, {4k+1, 4k+3}, {5k+1, ..5k+4} means 10 sequences. - Labos Elemer, May 02 2001
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach Pi^4/36 = zeta(2)^2 = A098198 ~2.705808084277845. - Labos Elemer, Sep 20 2004 (corrected by Peter Pein, Apr 28 2009)
Also the number of rationals p/q in (0,1] with denominators q<=n. - Franz Vrabec, Jan 29 2005
a(n) is the number of initial segments of Beatty sequences for real numbers > 1, cut off when the next term in the sequence would be >= n. For example, the sequence 1,2 is included for n=3 and n=4, but not for n >= 5 because the next term of the Beatty sequence must be 3 or 4. Problem suggested by David W. Wilson. - Franklin T. Adams-Watters, Oct 19 2006
Number of complex numbers satisfying any one of {x^1=1, x^2=1, x^3=1, x^4=1, x^5=1, ..., x^n=1}. - Paul Smith (math.idiot(AT)gmail.com), Mar 19 2007
a(n+2) equals the number of Sturmian words of length n which are 'special', prefix of two Sturmian words of length n+1. - Fred Lunnon, Sep 05 2010
For n > 1: A020652(a(n)) = 1 and A038567(a(n)) = n; for n > 0: A214803(a(n)) = 1. - Reinhard Zumkeller, Jul 29 2012
Also number of elements in the set {(x,y): 1 <= x + y <= n, x >= 0, y > 0, with x and y relatively prime integers}. Thus, the number of reduced rational numbers x/y with x nonnegative, y positive, and x + y <= n. (For n >= 1, 0 <= x/y <= n - 1, clearly including each integer in this interval.) - Rick L. Shepherd, Apr 08 2014
This function, the partial sums of phi = A000010, is sometimes denoted by (uppercase) Phi. - M. F. Hasler, Apr 18 2015
From Roger Ford, Jan 16 2016: (Start)
For n >= 1: a(n) is the number of perfect arched semi-meander solutions with n arches. To be perfect the number of arch groupings must equal the number of arches with a length of 1 in the current generation and every preceding generation.
Example: p is the number of arches with length 1 (/\), g is the number of arch groups (-), n is number of arches in the top half of a semi-meander solution
/\
/\ //\\
//\\-/\-///\\\- n=6 p=3 g=3 Each preceding arch configuration
/\ /\ is formed by attaching the arch
/\-//\\-//\\- n=5 p=3 g=3 end in the first position and the
/\ arch end in the last position.
//\\
///\\\-/\- n=4 p=2 g=2
/\
//\\-/\- n=3 p=2 g=2
/\-/\- n=2 p=2 g=2
/\- n=1 p=1 g=1. (End)
a(n) is the number of distinct lists of binary words of length n that are balanced (Sturmian). - Dan Rockwell, Will Wodrich, Aaliyah Fiala, and Bob Burton, May 30 2019
2013 IMO Problem 6 shows that a(n) is the number of ways to arrange the numbers 0, 1, ..., n on a circle such that for any numbers 0 <= a < b < c < d <= n, the chord joining a and d does not intersect with the chord intersecting b and c, with rotation counted as same. - Yifan Xie, Aug 26 2025

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 12*x^6 + 18*x^7 + 22*x^8 + 28*x^9 + ...
		

References

  • A. Beiler, Recreations in the Theory of Numbers, Dover Publications, 1966, Chap. XVI.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 138.
  • M. N. Huxley, The Distribution of Prime Numbers, Oxford Univ. Press, 1972, p. 6.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section I.21.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 94, Problem 11.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.

Crossrefs

Programs

  • GAP
    List([1..60],n->Sum([1..n],i->Phi(i))); # Muniru A Asiru, Jul 31 2018
    
  • Haskell
    a002088 n = a002088_list !! n
    a002088_list = scanl (+) 0 a000010_list -- Reinhard Zumkeller, Jul 29 2012
    
  • Magma
    [&+[EulerPhi(i): i in [1..n]]: n in [1..60]]; // Vincenzo Librandi, Aug 01 2018
    
  • Maple
    with(numtheory): A002088:=n->add(phi(i),i=1..n): seq(A002088(n), n=0..70);
  • Mathematica
    Table[Plus @@ EulerPhi[Range[n]], {n, 0, 57}] (* Alonso del Arte, May 30 2006 *)
    Accumulate[EulerPhi[Range[0,60]]] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    a(n)=sum(k=1,n,eulerphi(k)) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    a(n)=my(s=1); forsquarefree(k=1,n,s+=(n\k[1])^2*moebius(k)); s/2 \\ Charles R Greathouse IV, Oct 15 2021
    
  • PARI
    first(n)=my(v=vector(n),s); forfactored(k=1,n, v[k[1]]=s+=eulerphi(k)); v \\ Charles R Greathouse IV, Oct 15 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A002088(n): # based on second formula in A018805
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A002088(k1)-1)
            j, k1 = j2, n//j2
        return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021
  • Sage
    [sum(euler_phi(k) for k in (1..n)) for n in (0..60)] # G. C. Greubel, Nov 25 2018
    

