A010027
Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 3, 9, 11;
1, 4, 18, 44, 53;
1, 5, 30, 110, 265, 309;
1, 6, 45, 220, 795, 1854, 2119;
1, 7, 63, 385, 1855, 6489, 14833, 16687;
1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329;
1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;
...
For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014
In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.
-
U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
-
t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *)
T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)
Original definition from David, Kendall and Barton restored by
N. J. A. Sloane, Apr 12 2014
A140090
a(n) = n*(3*n + 7)/2.
Original entry on oeis.org
0, 5, 13, 24, 38, 55, 75, 98, 124, 153, 185, 220, 258, 299, 343, 390, 440, 493, 549, 608, 670, 735, 803, 874, 948, 1025, 1105, 1188, 1274, 1363, 1455, 1550, 1648, 1749, 1853, 1960, 2070, 2183, 2299, 2418, 2540, 2665, 2793, 2924
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
- Julie Zhang, Noah A. Rosenberg, and Julia A. Palacios, The space of multifurcating ranked tree shapes: enumeration, lattice structure, and Markov chains, arXiv:2506.10856 [math.PR], 2025. See p. 33.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067, this sequence,
A140091,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
Cf. numbers of the form n*(d*n + 10 - d)/2:
A008587,
A056000,
A028347,
A014106,
A028895,
A045944,
A186029,
A007742,
A022267,
A033429,
A022268,
A049452,
A186030,
A135703,
A152734,
A139273.
A027468
9 times the triangular numbers A000217.
Original entry on oeis.org
0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0
The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., Vol. 308, No. 12 (2008), pp. 2492-2501.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Leo Tavares, Illustration: Centroid Triangles.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, Vol. 7, No. 1 (2007), pp. 135-162.
- D. Zvonkine, Home Page.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for two-way infinite sequences.
Cf.
A000459,
A002378,
A008585,
A024966,
A028895,
A028896,
A038764,
A033996,
A045943,
A046092,
A049598,
A059073,
A080855,
A134171,
A283394.
-
[9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
-
[seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
-
Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
-
a(n)=9*n*(n+1)/2
-
[9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021
A062741
3 times pentagonal numbers: 3*n*(3*n-1)/2.
Original entry on oeis.org
0, 3, 15, 36, 66, 105, 153, 210, 276, 351, 435, 528, 630, 741, 861, 990, 1128, 1275, 1431, 1596, 1770, 1953, 2145, 2346, 2556, 2775, 3003, 3240, 3486, 3741, 4005, 4278, 4560, 4851, 5151, 5460, 5778, 6105, 6441, 6786, 7140, 7503, 7875, 8256, 8646, 9045
Offset: 0
The spiral begins:
15
16 14
17 3 13
18 4 2 12
19 5 0 1 11
20 6 7 8 9 10
- Nathaniel Johnston, Table of n, a(n) for n = 0..10000
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[Binomial(3*n,2): n in [0..50]]; // G. C. Greubel, Dec 26 2023
-
[seq(binomial(3*n,2),n=0..45)]; # Zerinvary Lajos, Jan 02 2007
-
3*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 06 2019 *)
-
a(n)=3*n*(3*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[binomial(3*n,2) for n in range(51)] # G. C. Greubel, Dec 26 2023
Better definition and edited by
Omar E. Pol, Dec 11 2008
A140091
a(n) = 3*n*(n + 3)/2.
Original entry on oeis.org
0, 6, 15, 27, 42, 60, 81, 105, 132, 162, 195, 231, 270, 312, 357, 405, 456, 510, 567, 627, 690, 756, 825, 897, 972, 1050, 1131, 1215, 1302, 1392, 1485, 1581, 1680, 1782, 1887, 1995, 2106, 2220, 2337, 2457, 2580, 2706, 2835, 2967
Offset: 0
- W. Fulton, J. Harris, Representation theory: a first course. (1991). page 224, Exercise 15.19. - Leonid Bedratyuk, Jan 04 2010
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
- Q. H. He, J. Z. Gu, S. J. Xu, and W. H. Chan, Hosoya polynomials of hexagonal triangles and trapeziums, MATCH, Commun. Math. Comput. Chem., Vol. 72, No. 3 (2014), pp. 835-843. - _Emeric Deutsch_, Nov 14 2014
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences
A000326,
A005449,
A045943,
A115067,
A140090, this sequence,
A059845,
A140672,
A140673,
A140674,
A140675,
A151542.
