cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 72 results. Next

A381833 k/25 is in this list if k > 5 and A053824(k) = A112765(k), i.e. if digitsum(k, 5) = valuation(k, 5).

Original entry on oeis.org

2, 6, 15, 26, 35, 55, 100, 126, 135, 155, 200, 255, 300, 400, 626, 635, 655, 700, 755, 800, 900, 1125, 1255, 1300, 1400, 1625, 1900, 2125, 2625, 3126, 3135, 3155, 3200, 3255, 3300, 3400, 3625, 3755, 3800, 3900, 4125, 4400, 4625, 5125, 6255, 6300, 6400, 6625, 6900, 7125
Offset: 1

Views

Author

Peter Luschny, Mar 09 2025

Keywords

Crossrefs

Cf. A381835 (base = 3), A381834 (base = 4).

Programs

  • Mathematica
    Select[Range[25, 180000, 25], DigitSum[#, 5] == IntegerExponent[#, 5] &] / 25

A007814 Exponent of highest power of 2 dividing n, a.k.a. the binary carry sequence, the ruler sequence, or the 2-adic valuation of n.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
Offset: 1

Views

Author

John Tromp, Dec 11 1996

Keywords

Comments

This sequence is an exception to my usual rule that when every other term of a sequence is 0 then those 0's should be omitted. In this case we would get A001511. - N. J. A. Sloane
To construct the sequence: start with 0,1, concatenate to get 0,1,0,1. Add + 1 to last term gives 0,1,0,2. Concatenate those 4 terms to get 0,1,0,2,0,1,0,2. Add + 1 to last term etc. - Benoit Cloitre, Mar 06 2003
The sequence is invariant under the following two transformations: increment every element by one (1, 2, 1, 3, 1, 2, 1, 4, ...), put a zero in front and between adjacent elements (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...). The intermediate result is A001511. - Ralf Hinze (ralf(AT)informatik.uni-bonn.de), Aug 26 2003
Fixed point of the morphism 0->01, 1->02, 2->03, 3->04, ..., n->0(n+1), ..., starting from a(1) = 0. - Philippe Deléham, Mar 15 2004
Fixed point of the morphism 0->010, 1->2, 2->3, ..., n->(n+1), .... - Joerg Arndt, Apr 29 2014
a(n) is also the number of times to repeat a step on an even number in the hailstone sequence referenced in the Collatz conjecture. - Alex T. Flood (whiteangelsgrace(AT)gmail.com), Sep 22 2006
Let F(n) be the n-th Fermat number (A000215). Then F(a(r-1)) divides F(n)+2^k for r = k mod 2^n and r != 1. - T. D. Noe, Jul 12 2007
The following relation holds: 2^A007814(n)*(2*A025480(n-1)+1) = A001477(n) = n. (See functions hd, tl and cons in [Paul Tarau 2009].)
a(n) is the number of 0's at the end of n when n is written in base 2.
a(n+1) is the number of 1's at the end of n when n is written in base 2. - M. F. Hasler, Aug 25 2012
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 0). That is, A003188(n) XOR A003188(n+1) == 2^A007814(n). - Russ Cox, Dec 04 2010
The sequence is squarefree (in the sense of not containing any subsequence of the form XX) [Allouche and Shallit]. Of course it contains individual terms that are squares (such as 4). - Comment expanded by N. J. A. Sloane, Jan 28 2019
a(n) is the number of zero coefficients in the n-th Stern polynomial, A125184. - T. D. Noe, Mar 01 2011
Lemma: For n < m with r = a(n) = a(m) there exists n < k < m with a(k) > r. Proof: We have n=b2^r and m=c2^r with b < c both odd; choose an even i between them; now a(i2^r) > r and n < i2^r < m. QED. Corollary: Every finite run of consecutive integers has a unique maximum 2-adic valuation. - Jason Kimberley, Sep 09 2011
a(n-2) is the 2-adic valuation of A000166(n) for n >= 2. - Joerg Arndt, Sep 06 2014
a(n) = number of 1's in the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} p_j-th prime (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(24)=3; indeed, the partition having Heinz number 24 = 2*2*2*3 is [1,1,1,2]. - Emeric Deutsch, Jun 04 2015
a(n+1) is the difference between the two largest parts in the integer partition having viabin number n (0 is assumed to be a part). Example: a(20) = 2. Indeed, we have 19 = 10011_2, leading to the Ferrers board of the partition [3,1,1]. For the definition of viabin number see the comment in A290253. - Emeric Deutsch, Aug 24 2017
Apart from being squarefree, as noted above, the sequence has the property that every consecutive subsequence contains at least one number an odd number of times. - Jon Richfield, Dec 20 2018
a(n+1) is the 2-adic valuation of Sum_{e=0..n} u^e = (1 + u + u^2 + ... + u^n), for any u of the form 4k+1 (A016813). - Antti Karttunen, Aug 15 2020
{a(n)} represents the "first black hat" strategy for the game of countably infinitely many hats, with a probability of success of 1/3; cf. the Numberphile link below. - Frederic Ruget, Jun 14 2021
a(n) is the least nonnegative integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022

