A130777
Coefficients of first difference of Chebyshev S polynomials.
Original entry on oeis.org
1, -1, 1, -1, -1, 1, 1, -2, -1, 1, 1, 2, -3, -1, 1, -1, 3, 3, -4, -1, 1, -1, -3, 6, 4, -5, -1, 1, 1, -4, -6, 10, 5, -6, -1, 1, 1, 4, -10, -10, 15, 6, -7, -1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, -1, -5, 15, 20, -35, -21, 28, 8, -9, -1, 1, 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
0: 1
1: -1 1
2: -1 -1 1
3: 1 -2 -1 1
4: 1 2 -3 -1 1
5: -1 3 3 -4 -1 1
6: -1 -3 6 4 -5 -1 1
7: 1 -4 -6 10 5 -6 -1 1
8: 1 4 -10 -10 15 6 -7 -1 1
9: -1 5 10 -20 -15 21 7 -8 -1 1
10: -1 -5 15 20 -35 -21 28 8 -9 -1 1
11: 1 -6 -15 35 35 -56 -28 36 9 -10 -1 1
12: 1 6 -21 -35 70 56 -84 -36 45 10 -11 -1 1
13: -1 7 21 -56 -70 126 84 -120 -45 55 11 -12 -1 1
14: -1 -7 28 56 -126 -126 210 120 -165 -55 66 12 -13 -1 1
15: 1 -8 -28 84 126 -252 -210 330 165 -220 -66 78 13 -14 -1 1
... reformatted and extended - _Wolfdieter Lang_, Jul 31 2014.
---------------------------------------------------------------------------
From _Paul Barry_, May 21 2009: (Start)
Production matrix is
-1, 1,
-2, 0, 1,
-2, -1, 0, 1,
-4, 0, -1, 0, 1,
-6, -1, 0, -1, 0, 1,
-12, 0, -1, 0, -1, 0, 1,
-20, -2, 0, -1, 0, -1, 0, 1,
-40, 0, -2, 0, -1, 0, -1, 0, 1,
-70, -5, 0, -2, 0, -1, 0, -1, 0, 1 (End)
Row polynomials as first difference of S polynomials:
P(3,x) = S(3,x) - S(2,x) = (x^3 - 2*x) - (x^2 -1) = 1 - 2*x - x^2 +x^3.
Alternative triangle recurrence (see a comment above): T(6,2) = T(5,2) + T(5,1) = 3 + 3 = 6. T(6,3) = -T(5,3) + 0*T(5,1) = -(-4) = 4. - _Wolfdieter Lang_, Jul 31 2014
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available).
- Hyeong-Kwan Ju, On the sequence generated by a certain type of matrices, Honam Math. J. 39, No. 4, 665-675 (2017), Theorem 2.16.
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017; see Definition 1, Lemma 6 and Remark 4.
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), p. 22-31 (formula 5).
- Index entries for sequences related to Chebyshev polynomials.
Row sums:
A010892(n+1); repeat(1,0,-1,-1,0,1). Alternating row sums:
A061347(n+2); repeat(1,-2,1).
-
A130777 := proc(n,k): (-1)^binomial(n-k+1,2)*binomial(floor((n+k)/2),k) end: seq(seq(A130777(n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
-
T[n_, k_] := (-1)^Binomial[n - k + 1, 2]*Binomial[Floor[(n + k)/2], k];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017, from Maple *)
-
@CachedFunction
def A130777(n,k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = A130777(n-1,k) if n==1 else 0
return A130777(n-1,k-1) - A130777(n-2,k) - h
for n in (0..9): [A130777(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A174709
Partial sums of floor(n/6).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114, 120, 126, 133, 140, 147, 154, 161, 168, 176, 184, 192
Offset: 0
a(7) = floor(0/6) + floor(1/6) + floor(2/6) + floor(3/6) + floor(4/6) + floor(5/6) + floor(6/6) + floor(7/6) = 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 = 2.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
A131713
Period 3: repeat [1, -2, 1].
Original entry on oeis.org
1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1, 1, -2, 1
Offset: 0
-
&cat [[1, -2, 1]^^30]; // Wesley Ivan Hurt, Jul 01 2016
-
seq(op([1, -2, 1]), n=0..50); # Wesley Ivan Hurt, Jul 01 2016
-
f[n_] := If[ Mod[n, 3] == 1, -2, 1]; Array[f, 105, 0]
CoefficientList[Series[(1 - x)/(1 + x + x^2), {x, 0, 104}], x]
PadRight[{}, 120, {1,-2,1}] (* Harvey P. Dale, Jan 25 2014 *)
-
a(n)=[1,-2,1][1+n%3] \\ Jaume Oliver Lafont, Mar 24 2009
-
a(n)=1-3*(n%3==1) \\ Jaume Oliver Lafont, Mar 24 2009
A319014
a(n) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + ... + (up to n).
