cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 106 results. Next

A008810 a(n) = ceiling(n^2/3).

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 3*w = 2*x + y. - Clark Kimberling, Jun 04 2012
a(n) is also the number of L-shapes (3-cell polyominoes) packing into an n X n square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, number of red blocks in Fig 2.5.

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), this sequence (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • Haskell
    a008810 = ceiling . (/ 3) . fromInteger . a000290
    a008810_list = [0,1,2,3,6] ++ zipWith5
                   (\u v w x y -> 2 * u - v + w - 2 * x + y)
       (drop 4 a008810_list) (drop 3 a008810_list) (drop 2 a008810_list)
       (tail a008810_list) a008810_list
    -- Reinhard Zumkeller, Dec 20 2012
    
  • Magma
    [Ceiling(n^2/3): n in [0..60]]; // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(ceil(n^2/3), n=0..60); # G. C. Greubel, Sep 12 2019
  • Mathematica
    Ceiling[Range[0,60]^2/3] (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,6},60] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=ceil(n^2/3) /* Michael Somos, Aug 03 2006 */
    
  • Sage
    [ceil(n^2/3) for n in (0..60)] # G. C. Greubel, Sep 12 2019

Formula

a(-n) = a(n) = ceiling(n^2/3).
G.f.: x*(1 + x^3)/((1 - x)^2*(1 - x^3)) = x*(1 - x^6)/((1 - x)*(1 - x^3))^2.
From Michael Somos, Aug 03 2006: (Start)
Euler transform of length 6 sequence [ 2, 0, 2, 0, 0, -1].
a(3n-1) = A056105(n).
a(3n+1) = A056109(n). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Jun 20 2011
a(A008585(n)) = A033428(n). - Reinhard Zumkeller, Dec 20 2012
9*a(n) = 4 + 3*n^2 - 2*A099837(n+3). - R. J. Mathar, May 02 2013
a(n) = n^2 - 2*A000212(n). - Wesley Ivan Hurt, Jul 07 2013
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(2)*Pi*sinh(2*sqrt(2)*Pi/3)/(1+2*cosh(2*sqrt(2)*Pi/3)). - Amiram Eldar, Aug 13 2022
E.g.f.: (exp(x)*(4 + 3*x*(1 + x)) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022

A062741 3 times pentagonal numbers: 3*n*(3*n-1)/2.

Original entry on oeis.org

0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435, 528, 630, 741, 861, 990, 1128, 1275, 1431, 1596, 1770, 1953, 2145, 2346, 2556, 2775, 3003, 3240, 3486, 3741, 4005, 4278, 4560, 4851, 5151, 5460, 5778, 6105, 6441, 6786, 7140, 7503, 7875, 8256, 8646, 9045
Offset: 0

Views

Author

Floor van Lamoen, Jul 21 2001

Keywords

Comments

Write 0,1,2,3,4,... in a triangular spiral; then a(n) is the sequence found by reading from 0 in the vertical upward direction.
Number of edges in the join of two complete graphs of order 2n and n, K_2n * K_n - Roberto E. Martinez II, Jan 07 2002

Examples

			The spiral begins:
            15
          16  14
        17   3  13
      18   4   2  12
    19   5   0   1  11
  20   6   7   8   9  10
		

Crossrefs

Programs

  • Magma
    [Binomial(3*n,2): n in [0..50]]; // G. C. Greubel, Dec 26 2023
    
  • Maple
    [seq(binomial(3*n,2),n=0..45)]; # Zerinvary Lajos, Jan 02 2007
  • Mathematica
    3*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2019 *)
  • PARI
    a(n)=3*n*(3*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • SageMath
    [binomial(3*n,2) for n in range(51)] # G. C. Greubel, Dec 26 2023