Formula

a(n) = (3*n^2)/(Pi^2) + O(n log n).
More precisely, a(n) = (3/Pi^2)*n^2 + O(n*(log(n))^(2/3)*(log(log(n)))^(4/3)), (A. Walfisz 1963). - Benoit Cloitre, Feb 02 2003
a(n) = (1/2)*Sum_{k>=1} mu(k)*floor(n/k)*floor(1+n/k). - Benoit Cloitre, Apr 11 2003
a(n) = A000217(n) - A063985(n) = A018805(n) - A015614(n). - Reinhard Zumkeller, Jan 21 2013
A slightly simpler version of Cloitre's formula is a(n) = 1/2 + Sum_{k=1..oo} floor(n/k)^2*mu(k)/2. - Bill Gosper, Jul 25 2020
The quotient A024916(n)/a(n) = SummatorySigma/SummatoryTotient as n increases seems to approach (Pi^4)/36 = Zeta(2)^2 = 2.705808084277845. See also A067282. - Labos Elemer, Sep 21 2004
A024916(n)/a(n) = zeta(2)^2 + O(log(n)/n). This follows from asymptotic formulas for the sequences. - Franklin T. Adams-Watters, Oct 19 2006
Row sums of triangle A134542. - Gary W. Adamson, Oct 31 2007
G.f.: (Sum_{n>=1} mu(n)*x^n/(1-x^n)^2)/(1-x), where mu(n) = A008683(n). - Mamuka Jibladze, Apr 06 2015
a(n) = A005728(n) - 1, for n >= 0. - Wolfdieter Lang, Nov 22 2016
a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (M(floor(n/k)) - M(floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k) * floor(n/k) * floor(1+n/k))/2, where M(k) is the Mertens function (A002321) and mu(k) is the Moebius function (A008683). - Daniel Suteu, Nov 23 2018
a(n) = A015614(n)+1. - R. J. Mathar, Apr 26 2023
a(n) = A000217(n) - Sum{k=2..n} a(floor(n/k)). From summing over Id = 1 (Dirichlet convolution) phi. - Jason Xu, Jul 31 2024
a(n) = Sum_{k=1..n} k*A002321(floor(n/k)). - Ridouane Oudra, Jul 03 2025

Extensions

Additional comments from Len Smiley

A024816 Antisigma(n): Sum of the numbers less than n that do not divide n.

Original entry on oeis.org

0, 0, 2, 3, 9, 9, 20, 21, 32, 37, 54, 50, 77, 81, 96, 105, 135, 132, 170, 168, 199, 217, 252, 240, 294, 309, 338, 350, 405, 393, 464, 465, 513, 541, 582, 575, 665, 681, 724, 730, 819, 807, 902, 906, 957, 1009, 1080, 1052, 1168, 1182, 1254, 1280, 1377, 1365
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

a(n) is the sum of proper non-divisors of n, the row sum in triangle A173541. - Omar E. Pol, May 25 2010
a(n) is divisible by A000203(n) iff n is in A076617. - Bernard Schott, Apr 12 2022

Examples

			a(12)=50 as 5+7+8+9+10+11 = 50 (1,2,3,4,6 not included as they divide 12).
		

Crossrefs

Cf. A342344 (for a symmetric representation).

Programs

  • Haskell
    a024816 = sum . a173541_row  -- Reinhard Zumkeller, Feb 19 2014
    
  • Magma
    [n*(n+1) div 2- SumOfDivisors(n): n in [1..60]]; // Vincenzo Librandi, Dec 29 2015
    
  • Maple
    A024816 := proc(n)
        n*(n+1)/2-numtheory[sigma](n) ;
    end proc: # R. J. Mathar, Aug 03 2013
  • Mathematica
    Table[n(n + 1)/2 - DivisorSigma[1, n], {n, 55}] (* Robert G. Wilson v *)
    Table[Total[Complement[Range[n],Divisors[n]]],{n,60}] (* Harvey P. Dale, Sep 23 2012 *)
    With[{nn=60},#[[1]]-#[[2]]&/@Thread[{Accumulate[Range[nn]],DivisorSigma[ 1,Range[nn]]}]] (* Harvey P. Dale, Nov 22 2014 *)
  • PARI
    a(n)=n*(n+1)/2-sigma(n) \\ Charles R Greathouse IV, Mar 19 2012
    
  • Python
    from sympy import divisor_sigma
    def A024816(n): return (n*(n+1)>>1)-divisor_sigma(n) # Chai Wah Wu, Apr 28 2023
    
  • SageMath
    def A024816(n): return sum(k for k in (0..n-1) if not k.divides(n))
    print([A024816(n) for n in srange(1, 55)])  # Peter Luschny, Nov 14 2023

