cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 129 results. Next

A010027 Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1

Views

Author

Keywords

Comments

A "consecutive ascending pair" in a permutation p_1, p_2, ..., p_n is a pair p_i, p_{i+1} = p_i + 1.
From Emeric Deutsch, May 15 2010: (Start)
The same triangle, but with rows indexed differently, also arises as follows: U(n,k) = number of permutations of [n] having k blocks (1 <= k <= n), where a block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67.
When seen as coefficients of polynomials with decreasing exponents: evaluations are A001339 (x=2), A081923 (x=3), A081924 (x=4), A087981 (x=-1).
The sum of the entries in row n is n!.
U(n,n) = A000255(n-1) = d(n-1) + d(n), U(n,n-1)=d(n), where d(j)=A000166(j) (derangement numbers). (End)
This is essentially the reversal of the exponential Riordan array [exp(-x)/(1-x)^2,x] (cf. A123513). - Paul Barry, Jun 17 2010
U(n-1, k-2) * n*(n-1)/k = number of permutations of [n] with k elements not fixed by the permutation. - Michael Somos, Aug 19 2018

Examples

			Triangle starts:
  1;
  1, 1;
  1, 2,   3;
  1, 3,   9,  11;
  1, 4,  18,  44,   53;
  1, 5,  30, 110,  265,   309;
  1, 6,  45, 220,  795,  1854,   2119;
  1, 7,  63, 385, 1855,  6489,  14833,  16687;
  1, 8,  84, 616, 3710, 17304,  59332, 133496,  148329;
  1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;
  ...
For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014
In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

Crossrefs

Diagonals, reading from the right-hand edge: A000255, A000166, A000274, A000313, A001260, A001261. A045943 is another diagonal.
Cf. A123513 (mirror image).
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.

Programs

  • Maple
    U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
  • Mathematica
    t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *)
    T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)

Formula

E.g.f.: exp(x*(y-1))/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
From Emeric Deutsch, May 15 2010: (Start)
U(n,k) = binomial(n-1,k-1)*(k-1)!*Sum_{j=0..k-1} (-1)^(k-j-1)*(j+1)/(k-j-1)! (1 <= k <= n).
U(n,k) = (k+1)!*binomial(n,k)*(1/n)*Sum_{i=0..k+1} (-1)^i/i!.
U(n,k) = (1/n)*binomial(n,k)*d(k+1), where d(j)=A000166(j) (derangement numbers). (End)

Extensions

More terms from Vladeta Jovovic, Jan 03 2003
Original definition from David, Kendall and Barton restored by N. J. A. Sloane, Apr 12 2014

A140090 a(n) = n*(3*n + 7)/2.

Original entry on oeis.org

0, 5, 13, 24, 38, 55, 75, 98, 124, 153, 185, 220, 258, 299, 343, 390, 440, 493, 549, 608, 670, 735, 803, 874, 948, 1025, 1105, 1188, 1274, 1363, 1455, 1550, 1648, 1749, 1853, 1960, 2070, 2183, 2299, 2418, 2540, 2665, 2793, 2924
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

This sequence is mentioned in the Guo-Niu Han's paper, chapter 6: Dictionary of the standard puzzle sequences, p. 19 (see link). - Omar E. Pol, Oct 28 2011
Number of cards needed to build an n-tier house of cards with a flat, one-card-wide roof. - Tyler Busby, Dec 28 2022

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, this sequence, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. numbers of the form n*(d*n + 10 - d)/2: A008587, A056000, A028347, A014106, A028895, A045944, A186029, A007742, A022267, A033429, A022268, A049452, A186030, A135703, A152734, A139273.

Programs

Formula

G.f.: x*(5 - 2*x)/(1 - x)^3. - Bruno Berselli, Feb 11 2011
a(n) = (3*n^2 + 7*n)/2.
a(n) = a(n-1) + 3*n + 2 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
E.g.f.: (1/2)*(3*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 117/98 - Pi/(7*sqrt(3)) - 3*log(3)/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(7*sqrt(3)) + 4*log(2)/7 - 75/98. (End)

A027468 9 times the triangular numbers A000217.