Examples

			2^3 divides 24, so a(24)=3.
From _Omar E. Pol_, Jun 12 2009: (Start)
Triangle begins:
  0;
  1,0;
  2,0,1,0;
  3,0,1,0,2,0,1,0;
  4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
  5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
  6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,...
(End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 27.
  • K. Atanassov, On the 37th and the 38th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 2, 83-85.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A011371 (partial sums), A094267 (first differences), A001511 (bisection), A346070 (mod 4).
Bisection of A050605 and |A088705|. Pairwise sums are A050603 and A136480. Difference of A285406 and A281264.
This is Guy Steele's sequence GS(1, 4) (see A135416). Cf. A053398(1,n). Column/row 1 of table A050602.
Cf. A007949 (3-adic), A235127 (4-adic), A112765 (5-adic), A122841 (6-adic), A214411 (7-adic), A244413 (8-adic), A122840 (10-adic).
Cf. A086463 (Dgf at s=2).

Programs

  • Haskell
    a007814 n = if m == 0 then 1 + a007814 n' else 0
                where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Jul 05 2013, May 14 2011, Apr 08 2011
    
  • Haskell
    a007814 n | odd n = 0 | otherwise = 1 + a007814 (n `div` 2)
    --  Walt Rorie-Baety, Mar 22 2013
    
  • Magma
    [Valuation(n, 2): n in [1..120]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    ord := proc(n) local i,j; if n=0 then return 0; fi; i:=0; j:=n; while j mod 2 <> 1 do i:=i+1; j:=j/2; od: i; end proc: seq(ord(n), n=1..111);
    A007814 := n -> padic[ordp](n,2): seq(A007814(n), n=1..111); # Peter Luschny, Nov 26 2010
  • Mathematica
    Table[IntegerExponent[n, 2], {n, 64}] (* Eric W. Weisstein *)
    IntegerExponent[Range[64], 2] (* Eric W. Weisstein, Feb 01 2024 *)
    p=2; Array[ If[ Mod[ #, p ]==0, Select[ FactorInteger[ # ], Function[ q, q[ [ 1 ] ]==p ], 1 ][ [ 1, 2 ] ], 0 ]&, 96 ]
    DigitCount[BitXor[x, x - 1], 2, 1] - 1; a different version based on the same concept: Floor[Log[2, BitXor[x, x - 1]]] (* Jaume Simon Gispert (jaume(AT)nuem.com), Aug 29 2004 *)
    Nest[Join[ #, ReplacePart[ #, Length[ # ] -> Last[ # ] + 1]] &, {0, 1}, 5] (* N. J. Gunther, May 23 2009 *)
    Nest[ Flatten[# /. a_Integer -> {0, a + 1}] &, {0}, 7] (* Robert G. Wilson v, Jan 17 2011 *)
  • PARI
    A007814(n)=valuation(n,2);
    
  • Python
    import math
    def a(n): return int(math.log(n - (n & n - 1), 2)) # Indranil Ghosh, Apr 18 2017
    
  • Python
    def A007814(n): return (~n & n-1).bit_length() # Chai Wah Wu, Jul 01 2022
    
  • R
    sapply(1:100,function(x) sum(gmp::factorize(x)==2)) # Christian N. K. Anderson, Jun 20 2013
    
