cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 101 results. Next

A384520 Numbers whose powerful part (A057521) is greater than 1 and is equal to a squarefree number raised to an odd power (A384518).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 216, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520, 536
Offset: 1

Views

Author

Amiram Eldar, Jun 01 2025

Keywords

Comments

Subsequence of A301517 and A374459 and first differs from them at n = 85: A374459(85) = A374459(85) = 864 = 2^5 * 3^3 is not a term of this sequence.
First differs from its subsequence A381312 at n = 21: a(21) = 216 = 2^3 * 3^3 is not a term of A381312.
Numbers whose prime factorization has one distinct exponent that is larger than 1 and it is odd.
Numbers that are a product of a squarefree number (A005117) and a coprime nonsquarefree number that is a squarefree number raised to an odd power (A384518).
The asymptotic density of this sequence is Sum_{k>=1} (d(2*k+1)-1)/zeta(2) = 0.095609588748823080455..., where d(k) = (zeta(2*k)/zeta(k)) * Product_{p prime} (1 + 2/p^k + Sum_{i=k+1..2*k-1} (-1)^(i+1)/p^i).

Crossrefs

Intersection of A268335 and A375142.
Intersection of A295661 and A375142.
Intersection of A376142 and A375142.
Equals A375142 \ A384519.
Subsequence of A301517 and A374459.
Subsequences: A381312, A384518.

Programs

  • Mathematica
    q[n_] := Module[{u = Union[Select[FactorInteger[n][[;; , 2]], # > 1 &]]}, Length[u] == 1 && OddQ[u[[1]]]]; Select[Range[250], q]
  • PARI
    isok(k) = {my(e = select(x -> (x > 1), Set(factor(k)[, 2]))); #e == 1 && e[1] % 2;}

A318650 Numerators of the sequence whose Dirichlet convolution with itself yields A057521, the powerful part of n.

Original entry on oeis.org

1, 1, 1, 15, 1, 1, 1, 49, 35, 1, 1, 15, 1, 1, 1, 603, 1, 35, 1, 15, 1, 1, 1, 49, 99, 1, 181, 15, 1, 1, 1, 2023, 1, 1, 1, 525, 1, 1, 1, 49, 1, 1, 1, 15, 35, 1, 1, 603, 195, 99, 1, 15, 1, 181, 1, 49, 1, 1, 1, 15, 1, 1, 35, 14875, 1, 1, 1, 15, 1, 1, 1, 1715, 1, 1, 99, 15, 1, 1, 1, 603, 3235, 1, 1, 15, 1, 1, 1, 49, 1, 35, 1, 15, 1, 1, 1, 2023, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2018

Keywords

Comments

Multiplicative because A046644 and A057521 are.

Crossrefs

Cf. A057521, A046644 (denominators).
Cf. also A317935, A318511, A318649.

Programs

  • Mathematica
    ff[p_, e_] := If[e > 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ ff @@@ FactorInteger[n]; f[1] = 1; f[n_] := f[n] = 1/2 (a[n] - Sum[f[d] f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Numerator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 11 2025 *)
  • PARI
    up_to = 65537;
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA057521(n)));
    A318650(n) = numerator(v318650_aux[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A057521(n) - Sum_{d|n, d>1, d 1.
From Vaclav Kotesovec, May 10 2025, simplified May 11 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(3*s-2) + 1/p^(3*s-3) + 1/p^s).
Sum_{k=1..n} A318650(k) / A046644(k) ~ n^(3/2) * sqrt(2*f(3/2)/(9*Pi*log(n))) * (1 + (2/3 - gamma - f'(3/2)/(2*f(3/2))) / (2*log(n))), where
f(3/2) = Product_{p prime} (1 + 2/p^(3/2) - 1/p^(5/2)) = A328013 = 3.51955505841710664719752940369857817...
f'(3/2)/f(3/2) = Sum_{p prime} (4*p - 3) * log(p) / (1 - 2*p - p^(5/2)) = -3.90914718020692131140714384422938370058563543737256496...
and gamma is the Euler-Mascheroni constant A001620. (End)

A381316 Numbers whose powerful part (A057521) is a power of a prime with an exponent >= 3 (A246549).

