cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 89 results. Next

A187033 Places k where the infinitary phi-function A064380(k) divides the infinitary sigma-function A049417(k).

Original entry on oeis.org

2, 3, 6, 14, 24, 40, 48, 51, 54, 57, 60, 120, 440, 450, 1246, 1824, 2280, 8802, 12720, 29019, 36720, 37245, 55428, 74822, 81480, 133950, 169435, 441030
Offset: 1

Views

Author

Vladimir Shevelev, Mar 02 2011

Keywords

Comments

It is the infinitary analog of A020492.

Crossrefs

Extensions

a(19)-a(24) from Amiram Eldar, Apr 06 2019
a(25)-a(28) from Amiram Eldar, Mar 26 2023

A001615 Dedekind psi function: n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 24, 14, 24, 24, 24, 18, 36, 20, 36, 32, 36, 24, 48, 30, 42, 36, 48, 30, 72, 32, 48, 48, 54, 48, 72, 38, 60, 56, 72, 42, 96, 44, 72, 72, 72, 48, 96, 56, 90, 72, 84, 54, 108, 72, 96, 80, 90, 60, 144, 62, 96, 96, 96, 84, 144, 68, 108, 96
Offset: 1

Views

Author

Keywords

Comments

Number of primitive sublattices of index n in generic 2-dimensional lattice; also index of Gamma_0(n) in SL_2(Z).
A generic 2-dimensional lattice L = consists of all vectors of the form mV + nW, (m,n integers). A sublattice S = has index |ad-bc| and is primitive if gcd(a,b,c,d) = 1. The generic lattice L has precisely a(2) = 3 sublattices of index 2, namely <2V,W>, and (which = ) and so on for other indices.
The sublattices of index n are in 1-to-1 correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} = sigma(n), which is A000203. A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * product_{p|n} (1+1/p), which is the present sequence.
SL_2(Z) = Gamma is the group of all 2 X 2 matrices [a b; c d] where a,b,c,d are integers with ad-bc = 1 and Gamma_0(N) is usually defined as the subgroup of this for which N|c. But conceptually Gamma is best thought of as the group of (positive) automorphisms of a lattice , its typical element taking V -> aV + bW, W -> cV + dW and then Gamma_0(N) can be defined as the subgroup consisting of the automorphisms that fix the sublattice of index N. - J. H. Conway, May 05 2001
Dedekind proved that if n = k_i*j_i for i in I represents all the ways to write n as a product, and e_i=gcd(k_i,j_i), then a(n)= sum(k_i / (e_i * phi(e_i)), i in I ) [cf. Dickson, History of the Theory of Numbers, Vol. 1, p. 123].
Also a(n)= number of cyclic subgroups of order n in an Abelian group of order n^2 and type (1,1) (Fricke). - Len Smiley, Dec 04 2001
The polynomial degree of the classical modular equation of degree n relating j(z) and j(nz) is psi(n) (Fricke). - Michael Somos, Nov 10 2006; clarified by Katherine E. Stange, Mar 11 2022
The Mobius transform of this sequence is A063659. - Gary W. Adamson, May 23 2008
The inverse Mobius transform of this sequence is A060648. - Vladeta Jovovic, Apr 05 2009
The Dirichlet inverse of this sequence is A008836(n) * A048250(n). - Álvar Ibeas, Mar 18 2015
The Riemann Hypothesis is true if and only if a(n)/n - e^gamma*log(log(n)) < 0 for any n > 30. - Enrique Pérez Herrero, Jul 12 2011
The Riemann Hypothesis is also equivalent to another inequality, see the Sole and Planat link. - Thomas Ordowski, May 28 2017
An infinitary analog of this sequence is the sum of the infinitary divisors of n (see A049417). - Vladimir Shevelev, Apr 01 2014
Problem: are there composite numbers n such that n+1 divides psi(n)? - Thomas Ordowski, May 21 2017
The sum of divisors d of n such that n/d is squarefree. - Amiram Eldar, Jan 11 2019
Psi(n)/n is a new maximum for each primorial (A002110) [proof in link: Patrick Sole and Michel Planat, Proposition 1 page 2]. - Bernard Schott, May 21 2020
From Jianing Song, Nov 05 2022: (Start)
a(n) is the number of subgroups of C_n X C_n that are isomorphic to C_n, where C_n is the cyclic group of order n. Proof: the number of elements of order n in C_n X C_n is A007434(n) (they are the elements of the form (a,b) in C_n X C_n where gcd(a,b,n) = 1), and each subgroup isomorphic to C_n contains phi(n) generators, so the number of such subgroups is A007434(n)/phi(n) = a(n).
The total number of order-n subgroups of C_n X C_n is A000203(n). (End)