  • Scheme
    (define (A007814 n) (let loop ((n n) (e 0)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = A001511(n) - 1.
a(2*n) = A050603(2*n) = A001511(n).
a(n) = A091090(n-1) + A036987(n-1) - 1.
a(n) = 0 if n is odd, otherwise 1 + a(n/2). - Reinhard Zumkeller, Aug 11 2001
Sum_{k=1..n} a(k) = n - A000120(n). - Benoit Cloitre, Oct 19 2002
G.f.: A(x) = Sum_{k>=1} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Apr 10 2002
G.f. A(x) satisfies A(x) = A(x^2) + x^2/(1-x^2). A(x) = B(x^2) = B(x) - x/(1-x), where B(x) is the g.f. for A001151. - Franklin T. Adams-Watters, Feb 09 2006
Totally additive with a(p) = 1 if p = 2, 0 otherwise.
Dirichlet g.f.: zeta(s)/(2^s-1). - Ralf Stephan, Jun 17 2007
Define 0 <= k <= 2^n - 1; binary: k = b(0) + 2*b(1) + 4*b(2) + ... + 2^(n-1)*b(n-1); where b(x) are 0 or 1 for 0 <= x <= n - 1; define c(x) = 1 - b(x) for 0 <= x <= n - 1; Then: a(k) = c(0) + c(0)*c(1) + c(0)*c(1)*c(2) + ... + c(0)*c(1)...c(n-1); a(k+1) = b(0) + b(0)*b(1) + b(0)*b(1)*b(2) + ... + b(0)*b(1)...b(n-1). - Arie Werksma (werksma(AT)tiscali.nl), May 10 2008
a(n) = floor(A002487(n - 1) / A002487(n)). - Reikku Kulon, Oct 05 2008
Sum_{k=1..n} (-1)^A000120(n-k)*a(k) = (-1)^(A000120(n)-1)*(A000120(n) - A000035(n)). - Vladimir Shevelev, Mar 17 2009
a(A001147(n) + A057077(n-1)) = a(2*n). - Vladimir Shevelev, Mar 21 2009
For n>=1, a(A004760(n+1)) = a(n). - Vladimir Shevelev, Apr 15 2009
2^(a(n)) = A006519(n). - Philippe Deléham, Apr 22 2009
a(n) = A063787(n) - A000120(n). - Gary W. Adamson, Jun 04 2009
a(C(n,k)) = A000120(k) + A000120(n-k) - A000120(n). - Vladimir Shevelev, Jul 19 2009
a(n!) = n - A000120(n). - Vladimir Shevelev, Jul 20 2009
v_{2}(n) = Sum_{r>=1} (r / 2^(r+1)) Sum_{k=0..2^(r+1)-1} e^(2(k*Pi*i(n+2^r))/(2^(r+1))). - A. Neves, Sep 28 2010, corrected Oct 04 2010
a(n) mod 2 = A096268(n-1). - Robert G. Wilson v, Jan 18 2012
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7; a(n) = (A037227(n)-1)/2. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = p, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 04 2013
a(n) = A067255(n,1). - Reinhard Zumkeller, Jun 11 2013
a(n) = log_2(n - (n AND n-1)). - Gary Detlefs, Jun 13 2014
a(n) = 1 + A000120(n-1) - A000120(n), where A000120 is the Hamming weight function. - Stanislav Sykora, Jul 14 2014
A053398(n,k) = a(A003986(n-1,k-1)+1); a(n) = A053398(n,1) = A053398(n,n) = A053398(2*n-1,n) = Min_{k=1..n} A053398(n,k). - Reinhard Zumkeller, Aug 04 2014
a((2*x-1)*2^n) = a((2*y-1)*2^n) for positive n, x and y. - Juri-Stepan Gerasimov, Aug 04 2016
a(n) = A285406(n) - A281264(n). - Ralf Steiner, Apr 18 2017
a(n) = A000005(n)/(A000005(2*n) - A000005(n)) - 1. - conjectured by Velin Yanev, Jun 30 2017, proved by Nicholas Stearns, Sep 11 2017
Equivalently to above formula, a(n) = A183063(n) / A001227(n), i.e., a(n) is the number of even divisors of n divided by number of odd divisors of n. - Franklin T. Adams-Watters, Oct 31 2018
a(n)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Feb 16 2019
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Jul 11 2020
a(n) = 2*Sum_{j=1..floor(log_2(n))} frac(binomial(n, 2^j)*2^(j-1)/n). - Dario T. de Castro, Jul 08 2022
a(n) = A070939(n) - A070939(A030101(n)). - Andrew T. Porter, Dec 16 2022
a(n) = floor((gcd(n, 2^n)^(n+1) mod (2^(n+1)-1)^2)/(2^(n+1)-1)) (see Lemma 3.4 from Mazzanti's 2002 article). - Lorenzo Sauras Altuzarra, Mar 10 2024
a(n) = 1 - A088705(n). - Chai Wah Wu, Sep 18 2024

Extensions

Formula index adapted to the offset of A025480 by R. J. Mathar, Jul 20 2010
Edited by Ralf Stephan, Feb 08 2014

A007949 Greatest k such that 3^k divides n. Or, 3-adic valuation of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Obeys the general recurrences for p-adic valuation discussed in A214411. - Redjan Shabani, Jul 17 2012
Lexicographically earliest cubefree sequence, which also (conjecturally) appears in the construction of the lexicographically earliest cubefree {0,1}-sequence A282317, cf. Example section of A286940. - M. F. Hasler, May 21 2017
The sequence is invariant under the "lower trim" operator: remove all zeros, and subtract one from each remaining term. - Franklin T. Adams-Watters, May 25 2017

References

  • F. Q. Gouvea, p-Adic Numbers, Springer-Verlag, 1993; see p. 23.

Crossrefs

Partial sums give A054861.
One less than A051064.