Original entry on oeis.org

8, 16, 24, 27, 32, 40, 48, 54, 56, 64, 80, 81, 88, 96, 104, 112, 120, 125, 128, 135, 136, 152, 160, 162, 168, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 264, 270, 272, 280, 296, 297, 304, 312, 320, 328, 336, 343, 344, 351, 352, 368, 375, 376, 378
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

First differs from A344653 and A345193 at n = 17: a(17) = 120 is not a term of these sequences.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., m} with m >= 3, i.e., any number (including zero) of 1's and then a single number >= 3.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/(p*(p^2-1)) = A369632 / A013661 = 0.13463358553764438661... .

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 2 && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] > 2 && (#e == 1 || e[2] == 1));

A003415 a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
Offset: 0

Views

Author

Keywords

Comments

Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023

Examples

			6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
  • E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.

Programs

  • GAP
    A003415:= Concatenation([0,0],List(List([2..10^3],Factors),
    i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Aug 31 2017
    (APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
  • Haskell
    a003415 0 = 0
    a003415 n = ad n a000040_list where
      ad 1 _             = 0
      ad n ps'@(p:ps)
         | n < p * p     = 1
         | r > 0         = ad n ps
         | otherwise     = n' + p * ad n' ps' where
           (n',r) = divMod n p
    -- Reinhard Zumkeller, May 09 2011
    
  • Magma
    Ad:=func; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
    
  • Maple
    A003415 := proc(n) local B,m,i,t1,t2,t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i,t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2,t3)/op(op(1,t3)); fi od: t2 := t2-1/B; n*t2; end;
    A003415 := proc(n)
            local a,f;
            a := 0 ;
            for f in ifactors(n)[2] do
                    a := a+ op(2,f)/op(1,f);
            end do;
            n*a ;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
  • PARI
    A003415(n) = {local(fac);if(n<1,0,fac=factor(n);sum(i=1,matsize(fac)[1],n*fac[i,2]/fac[i,1]))} /* Michael B. Porter, Nov 25 2009 */
    
  • PARI
    apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
    
  • PARI
    A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
    
  • PARI
    a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[,1]], c=f[,2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
    
  • Python
    from sympy import factorint
    def A003415(n):
        return sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0
    # Chai Wah Wu, Aug 21 2014
    
  • Sage
    def A003415(n):
        F = [] if n == 0 else factor(n)
        return n * sum(g / f for f, g in F)
    [A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
    

Formula

If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A003557 n divided by largest squarefree divisor of n; if n = Product p(k)^e(k) then a(n) = Product p(k)^(e(k)-1), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 16, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7
Offset: 1

Views

Author

Keywords

Comments

a(n) is the size of the Frattini subgroup of the cyclic group C_n - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 07 2001.
Also of the Frattini subgroup of the dihedral group with 2*n elements. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 01 2002
Number of solutions to x^m==0 (mod n) provided that n < 2^(m+1), i.e. the sequence of sequences A000188, A000189, A000190, etc. converges to this sequence. - Henry Bottomley, Sep 18 2001
a(n) is the number of nilpotent elements in the ring Z/nZ. - Laszlo Toth, May 22 2009
The sequence of partial products of a(n) is A085056(n). - Peter Luschny, Jun 29 2009
The first occurrence of n in this sequence is at A064549(n). - Franklin T. Adams-Watters, Jul 25 2014
From Hal M. Switkay, Jul 03 2025: (Start)
For n > 1, a(n) is a proper divisor of n. Thus the sequence n, a(n), a(a(n)), ... eventually becomes 1. This yields a minimal factorization of n as a product of squarefree numbers (A005117), each factor dividing all larger factors, in a factorization that is conjugate to the minimal factorization of n as a product of prime powers (A000961), as follows.
Let f(n,0) = n, and let f(n,k) = a(f(n,k-1)) for k > 0. A051903(n) is the minimal value of k such that f(n,k) = 1. A051903(n) <= log(n)/log(2). Since n/a(n) = A007947(n) is always squarefree by definition, n is a product of squarefree factors in the form Product_{i=1..A051903(n)} [f(n,i-1)/f(n,i)].
The two factorizations correspond to conjugate partitions of bigomega(n) = A001222(n). (End)