Original entry on oeis.org

0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0

Views

Author

Keywords

Comments

Staggered diagonal of triangular spiral in A051682, between (0,1,11) spoke and (0,8,25) spoke. - Paul Barry, Mar 15 2003
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-2 fixed points. - Zerinvary Lajos, Oct 15 2006
Number of n permutations (n>=2) of 4 objects u, v, z, x with repetition allowed, containing n-2=0 u's. Example: if n=2 then n-2 =zero (0) u, a(1)=9 because we have vv, zz, xx, vx, xv, zx, xz, vz, zv. A027465 formatted as a triangular array: diagonal: 9, 27, 54, 90, 135, 189, 252, 324, ... . - Zerinvary Lajos, Aug 06 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is a multiple of 3. - Augustine O. Munagi, Dec 18 2008
Also sequence found by reading the line from 0, in the direction 0, 9, ..., and the same line from 0, in the direction 0, 27, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Axis perpendicular to A195147 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 4*n to 5*n. - Wesley Ivan Hurt, Nov 01 2014

Examples

			The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
		

Crossrefs

Programs

  • Magma
    [9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    [seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
  • PARI
    a(n)=9*n*(n+1)/2
    
  • Sage
    [9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021

Formula

Numerators of sequence a[n, n-2] in (a[i, j])^2 where a[i, j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = (9/2)*n*(n+1).
a(n) = 9*C(n, 1) + 9*C(n, 2) (binomial transform of (0, 9, 9, 0, 0, ...)). - Paul Barry, Mar 15 2003
G.f.: 9*x/(1-x)^3.
a(-1-n) = a(n).
a(n) = 9*C(n+1,2), n>=0. - Zerinvary Lajos, Aug 06 2008
a(n) = a(n-1) + 9*n (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = A060544(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A218470(9*n+8). - Philippe Deléham, Mar 27 2013
E.g.f.: (9/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 22 2017
a(n) = A060544(n+1) - 1. See Centroid Triangles illustration. - Leo Tavares, Dec 27 2021
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 2/9. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(9/(2*Pi))*cos(sqrt(17)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = 9*sqrt(3)/(4*Pi). (End)

Extensions

More terms from Patrick De Geest, Oct 15 1999

A062741 3 times pentagonal numbers: 3*n*(3*n-1)/2.

Original entry on oeis.org

0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435, 528, 630, 741, 861, 990, 1128, 1275, 1431, 1596, 1770, 1953, 2145, 2346, 2556, 2775, 3003, 3240, 3486, 3741, 4005, 4278, 4560, 4851, 5151, 5460, 5778, 6105, 6441, 6786, 7140, 7503, 7875, 8256, 8646, 9045
Offset: 0

Views

Author

Floor van Lamoen, Jul 21 2001

Keywords

Comments

Write 0,1,2,3,4,... in a triangular spiral; then a(n) is the sequence found by reading from 0 in the vertical upward direction.
Number of edges in the join of two complete graphs of order 2n and n, K_2n * K_n - Roberto E. Martinez II, Jan 07 2002

Examples

			The spiral begins:
            15
          16  14
        17   3  13
      18   4   2  12
    19   5   0   1  11
  20   6   7   8   9  10
		

Crossrefs

Programs

  • Magma
    [Binomial(3*n,2): n in [0..50]]; // G. C. Greubel, Dec 26 2023
    
  • Maple
    [seq(binomial(3*n,2),n=0..45)]; # Zerinvary Lajos, Jan 02 2007
  • Mathematica
    3*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2019 *)
  • PARI
    a(n)=3*n*(3*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • SageMath
    [binomial(3*n,2) for n in range(51)] # G. C. Greubel, Dec 26 2023

Formula

a(n) = binomial(3*n, 2). - Zerinvary Lajos, Jan 02 2007
a(n) = (9*n^2 - 3*n)/2 = 3*n(3*n-1)/2 = A000326(n)*3. - Omar E. Pol, Dec 11 2008
a(n) = a(n-1) + 9*n - 6, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 07 2010
G.f.: 3*x*(1+2*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = A218470(9n+2). - Philippe Deléham, Mar 27 2013
a(n) = n*A008585(n) + Sum_{i=0..n-1} A008585(i) for n > 0. - Bruno Berselli, Dec 19 2013
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = log(3) - Pi/(3*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(3*sqrt(3)) - 4*log(2)/3. (End)
E.g.f.: (3/2)*x*(2 + 3*x)*exp(x). - G. C. Greubel, Dec 26 2023

Extensions

Better definition and edited by Omar E. Pol, Dec 11 2008

A140091 a(n) = 3*n*(n + 3)/2.