Formula

a(n) = n*(n+1)/2 - sigma(n) = A000217(n) - A000203(n).
a(n) = A024916(n-1) - A153485(n), n > 1. - Omar E. Pol, Jun 24 2014
From Wesley Ivan Hurt, Jul 16 2014, Dec 28 2015: (Start)
a(n) = Sum_{i=1..n} i * ( ceiling(n/i) - floor(n/i) ).
a(n) = Sum_{k=1..n} (n mod k) + (-n mod k). (End)
G.f.: x/(1 - x)^3 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 18 2017
From Omar E. Pol, Mar 21 2021: (Start)
a(n) = A244048(n) + A004125(n).
a(n) = A153485(n-1) + A004125(n), n >= 2. (End)
a(p) = (p-2)*(p+1)/2 for p prime. - Bernard Schott, Apr 12 2022

A072691 Decimal expansion of Pi^2/12.

Original entry on oeis.org

8, 2, 2, 4, 6, 7, 0, 3, 3, 4, 2, 4, 1, 1, 3, 2, 1, 8, 2, 3, 6, 2, 0, 7, 5, 8, 3, 3, 2, 3, 0, 1, 2, 5, 9, 4, 6, 0, 9, 4, 7, 4, 9, 5, 0, 6, 0, 3, 3, 9, 9, 2, 1, 8, 8, 6, 7, 7, 7, 9, 1, 1, 4, 6, 8, 5, 0, 0, 3, 7, 3, 5, 2, 0, 1, 6, 0, 0, 4, 3, 6, 9, 1, 6, 8, 1, 4, 4, 5, 0, 3, 0, 9, 8, 7, 9, 3, 5, 2, 6, 5, 2, 0, 0, 2
Offset: 0

Views

Author

Rick L. Shepherd, Jul 02 2002

Keywords

Examples

			0.822467033424113218236207583323..
		

References

  • C. C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 98
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.11 p. 126 and section 8.5 p. 501.
  • Jolley, Summation of Series, Dover (1961) eq. (234) page 44.

Crossrefs

Cf. A072692 (Pi^2/12 is in asymptotic formula related to sigma(n), A000203).
Cf. A113319 (sum_{i>=0} 1/(i^2+1)); A232883 (sum_{i>=0} 1/(2*i^2+1)).

Programs

Formula

Equals 1/(1*2) + 1/(2*4) + 1/(3*6) + 1/(4*8) + ... [Jolley]
Equals -dilogarithm(-1). - Rick L. Shepherd, Jul 21 2004
Equals Sum_{n>=1} ((-1)^(n+1))/n^2 [Clawson]. - Alonso del Arte, Aug 15 2012
Equals Integral_{x=0..1} log((1+x^3)/(1-x^3))/x dx. - Bruno Berselli, May 13 2013
From Jean-François Alcover, May 17 2013: (Start)
Equals zeta(2)/2 = A013661/2.
Equals Integral_{x=1..2} log(x)/(x-1) dx. (End)
Equals lim_{n->infinity} A244583(n)/prime(n)^2. See A244583 for details. - Richard R. Forberg, Jan 04 2015
Equals Sum_{k>=1} H(k)/(k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 20 2020
Equals Integral_{0..infinity} x/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8, for s=2, p. 801. - Wolfdieter Lang, Sep 16 2020
Equals lim_{n->infinity} A024916(n)/(n^2). - Omar E. Pol, Dec 15 2021
Integral_{x=0..1} -log(x)/(x+1) dx. - Bernard Schott, Apr 25 2022
Equals 1/2 + Sum_{k>=1} H(k)/(k*(k+1)*(k+2)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Bracken, 2023). - Amiram Eldar, Oct 06 2023
Equals Integral_{x >= 0} x^2/cosh(x)^2 dx. - Peter Bala, Jun 20 2024
Equals 1 + (1/8)*Sum_{k >= 0} (-1)^(k-1) * (10*k + 13)/((k + 1)*(2*k + 1)^2*(2*k + 3)^2*binomial(2*k, k)). See Catalan, Section 35, equation 54. - Peter Bala, Aug 17 2024
Equals Integral_{x=0..oo} ((arctan(x) - Pi/4)*log(x^2 + 1))/(x^2) dx. - Kritsada Moomuang, Jun 04 2025

A034856 a(n) = binomial(n+1, 2) + n - 1 = n*(n+3)/2 - 1.