Formula

a(n) = binomial(3*n, 2). - Zerinvary Lajos, Jan 02 2007
a(n) = (9*n^2 - 3*n)/2 = 3*n(3*n-1)/2 = A000326(n)*3. - Omar E. Pol, Dec 11 2008
a(n) = a(n-1) + 9*n - 6, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 07 2010
G.f.: 3*x*(1+2*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = A218470(9n+2). - Philippe Deléham, Mar 27 2013
a(n) = n*A008585(n) + Sum_{i=0..n-1} A008585(i) for n > 0. - Bruno Berselli, Dec 19 2013
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = log(3) - Pi/(3*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(3*sqrt(3)) - 4*log(2)/3. (End)
E.g.f.: (3/2)*x*(2 + 3*x)*exp(x). - G. C. Greubel, Dec 26 2023

Extensions

Better definition and edited by Omar E. Pol, Dec 11 2008

A059270 a(n) is both the sum of n+1 consecutive integers and the sum of the n immediately higher consecutive integers.

Original entry on oeis.org

0, 3, 15, 42, 90, 165, 273, 420, 612, 855, 1155, 1518, 1950, 2457, 3045, 3720, 4488, 5355, 6327, 7410, 8610, 9933, 11385, 12972, 14700, 16575, 18603, 20790, 23142, 25665, 28365, 31248, 34320, 37587, 41055, 44730, 48618, 52725, 57057, 61620
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Group the non-multiples of n as follows, e.g., for n = 4: (1,2,3), (5,6,7), (9,10,11), (13,14,15), ... Then a(n) is the sum of the members of the n-th group. Or, the sum of (n-1)successive numbers preceding n^2. - Amarnath Murthy, Jan 19 2004
Convolution of odds (A005408) and multiples of three (A008585). G.f. is the product of the g.f. of A005408 by the g.f. of A008585. - Graeme McRae, Jun 06 2006
Sums of rows of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
Corresponds to the Wiener indices of C_{2n+1} i.e., the cycle on 2n+1 vertices (n > 0). - K.V.Iyer, Mar 16 2009
Also the product of the three numbers from A005843(n) up to A163300(n), divided by 8. - Juri-Stepan Gerasimov, Jul 26 2009
Partial sums of A033428. - Charlie Marion, Dec 08 2013
For n > 0, sum of multiples of n and (n+1) from 1 to n*(n+1). - Zak Seidov, Aug 07 2016
A generalization of Ianakiev's formula, a(n) = A005408(n)*A000217(n), follows. A005408(n+k)*A000217(n) is the sum of n+1 consecutive integers and, after skipping k integers, the sum of the n immediately higher consecutive integers. For example, for n = 3 and k = 2, 9*6 = 54 = 12+13+14+15 = 17+18+19. - Charlie Marion, Jan 25 2022

Examples

			a(5) = 25 + 26 + 27 + 28 + 29 + 30 = 31 + 32 + 33 + 34 + 35 = 165.
		

Crossrefs

Cf. A059255 for analog for sum of squares.
Cf. A222716 for the analogous sum of triangular numbers.
Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014
Cf. A098737 (first subdiagonal).
Bisection of A109900.

Programs

  • Magma
    I:=[0, 3, 15, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 23 2012
    
  • Maple
    A059270 := proc(n) n*(n+1)*(2*n+1)/2 ; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    # (#+1)(2#+1)/2 &/@ Range[0,39] (* Ant King, Jan 03 2011 *)
    CoefficientList[Series[3 x (1 + x)/(x - 1)^4, {x, 0, 39}], x]
    LinearRecurrence[{4,-6,4,-1},{0,3,15,42},50] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n) = n*(n+1)*(2*n+1)/2 \\ Charles R Greathouse IV, Mar 08 2013
  • Sage
    [bernoulli_polynomial(n+1,3) for n in range(0, 41)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)/2.
a(n) = A000330(n)*3 = A006331(n)*3/2 = A055112(n)/2 = A000217(A002378(n)) - A000217(A005563(n-1)) = A000217(A005563(n)) - A000217(A002378(n)).
a(n) = A110449(n+1, n-1) for n > 1.
a(n) = Sum_{k=A000290(n) .. A002378(n)} k = Sum_{k=n^2..n^2+n} k.
a(n) = Sum_{k=n^2+n+1 .. n^2+2*n} k = Sum_{k=A002061(n+1) .. A005563(n)} k.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6 = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Ant King, Jan 03 2011
G.f.: 3*x*(1+x)/(1-x)^4. - Ant King, Jan 03 2011
a(n) = A000578(n+1) - A000326(n+1). - Ivan N. Ianakiev, Nov 29 2012
a(n) = A005408(n)*A000217(n) = a(n-1) + 3*A000290(n). -Ivan N. Ianakiev, Mar 08 2013
a(n) = n^3 + n^2 + A000217(n). - Charlie Marion, Dec 04 2013
From Ilya Gutkovskiy, Aug 08 2016: (Start)
E.g.f.: x*(6 + 9*x + 2*x^2)*exp(x)/2.
Sum_{n>=1} 1/a(n) = 2*(3 - 4*log(2)) = 0.4548225555204375246621... (End)
a(n) = Sum_{k=0..2*n} A001318(k). - Jacob Szlachetka, Dec 20 2021
a(n) = Sum_{k=0..n} A000326(k) + A005449(k). - Jacob Szlachetka, Dec 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi-3). - Amiram Eldar, Sep 17 2022