Original entry on oeis.org

0, 6, 15, 27, 42, 60, 81, 105, 132, 162, 195, 231, 270, 312, 357, 405, 456, 510, 567, 627, 690, 756, 825, 897, 972, 1050, 1131, 1215, 1302, 1392, 1485, 1581, 1680, 1782, 1887, 1995, 2106, 2220, 2337, 2457, 2580, 2706, 2835, 2967
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

a(n) is also the dimension of the irreducible representation of the Lie algebra sl(3) with the highest weight 2*L_1+n*(L_1+L_2). - Leonid Bedratyuk, Jan 04 2010
Number of edges in the hexagonal triangle, T(n) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014
a(n) = twice the area of a triangle having vertices at binomials (C(n,3),C(n+3,3)), (C(n+1,3),C(n+4,3)), and (C(n+2,3),C(n+5,3)) with n>=2. - J. M. Bergot, Mar 01 2018

References

  • W. Fulton, J. Harris, Representation theory: a first course. (1991). page 224, Exercise 15.19. - Leonid Bedratyuk, Jan 04 2010

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, this sequence, A059845, A140672, A140673, A140674, A140675, A151542.

Programs

Formula

a(n) = A000096(n)*3 = (3*n^2 + 9*n)/2 = n*(3*n+9)/2.
a(n) = a(n-1) + 3*n + 3 with n>0, a(0)=0. - Vincenzo Librandi, Nov 24 2010
G.f.: 3*x*(2 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Aug 15 2015
E.g.f.: (1/2)*(3*x^2 + 12*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 11/27.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 5/27. (End)

A051162 Triangle T(n,k) = n+k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 3, 4, 5, 6, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14, 8, 9, 10, 11, 12, 13, 14, 15, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Offset: 0

Views

Author

Keywords

Comments

Row sums are A045943 = triangular matchstick numbers: 3n(n+1)/2. This was independently noted by me and, without cross-reference, as a comment on A045943, by Jon Perry, Jan 15 2004. - Jonathan Vos Post, Nov 09 2007
In partitions of n into distinct parts having maximal size, a(n) is the greatest number, see A000009. - Reinhard Zumkeller, Jun 13 2009
Row sums of reciprocals of terms in this triangle converge to log(2). See link to Eric Naslund's answer. - Mats Granvik, Mar 07 2013
T(n,k) satisfies the cubic equation T(n,k)^3 + 3*A025581(n, k)*T(n,k) - 4*A105125(n,k) = 0. This is a problem similar to the one posed by François Viète (Vieta) mentioned in a comment on A025581. Here the problem is to determine for a rectangle (a, b), with a > b >= 1, from the given values for a^3 + b^3 and a - b the value of a + b. Here for nonnegative integers a = n and b = k. - Wolfdieter Lang, May 15 2015
If we subtract 1 from every term the result is essentially A213183. - N. J. A. Sloane, Apr 28 2020

Examples

			The triangle  T(n, k) starts:
n\k  0  1  2  3  4  5  6  7  8  9 10 ...
0:   0
1:   1  2
2:   2  3  4
3:   3  4  5  6
4:   4  5  6  7  8
5:   5  6  7  8  9 10
6:   6  7  8  9 10 11 12
7:   7  8  9 10 11 12 13 14
8:   8  9 10 11 12 13 14 15 16
9:   9 10 11 12 13 14 15 16 17 18
10: 10 11 12 13 14 15 16 17 18 19 20
... reformatted. - _Wolfdieter Lang_, May 15 2015
		

Crossrefs

Cf. also A008585 (central terms), A005843 (right edge).
Cf. also A002262, A001477, A003056.

Programs

  • Haskell
    a051162 n k = a051162_tabl !! n !! k
    a051162_row n = a051162_tabl !! n
    a051162_tabl = iterate (\xs@(x:_) -> (x + 1) : map (+ 2) xs) [0]
    -- Reinhard Zumkeller, Sep 17 2014, Oct 02 2012, Apr 23 2012
    
  • Maple
    seq(seq(r+c, c=0..r),r=0..10); # Robert Israel, May 21 2015
  • Mathematica
    With[{c=Range[0,20]}, Flatten[Table[Take[c,{n,2n-1}], {n,11}]]] (* Harvey P. Dale, Nov 19 2011 *)
  • PARI
    for(n=0,10,for(k=0,n,print1(n+k,", "))) \\ Derek Orr, May 19 2015