Examples

			Let L = <V,W> be a 2-dimensional lattice. The 6 primitive sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V+W,2W>, <2V,2W+V>. Compare A000203.
G.f. = x + 3*x^2 + 4*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 8*x^7 + 12*x^8 + 12*x^9 + ...
		

References

  • Tom Apostol, Intro. to Analyt. Number Theory, page 71, Problem 11, where this is called phi_1(n).
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 228.
  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 220.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004. See Section B41, p. 147.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other sequences that count lattices/sublattices: A000203 (with primitive condition removed), A003050 (hexagonal lattice instead), A003051, A054345, A160889, A160891.
Cf. A301594.
Cf. A063659 (Möbius transform), A082020 (average order), A156303 (Euler transform), A173290 (partial sums), A175836 (partial products), A203444 (range).
Cf. A210523 (record values).
Algebraic combinations with other core sequences: A000082, A033196, A175732, A291784, A344695.
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), this sequence (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Cf. A082695 (Dgf at s=3), A339925 (Dgf at s=4).

Programs

  • Haskell
    import Data.Ratio (numerator)
    a001615 n = numerator (fromIntegral n * (product $
                map ((+ 1) . recip . fromIntegral) $ a027748_row n))
    -- Reinhard Zumkeller, Jun 03 2013, Apr 12 2012
    
  • Magma
    m:=75; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[MoebiusMu(k)^2*x^k/(1-x^k)^2: k in [1..2*m]]) )); // G. C. Greubel, Nov 23 2018
    
  • Maple
    A001615 := proc(n) n*mul((1+1/i[1]),i=ifactors(n)[2]) end; # Mark van Hoeij, Apr 18 2012
  • Mathematica
    Join[{1}, Table[n Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]), {n, 2, 100}]] (* T. D. Noe, Jun 11 2006 *)
    Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 100}] (* Jan Mangaldan, Aug 22 2013 *)
    a[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}]; (* Michael Somos, Jan 10 2015 *)
    Table[n Product[1 + 1/p, {p, Select[Divisors[n], PrimeQ]}], {n, 1, 100}] (* Vaclav Kotesovec, May 08 2021 *)
    Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}] (* Eric W. Weisstein, Mar 09 2025 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n])};
    
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv( n, d, moebius(d)^2 / d))}; /* Michael Somos, Nov 10 2006 */
    
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1)) \\ Charles R Greathouse IV, Aug 22 2013
    
  • PARI
    a(n) = n * sumdivmult(n, d, issquarefree(d)/d) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import primefactors
    def A001615(n):
        plist = primefactors(n)
        return n*prod(p+1 for p in plist)//prod(plist) # Chai Wah Wu, Jun 03 2021
  • Sage
    def A001615(n) : return n*mul(1+1/p for p in prime_divisors(n))
    [A001615(n) for n in (1..69)] # Peter Luschny, Jun 10 2012
    