Crossrefs

Cf. A007947, A062378, A062379, A064549, A300717 (Möbius transform), A326306 (inv. Möbius transf.), A328572.
Sequences that are multiples of this sequence (the other factor of a pointwise product is given in parentheses): A000010 (A173557), A000027 (A007947), A001615 (A048250), A003415 (A342001), A007434 (A345052), A057521 (A071773).
Cf. A082695 (Dgf at s=2), A065487 (Dgf at s=3).

Programs

  • Haskell
    a003557 n = product $ zipWith (^)
                          (a027748_row n) (map (subtract 1) $ a124010_row n)
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Julia
    using Nemo
    function A003557(n)
        n < 4 && return 1
        q = prod([p for (p, e) ∈ Nemo.factor(fmpz(n))])
        return n == q ? 1 : div(n, q)
    end
    [A003557(n) for n in 1:90] |> println  # Peter Luschny, Feb 07 2021
  • Magma
    [(&+[(Floor(k^n/n)-Floor((k^n-1)/n)): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    A003557 := n -> n/ilcm(op(numtheory[factorset](n))):
    seq(A003557(n), n=1..98); # Peter Luschny, Mar 23 2011
    seq(n / NumberTheory:-Radical(n), n = 1..98); # Peter Luschny, Jul 20 2021
  • Mathematica
    Prepend[ Array[ #/Times@@(First[ Transpose[ FactorInteger[ # ] ] ])&, 100, 2 ], 1 ] (* Olivier Gérard, Apr 10 1997 *)
  • PARI
    a(n)=n/factorback(factor(n)[,1]) \\ Charles R Greathouse IV, Nov 17 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 20 2020
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import divisors
    def a(n): return n / max(i for i in divisors(n) if core(i) == i)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
    
  • Python
    from math import prod
    from sympy import primefactors
    def A003557(n): return n//prod(primefactors(n)) # Chai Wah Wu, Nov 04 2022
    
  • Sage
    def A003557(n) : return n*mul(1/p for p in prime_divisors(n))
    [A003557(n) for n in (1..98)] # Peter Luschny, Jun 10 2012
    

Formula

Multiplicative with a(p^e) = p^(e-1). - Vladeta Jovovic, Jul 23 2001
a(n) = n/rad(n) = n/A007947(n) = sqrt(J_2(n)/J_2(rad(n))), where J_2(n) is A007434. - Enrique Pérez Herrero, Aug 31 2010
a(n) = (J_k(n)/J_k(rad(n)))^(1/k), where J_k is the k-th Jordan Totient Function: (J_2 is A007434 and J_3 A059376). - Enrique Pérez Herrero, Sep 03 2010
Dirichlet convolution of A000027 and A097945. - R. J. Mathar, Dec 20 2011
a(n) = A000010(n)/|A023900(n)|. - Eric Desbiaux, Nov 15 2013
a(n) = Product_{k = 1..A001221(n)} (A027748(n,k)^(A124010(n,k)-1)). - Reinhard Zumkeller, Dec 20 2013
a(n) = Sum_{k=1..n}(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 11 2016
a(n) = e^[Sum_{k=2..n} (floor(n/k)-floor((n-1)/k))*(1-A010051(k))*Mangoldt(k)] where Mangoldt is the Mangoldt function. - Anthony Browne, Jun 16 2016
a(n) = Sum_{d|n} mu(d) * phi(d) * (n/d), where mu(d) is the Moebius function and phi(d) is the Euler totient function (rephrases formula of Dec 2011). - Daniel Suteu, Jun 19 2018
G.f.: Sum_{k>=1} mu(k)*phi(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
Dirichlet g.f.: Product_{primes p} (1 + 1/(p^s - p)). - Vaclav Kotesovec, Jun 24 2020
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = Sum_{k=1..n} mu(n/gcd(n,k))*gcd(n,k).
a(n) = Sum_{k=1..n} mu(gcd(n,k))*(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = A001615(n)/A048250(n) = A003415/A342001(n) = A057521(n)/A071773(n). - Antti Karttunen, Jun 08 2021

Extensions

Secondary definition added to the name by Antti Karttunen, Jun 08 2021

A000688 Number of Abelian groups of order n; number of factorizations of n into prime powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024

Examples

			a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From _Wolfdieter Lang_, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.