Formula

T(n, k) = n + k, 0 <= k <= n.
a(n-1) = 2*A002260(n) + A004736(n) - 3, n > 0. - Boris Putievskiy, Mar 12 2012
a(n-1) = (t - t^2+ 2n-2)/2, where t = floor((-1+sqrt(8*n-7))/2), n > 0. - Robert G. Wilson v and Boris Putievskiy, Mar 14 2012
From Robert Israel, May 21 2015: (Start)
a(n) = A003056(n) + A002262(n).
G.f.: x/(1-x)^2 + (1-x)^(-1)*Sum(j>=1, (1-j)*x^A000217(j)). The sum is related to Jacobi Theta functions. (End)
G.f. as triangle: (x + (2 - 3*x)*x*y)/((1 - x)^2*(1 - x*y)^2). - Stefano Spezia, Apr 22 2024

A094159 3 times hexagonal numbers: a(n) = 3*n*(2*n-1).

Original entry on oeis.org

0, 3, 18, 45, 84, 135, 198, 273, 360, 459, 570, 693, 828, 975, 1134, 1305, 1488, 1683, 1890, 2109, 2340, 2583, 2838, 3105, 3384, 3675, 3978, 4293, 4620, 4959, 5310, 5673, 6048, 6435, 6834, 7245, 7668, 8103, 8550, 9009, 9480, 9963, 10458, 10965, 11484
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2004

Keywords

Comments

Column 3 of A048790.
Sequence found by reading the line from 0, in the direction 0, 3, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
a(n) is the sum of all perimeters of triangles having two sides of length n. For n=4 one has seven triangles with two sides of length 4 and the other of lengths 1..7. - J. M. Bergot, Mar 26 2014
a(n) is the Wiener index of the complete tripartite graph K_{n,n,n}. - Eric W. Weisstein, Sep 07 2017
Sequence found by reading the line from 0, in the direction 0, 3, ..., in a spiral on an equilateral triangular lattice. - Hans G. Oberlack, Dec 08 2018

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

Essentially a bisection of A045943. - Omar E. Pol, Sep 17 2011
Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=12: see Comments lines of A226492.

Programs

Formula

a(n) = 6*n^2 - 3*n = 3*n*(2*n-1) = 3*A000384(n). - Omar E. Pol, Dec 11 2008
a(n) = 12*n + a(n-1) - 9 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 16 2010
G.f.: 3*x*(1+3*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
Sum_{n>0} 1/a(n) = (2/3)*log(2). - Enrique Pérez Herrero, Jun 04 2015
E.g.f.: 3*x*(1+2*x)*exp(x). - G. C. Greubel, Dec 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 - log(2)/3. - Amiram Eldar, Jan 10 2022

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 16 2008
Definition improved, offset corrected and edited by Omar E. Pol, Dec 11 2008

A060281 Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.

Original entry on oeis.org

1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 09 2001

Keywords

Comments

Also called sagittal graphs.
T(n,k)=1 iff n=k (counts the identity mapping of [n]). - Len Smiley, Apr 03 2006
Also the coefficients of the tree polynomials t_{n}(y) defined by (1-T(z))^(-y) = Sum_{n>=0} t_{n}(y) (z^n/n!) where T(z) is Cayley's tree function T(z) = Sum_{n>=1} n^(n-1) (z^n/n!) giving the number of labeled trees A000169. - Peter Luschny, Mar 03 2009

Examples

			Triangle T(n,k) begins:
        1;
        3,       1;
       17,       9,       1;
      142,      95,      18,      1;
     1569,    1220,     305,     30,     1;
    21576,   18694,    5595,    745,    45,    1;
   355081,  334369,  113974,  18515,  1540,   63,  1;
  6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
  ...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From _Peter Luschny_, Mar 03 2009: (Start)
  Tree polynomials (with offset 0):
  t_0(y) = 1;
  t_1(y) = y;
  t_2(y) = 3*y + y^2;
  t_3(y) = 17*y + 9*y^2 + y^3; (End)
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
  • W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009

Crossrefs

Row sums: A000312.
Main diagonal and first lower diagonal give: A000012, A045943.

