A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A006000
a(n) = (n+1)*(n^2+n+2)/2; g.f.: (1 + 2*x^2) / (1 - x)^4.
Original entry on oeis.org
1, 4, 12, 28, 55, 96, 154, 232, 333, 460, 616, 804, 1027, 1288, 1590, 1936, 2329, 2772, 3268, 3820, 4431, 5104, 5842, 6648, 7525, 8476, 9504, 10612, 11803, 13080, 14446, 15904, 17457, 19108, 20860, 22716, 24679, 26752, 28938, 31240, 33661, 36204, 38872, 41668, 44595, 47656, 50854, 54192
Offset: 0
- V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- William A. Tedeschi, Table of n, a(n) for n = 0..10000
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-382. [See p. 301].
- Jon Perry, Weighted Hamiltonian Cycles
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Eric Weisstein's World of Mathematics, Polygonal Number
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
A064808
a(n) is the (n+1)st (n+2)-gonal number.
Original entry on oeis.org
1, 3, 9, 22, 45, 81, 133, 204, 297, 415, 561, 738, 949, 1197, 1485, 1816, 2193, 2619, 3097, 3630, 4221, 4873, 5589, 6372, 7225, 8151, 9153, 10234, 11397, 12645, 13981, 15408, 16929, 18547, 20265, 22086, 24013, 26049, 28197, 30460, 32841, 35343, 37969, 40722
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Justin Crum, Cyrus Cheng, David A. Ham, Lawrence Mitchell, Robert C. Kirby, Joshua A. Levine, and Andrew Gillette, Bringing Trimmed Serendipity Methods to Computational Practice in Firedrake, arXiv:2104.12986 [math.NA], 2021.
- Index to divisibility sequences
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
A086270
Rectangular array T(k,n) of polygonal numbers, by antidiagonals.
Original entry on oeis.org
1, 3, 1, 6, 4, 1, 10, 9, 5, 1, 15, 16, 12, 6, 1, 21, 25, 22, 15, 7, 1, 28, 36, 35, 28, 18, 8, 1, 36, 49, 51, 45, 34, 21, 9, 1, 45, 64, 70, 66, 55, 40, 24, 10, 1, 55, 81, 92, 91, 81, 65, 46, 27, 11, 1, 66, 100, 117, 120, 112, 96, 75, 52, 30, 12, 1, 78, 121, 145, 153, 148, 133, 111
Offset: 1
First 6 rows:
=========================================
n\k| 1 2 3 4 5 6 7
---|-------------------------------------
1 | 1 3 6 10 15 21 28 ... (A000217, triangular numbers)
2 | 1 4 9 16 25 36 49 ... (A000290, squares)
3 | 1 5 12 22 35 51 70 ... (A000326, pentagonal numbers)
4 | 1 6 15 28 45 66 91 ... (A000384, hexagonal numbers)
5 | 1 7 18 34 55 81 112 ... (A000566, heptagonal numbers)
6 | 1 8 21 40 65 96 133 ... (A000567, octagonal numbers)
...
The array formed by the complements: A183225.
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 76 at p. 189.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.
-
T:=func; [T(k,n-k+1): k in [1..n], n in [1..12]]; // Bruno Berselli, Dec 19 2014
-
t[n_, k_] := n*Binomial[k, 2] + k; Table[ t[k, n - k + 1], {n, 12}, {k, n}] // Flatten
A090466
Regular figurative or polygonal numbers of order greater than 2.
Original entry on oeis.org
6, 9, 10, 12, 15, 16, 18, 21, 22, 24, 25, 27, 28, 30, 33, 34, 35, 36, 39, 40, 42, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 63, 64, 65, 66, 69, 70, 72, 75, 76, 78, 81, 82, 84, 85, 87, 88, 90, 91, 92, 93, 94, 95, 96, 99, 100, 102, 105, 106, 108, 111, 112, 114, 115, 117, 118
Offset: 1
- Albert H. Beiler, Recreations In The Theory Of Numbers, The Queen Of Mathematics Entertains, Dover, NY, 1964, pp. 185-199.