Crossrefs

Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).

Programs

  • Haskell
    a000688 = product . map a000041 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # James Sellers, Dec 07 2000
  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
    Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
  • PARI
    A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ Michael B. Porter, Feb 08 2010
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import factorint, npartitions
    from math import prod
    def A000688(n): return prod(map(npartitions,factorint(n).values())) # Chai Wah Wu, Jan 14 2022
  • Sage
    def a(n):
        F=factor(n)
        return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
    # Ralf Stephan, Jun 21 2014
    

Formula

Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
Inverse Moebius transform of A188585: a(n) = Sum_{d|n} A188585(d). - Amiram Eldar, Jun 10 2025

A056170 Number of non-unitary prime divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

A prime factor of n is unitary iff its exponent is 1 in the prime factorization of n. (Of course for any prime p, GCD(p, n/p) is either 1 or p. For a unitary prime factor it must be 1.)
Number of squared primes dividing n. - Reinhard Zumkeller, May 18 2002
a(A005117(n)) = 0; a(A013929(n)) > 0; a(A190641(n)) = 1. - Reinhard Zumkeller, Dec 29 2012
First differences of A013940. - Jason Kimberley, Feb 01 2017
Number of exponents larger than 1 in the prime factorization of n. - Antti Karttunen, Nov 28 2017

Crossrefs

Programs

Formula

Additive with a(p^e) = 0 if e = 1, 1 otherwise.
G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = log_2(A000005(A071773(n))). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = A001221(n) - A056169(n).
a(n) = omega(A000188(n)) = omega(A003557(n)) = omega(A057521(n)) = omega(A295666(n)), where omega = A001221.
For all n >= 1 it holds that:
a(A003557(n)) = A295659(n).
a(n) >= A162641(n).
(End)
Dirichlet g.f.: primezeta(2s)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Nov 01 2020
a(n) = A275812(n) - A046660(n). - Amiram Eldar, Jan 09 2024

Extensions

Minor edits by Franklin T. Adams-Watters, Mar 23 2011

A055231 Powerfree part of n: product of primes that divide n only once.

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 1, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 3, 1, 26, 1, 7, 29, 30, 31, 1, 33, 34, 35, 1, 37, 38, 39, 5, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 2, 55, 7, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71, 1, 73, 74, 3, 19, 77, 78, 79, 5
Offset: 1

Views

Author

Labos Elemer, Jun 21 2000

Keywords

Comments

The previous name was: Write n = K^2*F where F is squarefree and F = g*f where g = gcd(K,F) and f = F/g; then a(n) = f(n) = F(n)/g(n). Thus gcd(K^2,f) = 1.
Differs from A007913; they coincide if and only if g(n) = 1.
a(n) is the powerfree part of n; i.e., if n=Product(pi^ei) over all i (prime factorization) then a(n)=Product(pi^ei) over those i with ei=1; if n=b*c^2*d^3 then a(n) is minimum possible value of b. - Henry Bottomley, Sep 01 2000
Also denominator of n/rad(n)^2, where rad is the squarefree kernel of n (A007947), numerator: A062378. - Reinhard Zumkeller, Dec 10 2002
Largest unitary squarefree number dividing n (the unitary squarefree kernel of n). - Steven Finch, Mar 01 2004
From Bernard Schott, Dec 19 2022: (Start)
a(n) = 1 iff n is a squareful number (A001694).
1 < a(n) < n iff n is a nonsquarefree number that is not squareful (A332785).
a(n) = n iff n is a squarefree number (A005117). (End)

Crossrefs

Positions of 1's: A001694.
Cf. A008833, A007913, A007947, A000188, A057521, A055773 (computed for n!), A056169 (number of prime divisors), A056671 (number of divisors), A092261 (sum of divisors of the n-th term), A197863, A332785.
Cf. A005117 (subsequence).