Programs

  • Magma
    A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
    [A060281(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
    
  • Maple
    with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # Len Smiley, Apr 03 2006
    From Peter Luschny, Mar 03 2009: (Start)
    T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
    p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
    seq(print(coeff(p,z,i)*i!),i=0..8); (End)
  • Mathematica
    t=Sum[n^(n-1) x^n/n!,{n,1,10}];
    Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
    Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
  • SageMath
    @CachedFunction
    def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
    flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Nov 06 2024

Formula

E.g.f.: 1/(1 + LambertW(-x))^y.
T(n,k) = Sum_{j=0..n-1} C(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*A008275(j+1,k) = Sum_{j=0..n-1} binomial(n-1,j)*n^(n-1-j)*s(j+1,k). [Riordan] (Note: s(m,p) denotes signless Stirling cycle number (first kind), A008275 is the signed triangle.) - Len Smiley, Apr 03 2006
T(2*n, n) = A273442(n), n >= 1. - Alois P. Heinz, May 22 2016
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A190314(n).
Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A000169(n) for n>=1. (End)

A024966 7 times triangular numbers: 7*n*(n+1)/2.

Original entry on oeis.org

0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ... and the same line from 0, in the direction 1, 21, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the main diagonal in the spiral. - Omar E. Pol, Sep 09 2011
Also sequence found by reading the same line mentioned above in the square spiral whose vertices are the generalized enneagonal numbers A118277. Axis perpendicular to A195145 in the same spiral. - Omar E. Pol, Sep 18 2011
Sequence provides all integers m such that 56*m + 49 is a square. - Bruno Berselli, Oct 07 2015
Sum of the numbers from 3*n to 4*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

  • Magma
    [ (7*n^2 + 7*n)/2 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    [seq(7*binomial(n,2), n=1..44)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    7 Table[n (n + 1)/2, {n, 0, 43}] (* or *)
    Table[Sum[i, {i, 3 n, 4 n}], {n, 0, 43}] (* or *)
    Table[SeriesCoefficient[7 x/(1 - x)^3, {x, 0, n}], {n, 0, 43}] (* Michael De Vlieger, Dec 22 2015 *)
    7*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,7,21},50] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(7*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015

Formula

a(n) = (7/2)*n*(n+1).
G.f.: 7*x/(1-x)^3.
a(n) = (7*n^2 + 7*n)/2 = 7*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 7*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = A069099(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = a(-n-1), a(n+2) = A193053(n+2) + 2*A193053(n+1) + A193053(n). - Bruno Berselli, Oct 21 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 21.
a(n) = A174738(7*n+6).
a(n) = A179986(n) + n = A186029(n) + 2*n = A022265(n) + 3*n = A022264(n) + 4*n = A218471(n) + 5*n = A001106(n) + 6*n. (End)
a(n) = Sum_{i=3*n..4*n} i. - Wesley Ivan Hurt, Dec 22 2015
E.g.f.: (7/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 19 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/7)*(2*log(2) - 1). (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(7/(2*Pi))*cos(sqrt(15/7)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (7/(2*Pi))*cosh(Pi/(2*sqrt(7))). (End)

A152751 3 times octagonal numbers: a(n) = 3*n*(3*n-2).

Original entry on oeis.org

0, 3, 24, 63, 120, 195, 288, 399, 528, 675, 840, 1023, 1224, 1443, 1680, 1935, 2208, 2499, 2808, 3135, 3480, 3843, 4224, 4623, 5040, 5475, 5928, 6399, 6888, 7395, 7920, 8463, 9024, 9603, 10200, 10815, 11448, 12099, 12768, 13455, 14160, 14883, 15624, 16383, 17160
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

a(n) also can be represented as n concentric triangles (see example). - Omar E. Pol, Aug 21 2011

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric triangles:
.
.                                          o
.                                         o o
.                                        o   o
.                                       o     o
.                 o                    o   o   o
.                o o                  o   o o   o
.               o   o                o   o   o   o
.              o     o              o   o     o   o
.    o        o   o   o            o   o   o   o   o
.   o o      o   o o   o          o   o   o o   o   o
.           o           o        o   o           o   o
.          o o o o o o o o      o   o o o o o o o o   o
.                              o                       o
.                             o o o o o o o o o o o o o o
.
.    3            24                       63
(End)
		

Crossrefs

Cf. A033581, A085250, A152734, A194273. - Omar E. Pol, Aug 21 2011
Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=18: see Comments lines of A226492.

Programs

Formula

a(n) = 9*n^2 - 6*n = 3*A000567(n) = A064201(n)/3.
a(n) = a(n-1) + 18*n - 15 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+5*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
From Elmo R. Oliveira, Dec 25 2024: (Start)
E.g.f.: 3*exp(x)*x*(1 + 3*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3.
a(n) = n + A152995(n). (End)
Previous Showing 21-30 of 129 results. Next