Formula

Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(2*s). - Michael Somos, May 19 2000
Multiplicative with a(p^e) = (p+1)*p^(e-1). - David W. Wilson, Aug 01 2001
a(n) = A003557(n)*A048250(n) = n*A000203(A007947(n))/A007947(n). - Labos Elemer, Dec 04 2001
a(n) = n*Sum_{d|n} mu(d)^2/d, Dirichlet convolution of A008966 and A000027. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2 * d. - Joerg Arndt, Jul 06 2011
From Enrique Pérez Herrero, Aug 22 2010: (Start)
a(n) = J_2(n)/J_1(n) = J_2(n)/phi(n) = A007434(n)/A000010(n), where J_k is the k-th Jordan Totient Function.
a(n) = (1/phi(n))*Sum_{d|n} mu(n/d)*d^(b-1), for b=3. (End)
a(n) = n / Sum_{d|n} mu(d)/a(d). - Enrique Pérez Herrero, Jun 06 2012
a(n^k)= n^(k-1) * a(n). - Enrique Pérez Herrero, Jan 05 2013
If n is squarefree, then a(n) = A049417(n) = A000203(n). - Vladimir Shevelev, Apr 01 2014
a(n) = Sum_{d^2 | n} mu(d) * A000203(n/d^2). - Álvar Ibeas, Dec 20 2014
The average order of a(n) is 15*n/Pi^2. - Enrique Pérez Herrero, Jan 14 2012. See Apostol. - N. J. A. Sloane, Sep 04 2017
G.f.: Sum_{k>=1} mu(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 25 2018
a(n) = Sum_{d|n} 2^omega(d) * phi(n/d), Dirichlet convolution of A034444 and A000010. - Daniel Suteu, Mar 09 2019
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} 2^omega(gcd(n,k)).
a(n) = Sum_{k=1..n} 2^omega(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = abs(A158523(n)) = A158523(n) * A008836(n). - Enrique Pérez Herrero, Nov 07 2022
a(n) = (1/n) * Sum_{d|n} mu(n/d)*sigma(d^2). - Ridouane Oudra, Mar 26 2025

Extensions

More terms from Olivier Gérard, Aug 15 1997

A037445 Number of infinitary divisors (or i-divisors) of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
The smallest number m with exactly 2^n infinitary divisors is A037992(n); for these values m, a(m) increases also to a new record. - Bernard Schott, Mar 09 2023

Examples

			For n = 8, n = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8, so a(8) = 4.
For n = 90, n = 2*5*9 where 2,5,9 are in A050376, so a(90) = 2^3 = 8.
		

Crossrefs

Programs

  • Haskell
    a037445 = product . map (a000079 . a000120) . a124010_row
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    A037445 := proc(n)
        local a,p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*2^wt(p[2]) ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 16 2016
  • Mathematica
    Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@
    Flatten[Outer[z, Sequence @@ bitty /@
    Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}]
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]
    y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1}
    divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *)
    a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 19 2013, after Reinhard Zumkeller *)
  • PARI
    A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[,2])) \\ Andrew Lelechenko, May 10 2014
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return 2**sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    (define (A037445 n) (if (= 1 n) n (* (A001316 (A067029 n)) (A037445 (A028234 n))))) ;; Antti Karttunen, May 28 2017
    

Formula

Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01 2001
Let n = q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n) = 2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.
a(n) = Product_{k=1..A001221(n)} A000079(A000120(A124010(n,k))). - Reinhard Zumkeller, Mar 19 2013
From Antti Karttunen, May 28 2017: (Start)
a(n) = A286575(A156552(n)). [Because multiplicative with a(p^e) = A001316(e).]
a(n) = 2^A064547(n). (End)
a(A037992(n)) = 2^n. - Bernard Schott, Mar 10 2023

Extensions

Corrected and extended by Naohiro Nomoto, Jun 21 2001

A077609 Triangle in which n-th row lists infinitary divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 4, 7, 28, 1, 29, 1
Offset: 1

Views

Author

Eric W. Weisstein, Nov 11 2002

Keywords

Comments

The first difference from the triangle A222266 (bi-unitary divisors of n) is in row n = 16; indeed, the 16th row of A222266 is (1, 2, 8, 16) while the 16th of this sequence here is (1, 16). - Bernard Schott, Mar 10 2023
The concept of infinitary divisors was introduced by Cohen (1990). - Amiram Eldar, Mar 09 2024

Examples

			The first few rows are:
  1;
  1, 2;
  1, 3;
  1, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 4, 8;
  1, 9;
  1, 2, 5, 10;
  1, 11;
  1, 3, 4, 12;
  1, 13;
  1, 2, 7, 14;
  1, 3, 5, 15;
  1, 16;
  1, 17;
		

Crossrefs

Cf. A027750, A037445 (row lengths), A049417 (row sums).
Cf. A222266.