Sequence
A090428 (excluding 1) is a subsequence of this sequence. -
T. D. Noe, Jun 14 2012
-
isA090466 := proc(n)
local nsearch,ksearch;
for nsearch from 3 do
if A057145(nsearch,3) > n then
return false;
end if;
for ksearch from 3 do
if A057145(nsearch,ksearch) = n then
return true;
elif A057145(nsearch,ksearch) > n then
break;
end if;
end do:
end do:
end proc:
for n from 1 to 1000 do
if isA090466(n) then
printf("%d,",n) ;
end if;
end do: # R. J. Mathar, Jul 28 2016
-
Take[Union[Flatten[Table[1+k*n (n-1)/2-(n-1)^2,{n,3,100},{k,3,40}]]],67] (* corrected by Ant King, Sep 19 2011 *)
mx = 150; n = k = 3; lst = {}; While[n < Floor[mx/3]+2, a = PolygonalNumber[n, k]; If[a < mx+1, AppendTo[ lst, a], (n++; k = 2)]; k++]; lst = Union@ lst (* Robert G. Wilson v, May 29 2014 and updated Jul 23 2018; PolygonalNumber requires version 10.4 or higher *)
-
list(lim)=my(v=List()); lim\=1; for(n=3,sqrtint(8*lim+1)\2, for(k=3,2*(lim-2*n+n^2)\n\(n-1), listput(v, 1+k*n*(n-1)/2-(n-1)^2))); Set(v); \\ Charles R Greathouse IV, Jan 19 2017
-
is(n)=for(s=3,n\3+1,ispolygonal(n,s)&&return(s)); \\ M. F. Hasler, Jan 19 2017
-
isA090466(m) = my(v=divisors(2*m)); for(i=3, #v, my(d=v[i]); if(d==m, return(0)); if((2*m/d - 2)%(d - 1)==0, return(1))); 0 \\ Jianing Song, Mar 14 2021
A055795
a(n) = binomial(n,4) + binomial(n,2).
Original entry on oeis.org
0, 1, 3, 7, 15, 30, 56, 98, 162, 255, 385, 561, 793, 1092, 1470, 1940, 2516, 3213, 4047, 5035, 6195, 7546, 9108, 10902, 12950, 15275, 17901, 20853, 24157, 27840, 31930, 36456, 41448, 46937, 52955, 59535, 66711, 74518, 82992, 92170, 102090, 112791, 124313, 136697
Offset: 1
- James Spahlinger, Table of n, a(n) for n = 1..1000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
- Milan Janjic, Two Enumerative Functions
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Tetrahedral Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(n^3-6*n^2+23*n-18)/24: n in [1..100]]; // Wesley Ivan Hurt, Sep 29 2013
-
A055795:=n->binomial(n,4)+binomial(n,2); # Zerinvary Lajos, Jul 24 2006
-
Table[Binomial[n, 4] + Binomial[n, 2], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
Table[n (n^3 - 6 n^2 + 23 n - 18)/24, {n, 100}] (* Wesley Ivan Hurt, Sep 29 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 3, 7, 15}, 50] (* Harvey P. Dale, Dec 07 2015 *)
Total[Binomial[Range[20], #] & /@ {2, 4}] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x (-1 + 2 x - 2 x^2)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017~ *)
-
A055795(n):=n*(n^3-6*n^2+23*n-18)/24$ makelist(A055795(n), n, 1, 100); /* Wesley Ivan Hurt, Sep 29 2013 */
-
a(n)= n*(n^3-6*n^2+23*n-18)/24 \\ Wesley Ivan Hurt, Sep 29 2013
Offset corrected and Sellers formula adjusted by
Gary Detlefs, Nov 28 2011
A139601
Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
Offset: 0
The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1, 3, 6, 10, 15, 21, 28,
Squares ...... A000290: 0, 1, 4, 9, 16, 25, 36, 49,
Pentagonals .. A000326: 0, 1, 5, 12, 22, 35, 51, 70,
Hexagonals ... A000384: 0, 1, 6, 15, 28, 45, 66, 91,
Heptagonals .. A000566: 0, 1, 7, 18, 34, 55, 81, 112,
Octagonals ... A000567: 0, 1, 8, 21, 40, 65, 96, 133,
9-gonals ..... A001106: 0, 1, 9, 24, 46, 75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52, 85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58, 95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
Sequences of m-gonal numbers:
A000217 (m=3),
A000290 (m=4),
A000326 (m=5),
A000384 (m=6),
A000566 (m=7),
A000567 (m=8),
A001106 (m=9),
A001107 (m=10),
A051682 (m=11),
A051624 (m=12),
A051865 (m=13),
A051866 (m=14),
A051867 (m=15),
A051868 (m=16),
A051869 (m=17),
A051870 (m=18),
A051871 (m=19),
A051872 (m=20),
A051873 (m=21),
A051874 (m=22),
A051875 (m=23),
A051876 (m=24),
A255184 (m=25),
A255185 (m=26),
A255186 (m=27),
A161935 (m=28),
A255187 (m=29),
A254474 (m=30).