A094159 3 times hexagonal numbers: a(n) = 3*n*(2*n-1).

Original entry on oeis.org

0, 3, 18, 45, 84, 135, 198, 273, 360, 459, 570, 693, 828, 975, 1134, 1305, 1488, 1683, 1890, 2109, 2340, 2583, 2838, 3105, 3384, 3675, 3978, 4293, 4620, 4959, 5310, 5673, 6048, 6435, 6834, 7245, 7668, 8103, 8550, 9009, 9480, 9963, 10458, 10965, 11484
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2004

Keywords

Comments

Column 3 of A048790.
Sequence found by reading the line from 0, in the direction 0, 3, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
a(n) is the sum of all perimeters of triangles having two sides of length n. For n=4 one has seven triangles with two sides of length 4 and the other of lengths 1..7. - J. M. Bergot, Mar 26 2014
a(n) is the Wiener index of the complete tripartite graph K_{n,n,n}. - Eric W. Weisstein, Sep 07 2017
Sequence found by reading the line from 0, in the direction 0, 3, ..., in a spiral on an equilateral triangular lattice. - Hans G. Oberlack, Dec 08 2018

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

Essentially a bisection of A045943. - Omar E. Pol, Sep 17 2011
Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=12: see Comments lines of A226492.

Programs

Formula

a(n) = 6*n^2 - 3*n = 3*n*(2*n-1) = 3*A000384(n). - Omar E. Pol, Dec 11 2008
a(n) = 12*n + a(n-1) - 9 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 16 2010
G.f.: 3*x*(1+3*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
Sum_{n>0} 1/a(n) = (2/3)*log(2). - Enrique Pérez Herrero, Jun 04 2015
E.g.f.: 3*x*(1+2*x)*exp(x). - G. C. Greubel, Dec 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2)/3. - Amiram Eldar, Jan 10 2022

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 16 2008
Definition improved, offset corrected and edited by Omar E. Pol, Dec 11 2008

A016766 a(n) = (3*n)^2.

Original entry on oeis.org

0, 9, 36, 81, 144, 225, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1764, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 5184, 5625, 6084, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12321, 12996, 13689, 14400, 15129, 15876, 16641, 17424
Offset: 0

Views

Author

Keywords

Comments

Number of edges of the complete tripartite graph of order 6n, K_n, n, 4n. - Roberto E. Martinez II, Jan 07 2002
Area of a square with side 3n. - Wesley Ivan Hurt, Sep 24 2014
Right-hand side of the binomial coefficient identity Sum_{k = 0..3*n} (-1)^(n+k+1)* binomial(3*n,k)*binomial(3*n + k,k)*(3*n - k) = a(n). - Peter Bala, Jan 12 2022

Crossrefs

Numbers of the form 9*n^2 + k*n, for integer n: this sequence (k = 0), A132355 (k = 2), A185039 (k = 4), A057780 (k = 6), A218864 (k = 8). - Jason Kimberley, Nov 09 2012