Programs

  • Haskell
    import Data.List ((\\))
    a077609 n k = a077609_row n !! (k-1)
    a077609_row n = filter
       (\d -> d == 1 || null (a213925_row d \\ a213925_row n)) $ a027750_row n
    a077609_tabf = map a077609_row [1..]
    -- Reinhard Zumkeller, Jul 10 2013
    
  • Maple
    # see the function idivisors() in A049417. # R. J. Mathar, Oct 05 2017
  • Mathematica
    f[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ; Array[f, 30] // Flatten (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *) (* edited by Michael De Vlieger, Jun 07 2016 *)
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k,2]); bde = binary(valuation(d, f[k,1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)););); return (1);}
    row(n) = {d = divisors(n); f = factor(n); idiv = []; for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k]));); idiv;} \\ Michel Marcus, Feb 15 2016

A037992 Smallest number with 2^n divisors.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 17297280, 294053760, 5587021440, 128501493120, 3212537328000, 93163582512000, 2888071057872000, 106858629141264000, 4381203794791824000, 188391763176048432000, 8854412869274276304000, 433866230594439538896000
Offset: 0

Views

Author

Keywords

Comments

Positions where the number of infinitary divisors of n (A037445), increases to a record (cf. A002182), or infinitary analog of highly composite numbers (A002182). - Vladimir Shevelev, May 13-22 2016
Infinitary superabundant numbers: numbers m with record values of the infinitary abundancy index, A049417(m)/m > A049417(k)/k for all k < m. - Amiram Eldar, Sep 20 2019

Crossrefs

Programs

  • Haskell
    a037992 n = head [x | x <- [1..], a000005 x == 2 ^ n]
    -- Reinhard Zumkeller, Apr 08 2015
    
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Catch[ For[ k = 2, True, k++, If[ an = k*a[n-1]; DivisorSigma[0, an] == 2^n, Throw[an]]]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 16 2012 *)
  • PARI
    {a(n)= local(A,m,c,k,p); if(n<1, n==0, c=0; A=1; m=1; while( cMichael Somos, Apr 15 2005 */
    
  • Python
    def a(n):
      product = 1
      k = 1
      for i in range(n+1):
        product *= k   # k=A050376(i), for i>=1
        while product % k == 0:
          k += 1
      return product
    # Jason L. Miller, Mar 20 2024

Formula

A000005(a(n)) = A000079(n).
a(n) = Product_{k=1..n} A050376(k), product of the first n terms of A050376. - Lekraj Beedassy, Jun 30 2004
a(n) = A052330(2^n -1). - Thomas Ordowski, Jun 29 2005
A001221(a(n+1)) <= A001221(a(n))+1, see also A074239; A007947(a(n)) gives a sequence of primorials (A002110) in nondecreasing order. - Reinhard Zumkeller, Apr 16 2006, corrected: Apr 09 2015
a(n) = A005179(2^n). - Ivan N. Ianakiev, Apr 01 2015
a(n+1)/a(n) = A050376(n+1). - Jinyuan Wang, Oct 14 2018

Extensions

a(18) from Don Reble, Aug 20 2002

A007357 Infinitary perfect numbers.

Original entry on oeis.org

6, 60, 90, 36720, 12646368, 22276800, 126463680, 4201148160, 28770487200, 287704872000, 1446875426304, 2548696550400, 14468754263040, 590325173932032, 3291641594841600, 8854877608980480, 32916415948416000
Offset: 1

Views

Author

Keywords

Comments

Numbers N whose sum of infinitary divisors equals 2*N: A049417(N)=2*N. - Joerg Arndt, Mar 20 2011
6 is the only infinitary perfect number which is also perfect number (A000396). 6 is also the only squarefree infinitary perfect number. - Vladimir Shevelev, Mar 02 2011

Examples

			Let n=90. Its unique expansion over distinct terms of A050376 is 90=2*5*9. Thus the infinitary divisors of 90 are 1,2,5,9,10,18,45,90. The number of such divisors is 2^3, i.e., the cardinality of the set of all subsets of the set {2,5,9}. The sum of such divisors is (2+1)*(5+1)*(9+1)=180 and the sum of proper such divisors is 90=n. Thus 90 is in the sequence. - _Vladimir Shevelev_, Mar 02 2011
		

References

  • G. L. Cohen, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A129656 (infinitary abundant), A129657 (infinitary deficient).