Original entry on oeis.org

1, 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251, 274, 298, 323, 349, 376, 404, 433, 463, 494, 526, 559, 593, 628, 664, 701, 739, 778, 818, 859, 901, 944, 988, 1033, 1079, 1126, 1174, 1223, 1273, 1324, 1376, 1429, 1483
Offset: 1

Views

Author

Keywords

Comments

Number of 1's in the n X n lower Hessenberg (0,1)-matrix (i.e., the matrix having 1's on or below the superdiagonal and 0's above the superdiagonal).
If a 2-set Y and 2-set Z, having one element in common, are subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007
Number of binary operations which have to be added to Moisil's algebras to obtain algebraic counterparts of n-valued Łukasiewicz logics. See the Wójcicki and Malinowski book, page 31. - Artur Jasinski, Feb 25 2010
Also (n + 1)!(-1)^(n + 1) times the determinant of the n X n matrix given by m(i,j) = i/(i+1) if i=j and otherwise 1. For example, (5+1)! * ((-1)^(5+1)) * Det[{{1/2, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1}, {1, 1, 3/4, 1, 1}, {1, 1, 1, 4/5, 1}, {1, 1, 1, 1, 5/6}}] = 19 = a(5), and (6+1)! * ((-1)^(6+1)) * Det[{{1/2, 1, 1, 1, 1, 1}, {1, 2/3, 1, 1, 1, 1}, {1, 1, 3/4, 1, 1, 1}, {1, 1, 1, 4/5, 1, 1}, {1, 1, 1, 1, 5/6, 1}, {1, 1, 1, 1, 1, 6/7}}] = 26 = a(6). - John M. Campbell, May 20 2011
2*a(n-1) = n*(n+1) - 4, n>=0, with a(-1) = -2 and a(0) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 17 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) is not divisible by 3, 5, 7, or 11. - Vladimir Shevelev, Feb 03 2014
With a(0) = 1 and a(1) = 2, a(n-1) is the number of distinct values of 1 +- 2 +- 3 +- ... +- n, for n > 0. - Derek Orr, Mar 11 2015
Also, numbers m such that 8*m+17 is a square. - Bruno Berselli, Sep 16 2015
Omar E. Pol's formula from Apr 23 2008 can be interpreted as the position of an element located on the third diagonal of an triangular array (read by rows) provided n > 1. - Enrique Pérez Herrero, Aug 29 2016
a(n) is the sum of the numerator and denominator of the fraction that is the sum of 2/(n-1) + 2/n; all fractions are reduced and n > 2. - J. M. Bergot, Jun 14 2017
a(n) is also the number of maximal irredundant sets in the (n+2)-path complement graph for n > 1. - Eric W. Weisstein, Apr 12 2018
From Klaus Purath, Dec 07 2020: (Start)
a(n) is not divisible by primes listed in A038890. The prime factors are given in A038889 and the prime terms of the sequence are listed in A124199.
Each odd prime factor p divides exactly 2 out of any p consecutive terms with the exception of 17, which appears only once in such an interval of terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -3 (mod p), see examples.
If A is a sequence satisfying the recurrence t(n) = 5*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 4 or A(0) = -1, A(1) = n-1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i for i>0. (End)
Mark each point on a 4^n grid with the number of points that are visible from the point; for n > 1, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 23 2021
The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the external perimeter and the perimeter of inscribed squares having the cell (1,1) as a unique common vertex. See Spezia link. - Stefano Spezia, May 28 2025

Examples

			From _Bruno Berselli_, Mar 09 2015: (Start)
By the definition (first formula):
----------------------------------------------------------------------
  1       4         8           13            19              26
----------------------------------------------------------------------
                                                              X
                                              X              X X
                                X            X X            X X X
                    X          X X          X X X          X X X X
          X        X X        X X X        X X X X        X X X X X
  X      X X      X X X      X X X X      X X X X X      X X X X X X
          X        X X        X X X        X X X X        X X X X X
----------------------------------------------------------------------
(End)
From _Klaus Purath_, Dec 07 2020: (Start)
Assuming a(i) is divisible by p with 0 < i < p and a(k) is the next term divisible by p, then from i + k == -3 (mod p) follows that k = min(p*m - i - 3) != i for any integer m.
(1) 17|a(7) => k = min(17*m - 10) != 7 => m = 2, k = 24 == 7 (mod 17). Thus every a(17*m + 7) is divisible by 17.
(2) a(9) = 53 => k = min(53*m - 12) != 9 => m = 1, k = 41. Thus every a(53*m + 9) and a(53*m + 41) is divisible by 53.
(3) 101|a(273) => 229 == 71 (mod 101) => k = min(101*m - 74) != 71 => m = 1, k = 27. Thus every a(101*m + 27) and a(101*m + 71) is divisible by 101. (End)
From _Omar E. Pol_, Aug 08 2021: (Start)
Illustration of initial terms:                             _ _
.                                           _ _           |_|_|_
.                              _ _         |_|_|_         |_|_|_|_
.                   _ _       |_|_|_       |_|_|_|_       |_|_|_|_|_
.          _ _     |_|_|_     |_|_|_|_     |_|_|_|_|_     |_|_|_|_|_|_
.   _     |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.  |_|    |_|_|    |_|_|_|    |_|_|_|_|    |_|_|_|_|_|    |_|_|_|_|_|_|
.
.   1       4         8          13            19              26
------------------------------------------------------------------------ (End)
		

References

  • A. S. Karpenko, Łukasiewicz's Logics and Prime Numbers, 2006 (English translation).
  • G. C. Moisil, Essais sur les logiques non-chrysippiennes, Ed. Academiei, Bucharest, 1972.
  • Wójcicki and Malinowski, eds., Łukasiewicz Sentential Calculi, Wrocław: Ossolineum, 1977.