Programs

Formula

a(n) = 9*n^2 = 9*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 3*A033428(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 9*(2*n-1) for n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
From Wesley Ivan Hurt, Sep 24 2014: (Start)
G.f.: 9*x*(1 + x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3.
a(n) = A000290(A008585(n)). (End)
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/54.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/108.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/3)/(Pi/3).
Product_{n>=1} (1 - 1/a(n)) = sinh(Pi/2)/(Pi/2) = 3*sqrt(3)/(2*Pi) (A086089). (End)
a(n) = A051624(n) + 8*A000217(n). In general, if P(k,n) = the k-th n-gonal number, then (k*n)^2 = P(k^2 + 3,n) + (k^2 - 1)*A000217(n). - Charlie Marion, Mar 09 2022
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 9*x*(1 + x)*exp(x).
a(n) = n*A008591(n) = A195042(2*n). (End)

Extensions

More terms from Zerinvary Lajos, May 30 2006

A144555 a(n) = 14*n^2.

Original entry on oeis.org

0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line and direction in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011

Crossrefs

See also A033428, A033429, A033581, A033582, A033583, A033584, ... and A249327 for the whole table.

Programs

Formula

a(n) = 14*A000290(n) = 7*A001105(n) = 2*A033582(n). - Omar E. Pol, Jan 01 2009
a(n) = a(n-1) + 14*(2*n-1), with a(0) = 0. - Vincenzo Librandi, Nov 25 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/84.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/168.
Product_{n>=1} (1 + 1/a(n)) = sqrt(14)*sinh(Pi/sqrt(14))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(14)*sin(Pi/sqrt(14))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 14*x*(1 + x)/(1-x)^3.
E.g.f.: 14*x*(1 + x)*exp(x).
a(n) = n*A008596(n) = A195145(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A152751 3 times octagonal numbers: a(n) = 3*n*(3*n-2).

Original entry on oeis.org

0, 3, 24, 63, 120, 195, 288, 399, 528, 675, 840, 1023, 1224, 1443, 1680, 1935, 2208, 2499, 2808, 3135, 3480, 3843, 4224, 4623, 5040, 5475, 5928, 6399, 6888, 7395, 7920, 8463, 9024, 9603, 10200, 10815, 11448, 12099, 12768, 13455, 14160, 14883, 15624, 16383, 17160
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

a(n) also can be represented as n concentric triangles (see example). - Omar E. Pol, Aug 21 2011

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric triangles:
.
.                                          o
.                                         o o
.                                        o   o
.                                       o     o
.                 o                    o   o   o
.                o o                  o   o o   o
.               o   o                o   o   o   o
.              o     o              o   o     o   o
.    o        o   o   o            o   o   o   o   o
.   o o      o   o o   o          o   o   o o   o   o
.           o           o        o   o           o   o
.          o o o o o o o o      o   o o o o o o o o   o
.                              o                       o
.                             o o o o o o o o o o o o o o
.
.    3            24                       63
(End)
		

Crossrefs

Cf. A033581, A085250, A152734, A194273. - Omar E. Pol, Aug 21 2011
Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=18: see Comments lines of A226492.

Programs

Formula

a(n) = 9*n^2 - 6*n = 3*A000567(n) = A064201(n)/3.
a(n) = a(n-1) + 18*n - 15 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+5*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From Elmo R. Oliveira, Dec 25 2024: (Start)
E.g.f.: 3*exp(x)*x*(1 + 3*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3.
a(n) = n + A152995(n). (End)

A135453 a(n) = 12*n^2.

Original entry on oeis.org

0, 12, 48, 108, 192, 300, 432, 588, 768, 972, 1200, 1452, 1728, 2028, 2352, 2700, 3072, 3468, 3888, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9408, 10092, 10800, 11532, 12288, 13068, 13872, 14700, 15552, 16428, 17328, 18252, 19200, 20172, 21168, 22188
Offset: 0

Views

Author

Ben Paul Thurston, Dec 14 2007

Keywords

Comments

Areas of perfect 4:3 rectangles (for n > 0).
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A069190 in the same spiral. - Omar E. Pol, Sep 16 2011
(x,y,z) = (-a(n), 1 + n*a(n), 1 - n*a(n)) are solutions of the Diophantine equation x^3 + 2*y^3 + 2*z^3 = 4. - XU Pingya, Apr 30 2022

Examples

			192 is on the list since 16*12 is a 4:3 rectangle with integer sides and an area of 192.
		