Programs

  • Maple
    isA007357 := proc(n)
        A049417(n) = 2*n ;
        simplify(%) ;
    end proc:
    for n from 1 do
        if isA007357(n) then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    infiPerfQ[n_] := 2n == Total[If[n == 1, 1, Sort @ Flatten @ Outer[ Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m&])]]];
    For[n = 6, True, n += 6, If[infiPerfQ[n], Print[n]]] (* Jean-François Alcover, Feb 08 2021 *)

Formula

{n: A049417(n) = 2*n}. - R. J. Mathar, Mar 18 2011
a(n)==0 (mod 6). Thus there are no odd infinitary perfect numbers. - Vladimir Shevelev, Mar 02 2011

Extensions

More terms from Eric W. Weisstein, Jan 27 2004

A126168 Sum of the proper infinitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 36, 1, 16, 13, 12, 1, 42, 1, 19, 15, 20, 13, 14, 1, 22, 17, 50, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 66, 17, 64, 23, 32, 1, 60, 1, 34, 17, 21, 19, 78, 1, 22, 27, 74, 1, 78, 1, 40, 29
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			As the infinitary divisors of 240 are 1, 3, 5, 15, 16, 48, 80, 240, we have a(240) = 1 + 3 + 5 + 15 + 16 + 48 + 80 = 168.
		

Crossrefs

Programs

  • Maple
    A049417 := proc(n)
        local a,pe,k,edgs,p ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            edgs := convert(op(2,pe),base,2) ;
            for k from 0 to nops(edgs)-1 do
                dk := op(k+1,edgs) ;
                a := a*(p^(2^k*(1+dk))-1)/(p^(2^k)-1) ;
            end do:
        end do:
        a ;
    end proc:
    A126168 := proc(n)
        A049417(n)-n ;
    end proc:
    seq(A126168(n),n=1..100) ; # R. J. Mathar, Jul 23 2021
  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; properinfinitarydivisorsum /@ Range[75]
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); a[n_] := isigma[n] - n; Array[a, 100] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)))} \\ This function from Andrew Lelechenko, Apr 22 2014
    A126168(n) = (A049417(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula.

Formula

a(n) = isigma(n) - n = A049417(n) - n.

A091732 Iphi(n): infinitary analog of Euler's phi function.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 3, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 6, 24, 12, 16, 18, 28, 8, 30, 15, 20, 16, 24, 24, 36, 18, 24, 12, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 16, 40, 18, 36, 28, 58, 24, 60, 30, 48, 45, 48, 20, 66, 48, 44, 24, 70, 24, 72, 36, 48
Offset: 1

Views

Author

Steven Finch, Mar 05 2004

Keywords

Comments

Not the same as A064380.
With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = (A050376(i)-1) * (A050376(j)-1) * ... * (A050376(k)-1). (Cf. the first formula). - Antti Karttunen, Jan 15 2019

Examples

			a(6)=2 since 6=P_1*P_2, where P_1=2^(2^0) and P_2=3^(2^0); hence (P_1-1)*(P_2-1)=2.
12=3*4 (3,4 are in A050376). Therefore, a(12) = 12*(1-1/3)*(1-1/4) = 6. - _Vladimir Shevelev_, Feb 20 2011
		