Crossrefs

Subsequence of A165157.
Triangular numbers (A000217) minus two.
Third diagonal of triangle in A059317.

Programs

  • Haskell
    a034856 = subtract 1 . a000096 -- Reinhard Zumkeller, Feb 20 2015
    
  • Magma
    [Binomial(n + 1, 2) + n - 1: n in [1..60]]; // Vincenzo Librandi, May 21 2011
    
  • Maple
    a := n -> hypergeom([-2, n-1], [1], -1);
    seq(simplify(a(n)), n=1..53); # Peter Luschny, Aug 02 2014
  • Mathematica
    f[n_] := n (n + 3)/2 - 1; Array[f, 55] (* or *) k = 2; NestList[(k++; # + k) &, 1, 55] (* Robert G. Wilson v, Jun 11 2010 *)
    Table[Binomial[n + 1, 2] + n - 1, {n, 53}] (* or *)
    Rest@ CoefficientList[Series[x (1 + x - x^2)/(1 - x)^3, {x, 0, 53}], x] (* Michael De Vlieger, Aug 29 2016 *)
  • Maxima
    A034856(n) := block(
            n-1+(n+1)*n/2
    )$ /* R. J. Mathar, Mar 19 2012 */
    
  • PARI
    A034856(n)=(n+3)*n\2-1 \\ M. F. Hasler, Jan 21 2015
    
  • Python
    def A034856(n): return n*(n+3)//2 -1 # G. C. Greubel, Jun 15 2025

Formula

G.f.: A(x) = x*(1 + x - x^2)/(1 - x)^3.
a(n) = A049600(3, n-2).
a(n) = binomial(n+2, 2) - 2. - Paul Barry, Feb 27 2003
With offset 5, this is binomial(n, 0) - 2*binomial(n, 1) + binomial(n, 2), the binomial transform of (1, -2, 1, 0, 0, 0, ...). - Paul Barry, Jul 01 2003
Row sums of triangle A131818. - Gary W. Adamson, Jul 27 2007
Binomial transform of (1, 3, 1, 0, 0, 0, ...). Also equals A130296 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
Row sums of triangle A134225. - Gary W. Adamson, Oct 14 2007
a(n) = A000217(n+1) - 2. - Omar E. Pol, Apr 23 2008
From Jaroslav Krizek, Sep 05 2009: (Start)
a(n) = a(n-1) + n + 1 for n >= 1.
a(n) = n*(n-1)/2 + 2*n - 1.
a(n) = A000217(n-1) + A005408(n-1) = A005843(n-1) + A000124(n-1). (End)
a(n) = Hyper2F1([-2, n-1], [1], -1). - Peter Luschny, Aug 02 2014
a(n) = floor[1/(-1 + Sum_{m >= n+1} 1/S2(m,n+1))], where S2 is A008277. - Richard R. Forberg, Jan 17 2015
a(n) = A101881(2*(n-1)). - Reinhard Zumkeller, Feb 20 2015
a(n) = A253909(n+3) - A000217(n+3). - David Neil McGrath, May 23 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - David Neil McGrath, May 23 2015
For n > 1, a(n) = 4*binomial(n-1,1) + binomial(n-2,2), comprising the third column of A267633. - Tom Copeland, Jan 25 2016
From Klaus Purath, Dec 07 2020: (Start)
a(n) = A024206(n) + A024206(n+1).
a(2*n-1) = -A168244(n+1).
a(2*n) = A091823(n). (End)
Sum_{n>=1} 1/a(n) = 3/2 + 2*Pi*tan(sqrt(17)*Pi/2)/sqrt(17). - Amiram Eldar, Jan 06 2021
a(n) + a(n+1) = A028347(n+2). - R. J. Mathar, Mar 13 2021
a(n) = A000290(n) - A161680(n-1). - Omar E. Pol, Mar 26 2021
E.g.f.: 1 + exp(x)*(x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 05 2021
a(n) = A024916(n) - A244049(n). - Omar E. Pol, Aug 01 2021
a(n) = A000290(n) - A000217(n-2). - Omar E. Pol, Aug 05 2021

Extensions

More terms from Zerinvary Lajos, May 12 2006

A004125 Sum of remainders of n mod k, for k = 1, 2, 3, ..., n.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 8, 8, 12, 13, 22, 17, 28, 31, 36, 36, 51, 47, 64, 61, 70, 77, 98, 85, 103, 112, 125, 124, 151, 138, 167, 167, 184, 197, 218, 198, 233, 248, 269, 258, 297, 284, 325, 328, 339, 358, 403, 374, 414, 420, 449, 454, 505, 492, 529, 520, 553, 578, 635, 586, 645, 672
Offset: 1