Programs

  • Maple
    A055231 := proc(n)
        a := 1 ;
        if n > 1 then
            for f in ifactors(n)[2] do
                if op(2, f) = 1 then
                    a := a*op(1, f) ;
                end if;
            end do:
        end if;
        a ;
    end proc: # R. J. Mathar, Dec 23 2011
  • Mathematica
    rad[n_] := Times @@ First /@ FactorInteger[n]; a[n_] := Denominator[n/rad[n]^2]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 20 2013, after Reinhard Zumkeller *)
    f[p_, e_] := If[e==1, p, 1]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    A055231(n)={
       local(a=1);
       f=factor(n) ;
       for(i=1,matsize(f)[1],
             if( f[i,2] ==1, a *=  f[i,1]
             )
       ) ;
       a ;
    } /* R. J. Mathar, Mar 12 2012 */
    
  • PARI
    a(n) = {my(f=factor(n)); for (k=1, #f~, if (f[k,2] > 1, f[k,2] = 0);); factorback(f);} \\ Michel Marcus, Aug 27 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A055231(n): return prod(p for p, e in factorint(n).items() if e == 1) # Chai Wah Wu, Nov 14 2022
  • Scheme
    ;; With memoization-macro definec.
    (definec (A055231 n) (if (= 1 n) 1 (* (if (= 1 (A067029 n)) (A020639 n) 1) (A055231 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
    

Formula

a(n) = A007913(n)/gcd(A008833(n), A007913(n)).
a(n) = n/A057521(n).
Multiplicative with a(p) = p and a(p^e) = 1 for e > 1. - Vladeta Jovovic, Nov 01 2001
Dirichlet g.f.: zeta(s)*Product_{primes p} (1 + p^(1-s) - p^(-s) - p^(1-2s) + p^(-2s)). - R. J. Mathar, Dec 21 2011
a(n) = A007947(n)/A071773(n). - observed by Velin Yanev, Aug 27 2017, confirmed by Antti Karttunen, Nov 28 2017
a(1) = 1; for n > 1, a(n) = A020639(n)^A063524(A067029(n)) * a(A028234(n)). - Antti Karttunen, Nov 28 2017
a(n*m) = a(n)*a(m)/(gcd(n,a(m))*gcd(m,a(n))) for all n and m > 0 (conjectured). - Velin Yanev, Feb 06 2019. [This follows easily from the comment of Vladeta Jovovic. - N. J. A. Sloane, Mar 14 2019]
From Vaclav Kotesovec, Dec 19 2019: (Start)
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{primes p} (1 - p^(1-3*s) + p^(2-3*s) - p^(2-2*s) + p^(-2*s) - p^(-s)).
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 2/p^2 + 2/p^4 - 1/p^5) = 0.394913518073109872954607634745304266741971541072... (End)
a(n) = A197863(n)/n. - Amiram Eldar, Sep 01 2023

Extensions

Name replaced with a simpler description (based on Henry Bottomley's comment) by Antti Karttunen, Nov 28 2017
Incorrect comments and example deleted by Peter Munn, Nov 30 2022

A064549 a(n) = n * Product_{primes p|n} p.

Original entry on oeis.org

1, 4, 9, 8, 25, 36, 49, 16, 27, 100, 121, 72, 169, 196, 225, 32, 289, 108, 361, 200, 441, 484, 529, 144, 125, 676, 81, 392, 841, 900, 961, 64, 1089, 1156, 1225, 216, 1369, 1444, 1521, 400, 1681, 1764, 1849, 968, 675, 2116, 2209, 288, 343, 500, 2601, 1352
Offset: 1

Views

Author

Henry Bottomley, Oct 16 2001

Keywords

Comments

Index of first occurrence of n in A003557. - Franklin T. Adams-Watters, Jul 25 2014

Examples

			a(12) = 72 since 12 = 2^2*3 and 12*2*3 = 72.
		

Crossrefs

A permutation of the powerful numbers A001694.
Cf. A003557 (a left inverse), A007947, A057521, A078310, A082695, A202535.