-
[3*n*(n+3)/2 : n in [0..50]]; // Wesley Ivan Hurt, Nov 14 2014
-
A140091:=n->3*n*(n+3)/2: seq(A140091(n), n=0..50); # Wesley Ivan Hurt, Nov 14 2014
-
Table[3 n (n + 3)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 15}, 50] (* Harvey P. Dale, Aug 15 2015 *)
-
a(n)=3*n*(n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
A051162
Triangle T(n,k) = n+k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
0, 1, 2, 2, 3, 4, 3, 4, 5, 6, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14, 8, 9, 10, 11, 12, 13, 14, 15, 16, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
Offset: 0
The triangle T(n, k) starts:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 2
2: 2 3 4
3: 3 4 5 6
4: 4 5 6 7 8
5: 5 6 7 8 9 10
6: 6 7 8 9 10 11 12
7: 7 8 9 10 11 12 13 14
8: 8 9 10 11 12 13 14 15 16
9: 9 10 11 12 13 14 15 16 17 18
10: 10 11 12 13 14 15 16 17 18 19 20
... reformatted. - _Wolfdieter Lang_, May 15 2015
- Reinhard Zumkeller, Rows n=0..100 of triangle, flattened
- Eric Naslund, Euler-Mascheroni constant expression, further simplification
- Dmitry A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 2016, Volume 666, 1 March 2017, Pages 21-35.
-
a051162 n k = a051162_tabl !! n !! k
a051162_row n = a051162_tabl !! n
a051162_tabl = iterate (\xs@(x:_) -> (x + 1) : map (+ 2) xs) [0]
-- Reinhard Zumkeller, Sep 17 2014, Oct 02 2012, Apr 23 2012
-
seq(seq(r+c, c=0..r),r=0..10); # Robert Israel, May 21 2015
-
With[{c=Range[0,20]}, Flatten[Table[Take[c,{n,2n-1}], {n,11}]]] (* Harvey P. Dale, Nov 19 2011 *)
-
for(n=0,10,for(k=0,n,print1(n+k,", "))) \\ Derek Orr, May 19 2015
A094159
3 times hexagonal numbers: a(n) = 3*n*(2*n-1).
Original entry on oeis.org
0, 3, 18, 45, 84, 135, 198, 273, 360, 459, 570, 693, 828, 975, 1134, 1305, 1488, 1683, 1890, 2109, 2340, 2583, 2838, 3105, 3384, 3675, 3978, 4293, 4620, 4959, 5310, 5673, 6048, 6435, 6834, 7245, 7668, 8103, 8550, 9009, 9480, 9963, 10458, 10965, 11484
Offset: 0
- Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Hans G. Oberlack, Triangle spiral.
- R. C. Schroeppel, A few mathematical experiments, Experimental Mathematics Workshop, Oakland, California, March 30, 2004.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=12: see Comments lines of
A226492.
-
List([0..50], n -> 3*n*(2*n-1)); # G. C. Greubel, Dec 07 2018
-
[3*n*(2*n-1): n in [0..50]]; // G. C. Greubel, Dec 07 2018
-
A094159:=n->3*n*(2*n-1); seq(A094159(n), n=0..40); # Wesley Ivan Hurt, Mar 28 2014
-
CoefficientList[Series[3x(1+3x)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 19 2013 *)
Table[3n(2n-1), {n, 0, 50}] (* or *) 3*PolygonalNumber[6, Range[0, 50]] (* or *) LinearRecurrence[{3, -3, 1}, {3, 18, 45}, {0, 50}] (* Eric W. Weisstein, Sep 07 2017 *)
-
a(n)=3*n*(2*n-1) \\ Charles R Greathouse IV, Sep 24 2015
-
[3*n*(2*n-1) for n in range(50)] # G. C. Greubel, Dec 07 2018
Definition improved, offset corrected and edited by
Omar E. Pol, Dec 11 2008
A060281
Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.