Views

Author

Keywords

Comments

Row sums of A051778, A048158. Antidiagonal sums of A051127. - L. Edson Jeffery, Mar 03 2012
Let u_m(n) = Sum_{k=1..n} (n^m mod k^m) with m integer. As n-->+oo, u_m(n) ~ (n^(m+1))*(1-(1/(m+1))*Zeta(1+1/m)). Proof: using Riemann sums, we have u_m(n) ~ (n^(m+1))*int(((1/x)[nonascii character here])*(1-floor(x^m)/(x^m)),x=1..+oo) and the result follows. - Yalcin Aktar, Jul 30 2008 [x is the real variable of integration. The nonascii character (which was illegible in the original message) is probably some form of multiplication sign. I suggest that we leave it the way it is for now. - N. J. A. Sloane, Dec 07 2014]
Also the alternating row sums of A236112. - Omar E. Pol, Jan 26 2014
If n is prime then a(n) = a(n-1) + n - 2. - Omar E. Pol, Mar 19 2014
If n is a power of 2 greater than 1, then a(n) = a(n-1). - David Morales Marciel, Oct 21 2015
It appears that if n is an even perfect number, then a(n) = a(n-1) - 1. - Omar E. Pol, Oct 21 2015
Partial sums of A235796. - Omar E. Pol, Jun 26 2016
Aside from a(n) = a(n-1) for n = 2^m, the only values appearing more than once among the first 6*10^8 terms are those at n = 38184 +- 1, 458010 +- 1, 776112 +- 1, 65675408 +- 1, and 113393280 +- 2. - Trevor Cappallo, Jun 07 2021
The off-by-1 terms in the comment above are the terms of A068077. Proof: If a(n-1) = a(n+1), then (n-1)^2 - Sum_{k=1..n-1} sigma(k) = (n+1)^2 - Sum_{k=1..n+1} sigma(k) via the formula; rearranging terms gives sigma(n)+sigma(n+1)=4n. - Lewis Chen, Sep 24 2021

Examples

			a(5) = 4. The remainder when 5 is divided by 2,3,4 respectively is 1,2,1 and their sum = 4.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290, A006218, A023196, A048158, A050482, A051778, A120444 (first differences).

Programs

  • GAP
    List([1..70],n->n^2-Sum([1..n],k->Sigma(k))); # Muniru A Asiru, Mar 28 2018
    
  • Haskell
    a004125 n = sum $ map (mod n) [1..n]
    -- Reinhard Zumkeller, Jan 28 2011
    
  • Magma
    [&+[n mod r: r in [1..n]]: n in [1..70]]; // Bruno Berselli, Jul 06 2014
    
  • Maple
    A004125 := n -> add( modp(n,k), k=2..n); /* much faster and unambiguous; "a mod b" may be mods(a,b) */ # M. F. Hasler, Nov 22 2007
  • Mathematica
    Table[Sum[Mod[n,k],{k,2,n-1}],{n,70}] (* Harvey P. Dale, Nov 23 2011 *)
    Accumulate[Table[2n-1-DivisorSigma[1,n],{n,70}]] (* Harvey P. Dale, Jul 11 2014 *)
  • PARI
    A004125(n)=sum(k=2,n,n%k) \\ M. F. Hasler, Nov 22 2007
    
  • Python
    def a(n): return sum(n%k for k in range(1, n))
    print([a(n) for n in range(1, 63)]) # Michael S. Branicky, Jun 08 2021
    
  • Python
    from math import isqrt
    def A004125(n): return n**2+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 21 2023
    
  • SageMath
    def a(n): return sum(n.mod(k) for k in (1..n))
    print([a(n) for n in (1..62)])  # Peter Luschny, May 12 2025

Formula

a(n) = n^2 - Sum_{k=1..n} sigma(k) = A000290(n) - A024916(n), hence asymptotically a(n) = n^2*(1-Pi^2/12) + O(n*log(n)^(2/3)). - Benoit Cloitre, Apr 28 2002. Asymptotics corrected/improved by Charles R Greathouse IV, Feb 22 2015
a(n) = A008805(n-3) + A049798(n-1), for n > 2. - Carl Najafi, Jan 31 2013
a(n) = A000217(n-1) - A153485(n). - Omar E. Pol, Jan 28 2014
G.f.: x^2/(1-x)^3 - (1-x)^(-1) * Sum_{k>=1} k*x^(2*k)/(1-x^k). - Robert Israel, Aug 13 2015
a(n) = Sum_{i=1..n} (n mod i). - Wesley Ivan Hurt, Sep 15 2017
From Ridouane Oudra, May 12 2025: (Start)
a(n) = A067439(n) + A072514(n).
a(n) = Sum_{d|n} d*A067439(n/d).
a(p) = A067439(p), for p prime.
a(p^k) = A072514(p^(k+1))/p, for p prime and k >= 0. (End)
a(n) = A111490(n) - n. - Peter Luschny, May 12 2025

Extensions

Edited by M. F. Hasler, Apr 18 2015

A244050 Partial sums of A243980.