-
T:= func< n,k | k*((n+1)*(k-1) +2)/2 >;
A139601:= func< n,k | T(n-k, k) >;
[A139601(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
-
T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
-
def T(n,k): return k*((n+1)*(k-1)+2)/2
def A139601(n,k): return T(n-k, k)
flatten([[A139601(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024
A080852
Square array of 4D pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 4, 1, 5, 10, 1, 6, 15, 20, 1, 7, 20, 35, 35, 1, 8, 25, 50, 70, 56, 1, 9, 30, 65, 105, 126, 84, 1, 10, 35, 80, 140, 196, 210, 120, 1, 11, 40, 95, 175, 266, 336, 330, 165, 1, 12, 45, 110, 210, 336, 462, 540, 495, 220, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715, 286
Offset: 0
Array, n >= 0, k >= 0, begins
1 4 10 20 35 56 ...
1 5 15 35 70 126 ...
1 6 20 50 105 196 ...
1 7 25 65 140 266 ...
1 8 30 80 175 336 ...
See
A257200 for another version of the array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^5,x,11),x,n),n,0,11),k,-1,10)
-
VECTOR(VECTOR(comb(k+3,3)+comb(k+3,4)n, k, 0, 11), n, 0, 11)
-
A080852 := proc(n,k)
binomial(k+4,4)+(n-1)*binomial(k+3,4) ;
end proc:
seq( seq(A080852(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
T[n_, k_] := Binomial[k+3, 3] + Binomial[k+3, 4]n;
Table[T[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 05 2023 *)
A077414
a(n) = n*(n - 1)*(n + 2)/2.
Original entry on oeis.org
0, 4, 15, 36, 70, 120, 189, 280, 396, 540, 715, 924, 1170, 1456, 1785, 2160, 2584, 3060, 3591, 4180, 4830, 5544, 6325, 7176, 8100, 9100, 10179, 11340, 12586, 13920, 15345, 16864, 18480, 20196, 22015, 23940, 25974, 28120, 30381, 32760, 35260
Offset: 1
For n=6, a(6) = 1*(3*5+1)+2*(3*4+1)+3*(3*3+1)+4*(3*2+1)+5*(3*1+1) = 120. - _Bruno Berselli_, Feb 13 2014
G.f. = 4*x^2 + 15*x^3 + 36*x^4 + 70*x^5 + 120*x^6 + 189*x^7 + 280*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- DefElement, Raviart-Thomas
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Tanner Robeson, Sums of Square Tic Tac Toe Boards that end in a Draw.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index to sequences related to polygonal numbers.
Cf. similar sequences of the type m*(m+1)*(m+k)/2 listed in
A267370.
-
[n*(n-1)*(n+2)/2: n in [1..30]]; // G. C. Greubel, Jan 18 2018
-
A077414:=n->n*(n-1)*(n+2)/2: seq(A077414(n), n=1..60); # Wesley Ivan Hurt, Apr 09 2017
-
Table[(n (n - 1) (n + 2))/2, {n, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 15, 36}, 50] (* Harvey P. Dale, Jun 04 2012 *)
CoefficientList[Series[x (4 - x)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
-
a(n)=n*(n-1)*(n+2)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
concat(0, Vec(x^2*(4-x)/(1-x)^4 + O(x^200))) \\ Altug Alkan, Jan 15 2016
A127736
a(n) = n*(n^2 + 2*n - 1)/2.
Original entry on oeis.org
1, 7, 21, 46, 85, 141, 217, 316, 441, 595, 781, 1002, 1261, 1561, 1905, 2296, 2737, 3231, 3781, 4390, 5061, 5797, 6601, 7476, 8425, 9451, 10557, 11746, 13021, 14385, 15841, 17392, 19041, 20791, 22645, 24606, 26677, 28861, 31161, 33580, 36121, 38787, 41581
Offset: 1
From _Wesley Ivan Hurt_, May 18 2021: (Start)
Add all the numbers in the top row and last column.
[1 2 3 4 5]
[1 2 3 4] [6 7 8 9 10]
[1 2 3] [5 6 7 8] [11 12 13 14 15]
[1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]
[1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]
------------------------------------------------------------------------
n 1 2 3 4 5
------------------------------------------------------------------------
a(n) 1 7 21 46 85
------------------------------------------------------------------------
(End)
-
A127736:=n->n*(n^2+2*n-1)/2; seq(A127736(n), n=1..40); # Wesley Ivan Hurt, Mar 14 2014
-
Table[n*(n^2 + 2*n - 1)/2, {n, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 24 2011 *)
CoefficientList[Series[-(x^2 - 3 x - 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *)
LinearRecurrence[{4,-6,4,-1},{1,7,21,46},60] (* Harvey P. Dale, Apr 22 2014 *)
-
Vec(-x*(x^2-3*x-1)/(x-1)^4 + O(x^100)) \\ Colin Barker, Mar 12 2014
-
a(n) = n*(n^2+2*n-1)/2; \\ Altug Alkan, Jan 07 2016
Comments