Original entry on oeis.org
1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
Offset: 1
Triangle T(n,k) begins:
1;
3, 1;
17, 9, 1;
142, 95, 18, 1;
1569, 1220, 305, 30, 1;
21576, 18694, 5595, 745, 45, 1;
355081, 334369, 113974, 18515, 1540, 63, 1;
6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From _Peter Luschny_, Mar 03 2009: (Start)
Tree polynomials (with offset 0):
t_0(y) = 1;
t_1(y) = y;
t_2(y) = 3*y + y^2;
t_3(y) = 17*y + 9*y^2 + y^3; (End)
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
- W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009
- Alois P. Heinz, Rows n = 1..141, flattened
- Julia Handl and Joshua Knowles, An Investigation of Representations and Operators for Evolutionary Data Clustering with a Variable Number of Clusters, in Parallel Problem Solving from Nature-PPSN IX, Lecture Notes in Computer Science, Volume 4193/2006, Springer-Verlag. [From _N. J. A. Sloane_, Jul 09 2009]
- D. E. Knuth, Convolution polynomials, The Mathematica J., 2 (1992), 67-78.
- D. E. Knuth and B. Pittel, A recurrence related to trees, Proceedings of the American Mathematical Society, 105(2):335-349, 1989. [From _Peter Luschny_, Mar 03 2009]
- J. Riordan, Enumeration of Linear Graphs for Mappings of Finite Sets, Ann. Math. Stat., 33, No. 1, Mar. 1962, pp. 178-185.
- David M. Smith and Geoffrey Smith, Tight Bounds on Information Leakage from Repeated Independent Runs, 2017 IEEE 30th Computer Security Foundations Symposium (CSF).
-
A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
[A060281(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
-
with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # Len Smiley, Apr 03 2006
From Peter Luschny, Mar 03 2009: (Start)
T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
seq(print(coeff(p,z,i)*i!),i=0..8); (End)
-
t=Sum[n^(n-1) x^n/n!,{n,1,10}];
Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
-
@CachedFunction
def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Nov 06 2024
A024966
7 times triangular numbers: 7*n*(n+1)/2.
Original entry on oeis.org
0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622
Offset: 0
Joe Keane (jgk(AT)jgk.org), Dec 11 1999
-
[ (7*n^2 + 7*n)/2 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
[seq(7*binomial(n,2), n=1..44)]; # Zerinvary Lajos, Nov 24 2006
-
7 Table[n (n + 1)/2, {n, 0, 43}] (* or *)
Table[Sum[i, {i, 3 n, 4 n}], {n, 0, 43}] (* or *)
Table[SeriesCoefficient[7 x/(1 - x)^3, {x, 0, n}], {n, 0, 43}] (* Michael De Vlieger, Dec 22 2015 *)
7*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,7,21},50] (* Harvey P. Dale, Jul 20 2025 *)
-
x='x+O('x^100); concat(0, Vec(7*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015
A152751
3 times octagonal numbers: a(n) = 3*n*(3*n-2).
Original entry on oeis.org
0, 3, 24, 63, 120, 195, 288, 399, 528, 675, 840, 1023, 1224, 1443, 1680, 1935, 2208, 2499, 2808, 3135, 3480, 3843, 4224, 4623, 5040, 5475, 5928, 6399, 6888, 7395, 7920, 8463, 9024, 9603, 10200, 10815, 11448, 12099, 12768, 13455, 14160, 14883, 15624, 16383, 17160
Offset: 0
From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric triangles:
.
. o
. o o
. o o
. o o
. o o o o
. o o o o o o
. o o o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o
. o o o o o o o o o o o o o o o o o o
. o o
. o o o o o o o o o o o o o o
.
. 3 24 63
(End)
Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=18: see Comments lines of
A226492.
-
s=0;lst={s};Do[s+=n;AppendTo[lst,s],{n,3,6!,18}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
3*PolygonalNumber[8,Range[0,40]] (* Harvey P. Dale, May 08 2022 *)
-
a(n)=3*n*(3*n-2) \\ Charles R Greathouse IV, Sep 24 2015
Comments