Original entry on oeis.org

4, 20, 52, 112, 196, 328, 492, 716, 992, 1340, 1736, 2244, 2808, 3468, 4224, 5104, 6056, 7164, 8352, 9708, 11192, 12820, 14544, 16508, 18596, 20852, 23268, 25908, 28668, 31716, 34892, 38320, 41940, 45776, 49804, 54196, 58740, 63524, 68532, 73900
Offset: 1

Views

Author

Omar E. Pol, Jun 18 2014

Keywords

Comments

a(n) is also the volume of a special stepped pyramid with n levels related to the symmetric representation of sigma. Note that starting at the top of the pyramid, the total area of the horizontal regions at the n-th level is equal to A239050(n), and the total area of the vertical regions at the n-th level is equal to 8*n.
From Omar E. Pol, Sep 19 2015: (Start)
Also, consider that the area of the central square in the top of the pyramid is equal to 1, so the total area of the horizontal regions at the n-th level starting from the top is equal to sigma(n) = A000203(n), and the total area of the vertical regions at the n-th level is equal to 2*n.
Also note that this stepped pyramid can be constructed with four copies of the stepped pyramid described in A245092 back-to-back (one copy in every quadrant). (End)
From Omar E. Pol, Jan 20 2021: (Start)
Convolution of A000203 and the nonzero terms of A008586.
Convolution of A074400 and the nonzero terms of A005843.
Convolution of A340793 and the nonzero terms of A046092.
Convolution of A239050 and A000027.
(End)

Examples

			From _Omar E. Pol_, Aug 29 2015: (Start)
Illustration of the top view of the stepped pyramid with 16 levels. The pyramid is formed of 5104 unit cubes:
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid.
For more information about the hidden pattern see A237593 and A245092.
(End)
		

Crossrefs

Programs

  • Magma
    [4*(&+[(n-k+1)*DivisorSigma(1,k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Apr 07 2019
    
  • Mathematica
    a[n_] := 4 Sum[(n - k + 1) DivisorSigma[1, k], {k, n}]; Array[a, 40] (* Robert G. Wilson v, Aug 06 2018 *)
    Nest[Accumulate,4*DivisorSigma[1,Range[50]],2] (* Harvey P. Dale, Sep 07 2022 *)
  • PARI
    a(n) = 4*sum(k=1, n, sigma(k)*(n-k+1)); \\ Michel Marcus, Aug 07 2018
    
  • Python
    from math import isqrt
    def A244050(n): return (((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1,s+1))<<1)//3 # Chai Wah Wu, Oct 22 2023
  • Sage
    [4*sum(sigma(k)*(n-k+1) for k in (1..n)) for n in (1..40)] # G. C. Greubel, Apr 07 2019
    

Formula

a(n) = 4*A175254(n).

A127093 Triangle read by rows: T(n,k)=k if k is a divisor of n; otherwise, T(n,k)=0 (1 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 2, 0, 4, 0, 0, 0, 8, 1, 0, 3, 0, 0, 0, 0, 0, 9, 1, 2, 0, 0, 5, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 14
Offset: 1

Views

Author

Gary W. Adamson, Jan 05 2007, Apr 04 2007

Keywords

Comments

Sum of terms in row n = sigma(n) (sum of divisors of n).
Euler's derivation of A127093 in polynomial form is in his proof of the formula for Sigma(n): (let S=Sigma, then Euler proved that S(n) = S(n-1) + S(n-2) - S(n-5) - S(n-7) + S(n-12) + S(n-15) - S(n-22) - S(n-26), ...).
[Young, pp. 365-366], Euler begins, s = (1-x)*(1-x^2)*(1-x^3)*... = 1 - x - x^2 + x^5 + x^7 - x^12 ...; log s = log(1-x) + log(1-x^2) + log(1-x^3) ...; differentiating and then changing signs, Euler has t = x/(1-x) + 2x^2/(1-x^2) + 3x^3/(1-x^3) + 4x^4/(1-x^4) + 5x^5/(1-x^5) + ...
Finally, Euler expands each term of t into a geometric series, getting A127093 in polynomial form: t =
x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + ...
+ 2x^2 + 2x^4 + 2x^6 + 2x^8 + ...
+ 3x^3 + 3x^6 + ...
+ 4x^4 + 4x^8 + ...
+ 5x^5 + ...
+ 6x^6 + ...
+ 7x^7 + ...
+ 8x^8 + ...
T(n,k) is the sum of all the k-th roots of unity each raised to the n-th power. - Geoffrey Critzer, Jan 02 2016
From Davis Smith, Mar 11 2019: (Start)
For n > 1, A020639(n) is the leftmost term, other than 0 or 1, in the n-th row of this array. As mentioned in the Formula section, the k-th column is period k: repeat [k, 0, 0, ..., 0], but this also means that it's the characteristic function of the multiples of k multiplied by k. T(n,1) = A000012(n), T(n,2) = 2*A059841(n), T(n,3) = 3*A079978(n), T(n,4) = 4*A121262(n), T(n,5) = 5*A079998(n), and so on.
The terms in the n-th row, other than 0, are the factors of n. If n > 1 and for every k, 1 <= k < n, T(n,k) = 0 or 1, then n is prime. (End)
From Gary W. Adamson, Aug 07 2019: (Start)
Row terms of the triangle can be used to calculate E(n) in A002654): (1, 1, 0, 1, 2, 0, 0, 1, 1, 2, ...), and A004018, the number of points in a square lattice on the circle of radius sqrt(n), A004018: (1, 4, 4, 0, 4, 8, 0, 0, 4, ...).
As to row terms in the triangle, let E(n) of even terms = 0,
E(integers of the form 4*k - 1 = (-1), and E(integers of the form 4*k + 1 = 1.
Then E(n) is the sum of the E(n)'s of the factors of n in the triangle rows. Example: E(10) = Sum: ((E(1) + E(2) + E(5) + E(10)) = ((1 + 0 + 1 + 0) = 2, matching A002654(10).
To get A004018, multiply the result by 4, getting A004018(10) = 8.
The total numbers of lattice points = 4r^2 = E(1) + ((E(2))/2 + ((E(3))/3 + ((E(4))/4 + ((E(5))/5 + .... Since E(even integers) are zero, E(integers of the form (4*k - 1)) = (-1), and E(integers of the form (4*k + 1)) = (+1); we are left with 4r^2 = 1 - 1/3 + 1/5 - 1/7 + 1/9 - ..., which is approximately equal to Pi(r^2). (End)
T(n,k) is also the number of parts in the partition of n into k equal parts. - Omar E. Pol, May 05 2020