Original entry on oeis.org
1, 2, 6, 10, 26, 126, 133, 182, 630, 640, 740, 1950, 1963, 2132, 4680, 4696, 4952, 9576, 9595, 9956, 17556, 17578, 18062, 29700, 29725, 30350, 47250, 47278, 48062, 71610, 71641, 72602, 104346, 104380, 105536, 147186, 147223, 148592, 202020, 202060, 203660
Offset: 1
a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3 + 4 = 10;
a(5) = 1*2*3 + 4*5 = 26;
a(6) = 1*2*3 + 4*5*6 = 126;
a(7) = 1*2*3 + 4*5*6 + 7 = 133;
a(8) = 1*2*3 + 4*5*6 + 7*8 = 182;
a(9) = 1*2*3 + 4*5*6 + 7*8*9 = 630;
a(10) = 1*2*3 + 4*5*6 + 7*8*9 + 10 = 640;
a(11) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11 = 740;
a(12) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 = 1950;
a(13) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13 = 1963;
a(14) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14 = 2132;
a(15) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 = 4680;
a(16) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16 = 4696;
a(17) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17 = 4952;
a(18) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 = 9576;
a(19) = 1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + 19 = 9595;
etc.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,4,-4,0,-6,6,0,4,-4,0,-1,1).
Cf.
A093361, (k=1)
A000217, (k=2)
A228958, (k=3) this sequence, (k=4)
A319205, (k=5)
A319206, (k=6)
A319207, (k=7)
A319208, (k=8)
A319209, (k=9)
A319211, (k=10)
A319212.
-
CoefficientList[Series[(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11)/((1 - x)^5*(1 + x + x^2)^4), {x, 0, 50}], x] (* after Colin Barker *)
-
Vec(x*(1 + x + 4*x^2 + 12*x^4 + 84*x^5 - 3*x^6 - 9*x^7 + 72*x^8 + 2*x^9 - 4*x^10 + 2*x^11) / ((1 - x)^5*(1 + x + x^2)^4) + O(x^50)) \\ Colin Barker, Sep 08 2018
A002621
Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)).
Original entry on oeis.org
1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94, 121, 155, 194, 241, 295, 359, 431, 515, 609, 717, 837, 973, 1123, 1292, 1477, 1683, 1908, 2157, 2427, 2724, 3045, 3396, 3774, 4185, 4626, 5104, 5615, 6166, 6754, 7386, 8058, 8778, 9542, 10358, 11222, 12142, 13114
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
- E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 199
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1).
-
A002621:=-1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+2), right=Set(U, card=1)}, unlabeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=4..51) ; # Zerinvary Lajos, Feb 07 2008
A057077 := proc(n) (-1)^floor(n/2) ; end proc:
A061347 := proc(n) op(1+(n mod 3),[1,1,-2]) ; end proc:
A002621 := proc(n) 83/288*n^2+55/64*n+2815/3456+11/288*n^3+1/576*n^4+11/128*(-1)^n+1/64*(-1)^n*n; %+ A057077(n)/16 +A061347(n)/27; end proc:
seq(A002621(n),n=0..10) ; # R. J. Mathar, Mar 15 2011
-
CoefficientList[Series[1/((1-x)^2*(1-x^2)*(1-x^3)*(1-x^4)),{x,0,60}],x] (* Stefan Steinerberger, Jun 10 2007 *)
LinearRecurrence[{2, 0, -1, 0, -2, 2, 0, 1, 0, -2, 1}, {1, 2, 4, 7, 12, 18, 27, 38, 53, 71, 94}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
-
a(n)=(n+1)*(9*(-1)^n+n^3+21*n^2+145*n+350)\/576 \\ Charles R Greathouse IV, May 23 2013
A004482
Tersum n + 1 (answer recorded in base 10).
Original entry on oeis.org
1, 2, 0, 4, 5, 3, 7, 8, 6, 10, 11, 9, 13, 14, 12, 16, 17, 15, 19, 20, 18, 22, 23, 21, 25, 26, 24, 28, 29, 27, 31, 32, 30, 34, 35, 33, 37, 38, 36, 40, 41, 39, 43, 44, 42, 46, 47, 45, 49, 50, 48, 52, 53, 51, 55, 56, 54, 58, 59, 57, 61, 62
Offset: 0
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 76.
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), Article P1.52.
- Andreas Dress, Achim Flammenkamp, and Norbert Pink, Additive periodicity of the Sprague-Grundy function of certain Nim games, Adv. Appl. Math., 22, p. 249-270 (1999).
- Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff's game, pages 377-410 in "Games of No Chance 3", MSRI Publications Volume 56, 2009. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
This sequence is row 1 of table
A004481.
-
LinearRecurrence[{1,0,1,-1},{1,2,0,4},70] (* or *) Table[3*Floor[n/3]+ Mod[ n+1,3],{n,0,70}] (* Harvey P. Dale, Nov 29 2014 *)
A173173
a(n) = ceiling(Fibonacci(n)/2).