Crossrefs

Programs

Formula

a(n) = 12*A000290(n) = 6*A001105(n) = 4*A033428(n) = 3*A016742(n) = 2*A033581(n). - Omar E. Pol, Dec 13 2008
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/72 (A086729).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/144.
Product_{n>=1} (1 + 1/a(n)) = 2*sqrt(3)*sinh(Pi/(2*sqrt(3)))/Pi.
Product_{n>=1} (1 - 1/a(n)) = 2*sqrt(3)*sin(Pi/(2*sqrt(3)))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 12*x*(1 + x)/(1-x)^3.
E.g.f.: 12*x*(1 + x)*exp(x).
a(n) = n*A008594(n) = A195143(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Stefan Steinerberger, Dec 17 2007
Minor edits from Omar E. Pol, Dec 15 2008

A152773 3 times heptagonal numbers: a(n) = 3*n*(5*n-3)/2.

Original entry on oeis.org

0, 3, 21, 54, 102, 165, 243, 336, 444, 567, 705, 858, 1026, 1209, 1407, 1620, 1848, 2091, 2349, 2622, 2910, 3213, 3531, 3864, 4212, 4575, 4953, 5346, 5754, 6177, 6615, 7068, 7536, 8019, 8517, 9030, 9558, 10101, 10659, 11232, 11820, 12423, 13041, 13674, 14322, 14985
Offset: 0

Views

Author

Omar E. Pol, Dec 13 2008

Keywords

Comments

Also the number of 6-cycles in the (n+5)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jun 25 2017

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=15: see Comments lines of A226492.
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A045943 (4-cycles), A028896 (5-cycles).

Programs

Formula

a(n) = (15*n^2 - 9*n)/2 = 3*A000566(n).
a(n) = a(n-1) + 15*n - 12 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+4*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(0)=0, a(1)=3, a(2)=21, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 08 2012
a(n) = n + A226489(n). - Bruno Berselli, Jun 11 2013
Sum_{n>=1} 1/a(n) = tan(Pi/10)*Pi/9 - sqrt(5)*log(phi)/9 + 5*log(5)/18, where phi is the golden ratio (A001622). - Amiram Eldar, May 20 2023
E.g.f.: 3*exp(x)*x*(2 + 5*x)/2. - Elmo R. Oliveira, Dec 24 2024

A372713 Number of divisors of 3n; a(n) = tau(3*n) = A000005(3*n).

Original entry on oeis.org

2, 4, 3, 6, 4, 6, 4, 8, 4, 8, 4, 9, 4, 8, 6, 10, 4, 8, 4, 12, 6, 8, 4, 12, 6, 8, 5, 12, 4, 12, 4, 12, 6, 8, 8, 12, 4, 8, 6, 16, 4, 12, 4, 12, 8, 8, 4, 15, 6, 12, 6, 12, 4, 10, 8, 16, 6, 8, 4, 18, 4, 8, 8, 14, 8, 12, 4, 12, 6, 16, 4, 16, 4, 8, 9, 12, 8, 12, 4, 20
Offset: 1

Views

Author

Vaclav Kotesovec, May 11 2024

Keywords

Comments

In general, for p prime, Sum_{j=1..n} tau(j*p) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.
If n is in A033428, then a(n) is odd and vice versa. - R. J. Mathar, Amiram Eldar, May 20 2024.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, 3*n], {n, 1, 150}]
  • PARI
    a(n) = numdiv(3*n); \\ Michel Marcus, May 20 2024

Formula

Sum_{k=1..n} a(k) ~ n * (5*(log(n) + 2*gamma - 1) + log(3)) / 3, where gamma is the Euler-Mascheroni constant A001620.
Previous Showing 11-20 of 106 results. Next