Crossrefs

Programs

  • Maple
    A091732 := proc(n) local f,a,e,p,b; a :=1 ; for f in ifactors(n)[2] do e := op(2,f) ; p := op(1,f) ; b := convert(e,base,2) ; for i from 1 to nops(b) do if op(i,b) > 0 then a := a*(p^(2^(i-1))-1) ; end if; end do: end do: a ; end proc:
    seq(A091732(n),n=1..20) ; # R. J. Mathar, Apr 11 2011
  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], 1])); a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n]) - 1); Array[a, 100] (* Amiram Eldar, Feb 28 2020 *)
  • PARI
    ispow2(n) = (n && !bitand(n,n-1));
    A302777(n) = ispow2(isprimepower(n));
    A091732(n) = { my(m=1); while(n > 1, fordiv(n, d, if((dA302777(n/d), m *= ((n/d)-1); n = d; break))); (m); }; \\ Antti Karttunen, Jan 15 2019

Formula

Consider the set, I, of integers of the form p^(2^j), where p is any prime and j >= 0. Let n > 1. From the fundamental theorem of arithmetic and the fact that the binary representation of any integer is unique, it follows that n can be uniquely factored as a product of distinct elements of I. If n = P_1*P_2*...*P_t, where each P_j is in I, then iphi(n) = Product_{j=1..t} (P_j - 1).
From Vladimir Shevelev, Feb 20 2011: (Start)
Thus we have the following analog of the formula phi(n) = n*Product_{p prime divisors of n} (1-1/p): if the factorization of n over distinct terms of A050376 is n = Product(q) (this factorization is unique), then a(n) = n*Product(1-1/q). Thus a(n) is infinitary multiplicative, i.e., if n_1 and n_2 have no common i-divisors, then a(n_1*n_2) = a(n_1)*a(n_2). Now we see that this property is stronger than the usual multiplicativity, therefore a(n) is a multiplicative arithmetic function.
Add that Sum_{d runs i-divisors of n} a(d)=n and a(n) = n*Sum_{d runs i-divisors of n} A064179(d)/d. The latter formulas are analogs of the corresponding formulas for phi(n): Sum_{d|n} phi(d) = n and phi(n) = n*Sum_{d|n} mu(d)/d. (End).
a(n) = n - A323413(n). - Antti Karttunen, Jan 15 2019
a(n) <= A064380(n), with equality if and only if n is in A050376. - Amiram Eldar, Feb 18 2023

A126169 Smaller member of an infinitary amicable pair.

Original entry on oeis.org

114, 594, 1140, 4320, 5940, 8640, 10744, 12285, 13500, 25728, 35712, 44772, 60858, 62100, 67095, 67158, 74784, 79296, 79650, 79750, 86400, 92960, 118500, 118944, 142310, 143808, 177750, 185368, 204512, 215712, 298188, 308220, 356408, 377784, 420640, 462330
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(5)=5940 because the fifth infinitary amicable pair is (5940,8460) and 5940 is its smallest member
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[First[data4[[k]]], {k, 1, Length[data4]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k > n && infs[k] == n, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of m for which isigma(m)=isigma(n)=m+n and m

Extensions

a(33)-a(36) from Amiram Eldar, Jan 22 2019

A127666 Odd infinitary abundant numbers.

Original entry on oeis.org

945, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, 23205, 23625, 25245, 25935, 26565, 27405, 28215, 28875, 29295, 29835, 31395, 33345, 33495, 33915, 34125, 34155, 34965, 35805, 37125, 38745, 39585, 40635, 41055, 42315
Offset: 1

Author

Ant King, Jan 26 2007

Keywords

Comments

This is also the sequence of odd integers whose infinitary aliquot sequences initially increase. Based on empirical evidence (up to 10 million), this applies to only about 0.1% of odd integers.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 1, 77, 473, 5703, 53569, 561610, 5525461, 54979537, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0005... . - Amiram Eldar, Sep 09 2022

Examples

			a(5)=16065 because 16065 is the fifth odd number that is exceeded by the sum of its proper infinitary divisors.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;Select[Range[1,50000,2],properinfinitarydivisorsum[ # ]># &] (* end of program *)
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[1, 50000, 2], isigma[#] > 2 # &] (* Amiram Eldar, Jun 09 2019 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)))}
    isok(k) = A049417(k)>2*k&&k%2==1; \\ Jinyuan Wang, Jun 09 2019

Formula

Odd values of n for which A126168(n)>n.
Previous Showing 21-30 of 89 results. Next