Programs

  • Haskell
    a064549 n = a007947 n * n  -- Reinhard Zumkeller, Jul 23 2013
    
  • Magma
    [n^2/( (&+[Floor(k^n/n)-Floor((k^n - 1)/n) : k in [1..n]]) ): n in [1..50]]; // G. C. Greubel, Nov 02 2018
  • Maple
    a:= n -> n * convert(numtheory:-factorset(n), `*`):
    seq(a(n),n=1..100); # Robert Israel, Jul 25 2014
  • Mathematica
    a[n_] := n * Times @@ FactorInteger[n][[All, 1]]; Array[a, 100] (* Jean-François Alcover, Feb 17 2017 *)
    Table[n*Product[If[PrimeQ[d], d, 1], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jun 15 2019 *)
  • PARI
    popf(n)= { local(f,p=1); f=factor(n); for(i=1, matsize(f)[1], p*=f[i, 1]); return(p) } { for (n=1, 1000, write("b064549.txt", n, " ", n*popf(n)) ) } \\ Harry J. Smith, Sep 18 2009
    
  • PARI
    A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); }; \\ Antti Karttunen, Aug 30 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + p^2*X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 24 2020
    

Formula

Multiplicative with a(p^k)=p^(k+1) when k>0.
a(n) = n*A007947(n) = n^2/A003557(n).
Dirichlet convolution of A000027 and A202535. - R. J. Mathar, Dec 20 2011
a(n) = A078310(n) - 1. - Reinhard Zumkeller, Jul 23 2013
A003557(a(n)) = n; a(A003557(n)) = A057521(n). - Antti Karttunen, Aug 30 2018
G.f.: Sum_{k>=1} mu(k)^2*phi(k)*k*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
From Vaclav Kotesovec, Jun 24 2020: (Start)
Dirichlet g.f.: zeta(s-2) * zeta(s-1) * Product_{primes p} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = A065463/3 = A065464*Pi^2/18 = 0.234814...
(End)
Sum_{k>=1} 1/a(k) = zeta(2)*zeta(3)/zeta(6) = A082695. - Vaclav Kotesovec, Sep 19 2020
Sum_{k>=1} (-1)^(k+1)/a(k) = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 18 2020

A190641 Numbers having exactly one non-unitary prime factor.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 40, 44, 45, 48, 49, 50, 52, 54, 56, 60, 63, 64, 68, 75, 76, 80, 81, 84, 88, 90, 92, 96, 98, 99, 104, 112, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 29 2012

Keywords

Comments

Numbers k such that the powerful part of k, A057521(k), is a composite prime power (A246547). - Amiram Eldar, Aug 01 2024

Crossrefs

Subsequence of A013929 and of A327877.
Cf. A056170, A057521, A154945, A246547, A359466 (characteristic function).

Programs

  • Haskell
    a190641 n = a190641_list !! (n-1)
    a190641_list = map (+ 1) $ elemIndices 1 a056170_list
    
  • Mathematica
    Select[Range[164],Count[FactorInteger[#][[All, 2]], 1] == Length[FactorInteger[#]] - 1 &] (* Geoffrey Critzer, Feb 05 2015 *)
  • PARI
    list(lim)=my(s=lim\4, v=List(), u=vectorsmall(s, i, 1), t, x); forprime(k=2, sqrtint(s), t=k^2; forstep(i=t, s, t, u[i]=0)); forprime(k=2, sqrtint(lim\1), for(e=2,logint(lim\1,k), t=k^e; for(i=1, #u, if(u[i] && gcd(k, i)==1, x=t*i; if(x>lim, break); listput(v, x))))); Set(v) \\ Charles R Greathouse IV, Aug 02 2016
    
  • PARI
    isok(n) = my(f=factor(n)); #select(x->(x>1), f[,2]) == 1; \\ Michel Marcus, Jul 30 2017

Formula

A056170(a(n)) = 1.
a(n) ~ k*n, where k = Pi^2/(6*A154945) = 2.9816096.... - Charles R Greathouse IV, Aug 02 2016
Previous Showing 21-30 of 101 results. Next