Examples

			T(8,4) = 4 since 4 divides 8.
T(9,3) = 3 since 3 divides 9.
First few rows of the triangle:
  1;
  1, 2;
  1, 0, 3;
  1, 2, 0, 4;
  1, 0, 0, 0, 5;
  1, 2, 3, 0, 0, 6;
  1, 0, 0, 0, 0, 0, 7;
  1, 2, 0, 4, 0, 0, 0, 8;
  1, 0, 3, 0, 0, 0, 0, 0, 9;
  ...
		

References

  • David Wells, "Prime Numbers, the Most Mysterious Figures in Math", John Wiley & Sons, 2005, appendix.
  • L. Euler, "Discovery of a Most Extraordinary Law of the Numbers Concerning the Sum of Their Divisors"; pp. 358-367 of Robert M. Young, "Excursions in Calculus, An Interplay of the Continuous and the Discrete", MAA, 1992. See p. 366.

Crossrefs

Reversal = A127094
Cf. A027750.
Cf. A000012 (the first column), A020639, A059841 (the second column when multiplied by 2), A079978 (the third column when multiplied by 2), A079998 (the fifth column when multiplied by 5), A121262 (the fourth column when multiplied by 4).

Programs

  • Excel
    mod(row()-1;column()) - mod(row();column()) + 1 - Mats Granvik, Aug 31 2007
    
  • Haskell
    a127093 n k = a127093_row n !! (k-1)
    a127093_row n = zipWith (*) [1..n] $ map ((0 ^) . (mod n)) [1..n]
    a127093_tabl = map a127093_row [1..]
    -- Reinhard Zumkeller, Jan 15 2011
    
  • Maple
    A127093:=proc(n,k) if type(n/k, integer)=true then k else 0 fi end:
    for n from 1 to 16 do seq(A127093(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 20 2007
  • Mathematica
    t[n_, k_] := k*Boole[Divisible[n, k]]; Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
    Table[ SeriesCoefficient[k*x^k/(1 - x^k), {x, 0, n}], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 14 2015 *)
  • PARI
    trianglerows(n) = for(x=1, n, for(k=1, x, if(x%k==0, print1(k, ", "), print1("0, "))); print(""))
    /* Print initial 9 rows of triangle as follows: */
    trianglerows(9) \\ Felix Fröhlich, Mar 26 2019

Formula

k-th column is composed of "k" interspersed with (k-1) zeros.
Let M = A127093 as an infinite lower triangular matrix and V = the harmonic series as a vector: [1/1, 1/2, 1/3, ...]. then M*V = d(n), A000005: [1, 2, 2, 3, 2, 4, 2, 4, 3, 4, ...]. M^2 * V = A060640: [1, 5, 7, 17, 11, 35, 15, 49, 34, 55, ...]. - Gary W. Adamson, May 10 2007
T(n,k) = ((n-1) mod k) - (n mod k) + 1 (1 <= k <= n). - Mats Granvik, Aug 31 2007
T(n,k) = k * 0^(n mod k). - Reinhard Zumkeller, Jan 15 2011
G.f.: Sum_{k>=1} k * x^k * y^k/(1-x^k) = Sum_{m>=1} x^m * y/(1 - x^m*y)^2. - Robert Israel, Aug 08 2016
T(n,k) = Sum_{d|k} mu(k/d)*sigma(gcd(n,d)). - Ridouane Oudra, Apr 05 2025
Previous Showing 21-30 of 228 results. Next