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 45, 72, 117, 189, 305, 494, 799, 1292, 2091, 3383, 5473, 8856, 14329, 23184, 37513, 60697, 98209, 158906, 257115, 416020, 673135, 1089155, 1762289, 2851444, 4613733, 7465176, 12078909, 19544085, 31622993, 51167078, 82790071
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..280
- Eric Weisstein's World of Mathematics, Clique Covering Number
- Eric Weisstein's World of Mathematics, Edge Cover Number
- Eric Weisstein's World of Mathematics, Fibonacci Cube Graph
- Eric Weisstein's World of Mathematics, Independence Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1).
-
[Fibonacci(n) - Floor(Fibonacci(n)/2): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
-
with(combinat,fibonacci): seq(ceil(fibonacci(n)/2),n=0..33) # Mircea Merca, Jan 04 2010
-
Table[Fibonacci[n] - Floor[Fibonacci[n]/2], {n, 0, 40}] (* Harvey P. Dale, Jun 09 2013 *)
(* Start from Eric W. Weisstein, Sep 06 2017 *)
Table[Ceiling[Fibonacci[n]/2], {n, 0, 20}]
Ceiling[Fibonacci[Range[0, 20]]/2]
LinearRecurrence[{1, 1, 1, -1, -1}, {1, 2, 3, 4, 7}, 20]
CoefficientList[Series[(1 + x - 2 x^3 - x^4)/(1 - x - x^2 - x^3 + x^4 + x^5), {x, 0, 20}], x]
(* End *)
-
/* Continued Fraction: */
{a(n)=my(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+4)) *CF +x*O(x^n) )); polcoeff(x*CF, n)} \\ Paul D. Hanna, Jul 08 2013
-
{a(n)=polcoeff( x*(1 - x^2 - x^3) / ((1-x^3)*(1 - x - x^2 +x*O(x^n))),n)} \\ Paul D. Hanna, Jul 18 2013
-
a(n)=(fibonacci(n)+1)\2 \\ Charles R Greathouse IV, Jun 11 2015
A096777
a(n) = a(n-1) + Sum_{k=1..n-1}(a(k) mod 2), a(1) = 1.
Original entry on oeis.org
1, 2, 3, 5, 8, 11, 15, 20, 25, 31, 38, 45, 53, 62, 71, 81, 92, 103, 115, 128, 141, 155, 170, 185, 201, 218, 235, 253, 272, 291, 311, 332, 353, 375, 398, 421, 445, 470, 495, 521, 548, 575, 603, 632, 661, 691, 722, 753, 785, 818, 851, 885, 920, 955, 991, 1028
Offset: 1
G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 11*x^6 + 15*x^7 + 20*x^8 + ... - _Michael Somos_, Apr 18 2020
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J.-L. Baril, T. Mansour, A. Petrossian, Equivalence classes of permutations modulo excedances, 2014.
- Eric Weisstein's World of Mathematics, Odd Number
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
A117444
Period 5: Repeat [0, 1, 2, -2, -1].
Original entry on oeis.org
0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0, 1, 2, -2, -1, 0
Offset: 0
-
[2-((2-n) mod 5) : n in [0..50]]; // Wesley Ivan Hurt, Jul 12 2014
-
A117444:=n->2 - ((2-n) mod 5): seq(A117444(n), n=0..50); # Wesley Ivan Hurt, Jul 12 2014
-
Table[2 - Mod[2 - n, 5], {n, 0, 50}] (* Wesley Ivan Hurt, Jul 12 2014 *)
-
A117444(n)=4315*5^(n%5)\1562%5-2 \\ M. F. Hasler, Jan 13 2013
-
A117444(n,p=[0,1,2,-2,-1])=p[n%#p+1] \\ M. F. Hasler, Jan 13 2013
A146535
Numerator of (2*n-1)/3.
Original entry on oeis.org
1, 1, 5, 7, 3, 11, 13, 5, 17, 19, 7, 23, 25, 9, 29, 31, 11, 35, 37, 13, 41, 43, 15, 47, 49, 17, 53, 55, 19, 59, 61, 21, 65, 67, 23, 71, 73, 25, 77, 79, 27, 83, 85, 29, 89, 91, 31, 95, 97, 33, 101, 103, 35, 107, 109, 37, 113, 115, 39, 119, 121, 41, 125, 127, 43, 131, 133, 45
Offset: 1
Fractions begin with 1/6, 1/2, 5/6, 7/6, 3/2, 11/6, 13/6, 5/2, 17/6, 19/6, 7/2, 23/6, ...
-
Table[Numerator[(2 n - 1)/6], {n, 1, 100}]
LinearRecurrence[{0,0,2,0,0,-1},{1,1,5,7,3,11},100] (* Harvey P. Dale, Feb 24 2015 *)
-
a(n) = numerator((2*n-1)/3); \\ Altug Alkan, Apr 13 2018
Comments