Programs

  • Haskell
    a007949 n = if m > 0 then 0 else 1 + a007949 n'
                where (n', m) = divMod n 3
    -- Reinhard Zumkeller, Jun 23 2013, May 14 2011
    
  • MATLAB
    % Input:
    %  n: an integer
    % Output:
    %  m: max power of 3 such that 3^m divides n
    %  M: 1-by-K matrix where M(i) is the max power of 3 such that 3^M(i) divides n
    function [m,M] = Omega3(n)
      M = NaN*zeros(1,n);
      M(1)=0; M(2)=0; M(3)=0;
        for k=4:n
          if M(k-3)~=0
            M(k)=M(k-k/3)+1;
          else
            M(k)=0;
          end
        end
        m=M(end);
    end
    % Redjan Shabani, Jul 17 2012
    
  • Magma
    [Valuation(n, 3): n in [1..110]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    A007949 := proc(n) option remember; if n mod 3 > 0 then 0 else procname(n/3)+1; fi; end;
    # alternative by R. J. Mathar, Mar 29 2017
    A007949 := proc(n)
        padic[ordp](n,3) ;
    end proc:
  • Mathematica
    p=3; Array[ If[ Mod[ #, p ]==0, Select[ FactorInteger[ # ], Function[ q, q[ [ 1 ] ]==p ], 1 ][ [ 1, 2 ] ], 0 ]&, 81 ]
    Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 0, 1}, 1 -> {0, 0, 2}, 2 -> {0, 0, 3}, 3 -> {0, 0, 4}}) ]}], {0}, 5] (* Robert G. Wilson v, Mar 03 2005 *)
    IntegerExponent[Range[200], 3] (* Zak Seidov, Apr 15 2010 *)
    Table[If[Mod[n, 3] > 0, 0, 1 + b[n/3]], {n, 200}] (* Zak Seidov, Apr 15 2010 *)
  • PARI
    a(n)=valuation(n,3)
    
  • Python
    def a(n):
        k = 0
        while n > 0 and n%3 == 0: n //= 3; k += 1
        return k
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Aug 06 2021
  • Sage
    [valuation(n, 3) for n in (1..106)]  # Peter Luschny, Nov 16 2012
    
  • Scheme
    (define (A007949 n) (let loop ((n n) (k 0)) (cond ((not (zero? (modulo n 3))) k) (else (loop (/ n 3) (+ 1 k)))))) ;; Antti Karttunen, Oct 06 2017
    

Formula

a(n) = 0 if n != 0 (mod 3), otherwise a(n) = 1 + a(n/3). - Reinhard Zumkeller, Aug 12 2001, edited by M. F. Hasler, Aug 11 2015
From Ralf Stephan, Apr 12 2002: (Start)
a(n) = A051064(n) - 1.
G.f.: Sum_{k>=1} x^3^k/(1 - x^3^k). (End)
Fixed point of the morphism: 0 -> 001; 1 -> 002; 2 -> 003; 3 -> 004; 4 -> 005; etc.; starting from a(1) = 0. - Philippe Deléham, Mar 29 2004
a(n) mod 2 = 1 - A014578(n). - Reinhard Zumkeller, Oct 04 2008
Totally additive with a(p) = 1 if p = 3, 0 otherwise.
v_{m}(n) = Sum_{r>=1} (r/m^(r+1)) Sum_{j=1..m-1} Sum_{k=0..m^(r+1)-1} exp((2*k*Pi*i*(n+(m-j)*m^r)) / m^(r+1)). This formula is for the general case; for this specific one, set m=3. - A. Neves, Oct 04 2010
a(3n) = A051064(n), a(2n) = a(n), a(2n-1) = A253786(n). - Cyril Damamme, Aug 04 2015
a(3n) = a(n) + 1, a(pn) = a(n) for any other prime p != 3. - M. F. Hasler, Aug 11 2015
3^a(n) = A038500(n). - Antti Karttunen, Oct 09 2017
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2. - Amiram Eldar, Jul 11 2020
a(n) = tau(n)/(tau(3*n) - tau(n)) - 1, where tau(n) = A000005(n). - Peter Bala, Jan 06 2021
a(n) = 3*Sum_{j=1..floor(log_3(n))} frac(binomial(n,3^j)*3^(j-1)/n). - Dario T. de Castro, Jul 10 2022
a(n) = A080342(gcd(n, 3^A080342(n))). - Alan Michael Gómez Calderón, Jul 28 2024

A027868 Number of trailing zeros in n!; highest power of 5 dividing n!.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 18, 18, 18, 18, 18, 19
Offset: 0

Views

Author

Keywords

Comments

Also the highest power of 10 dividing n! (different from A054899). - Hieronymus Fischer, Jun 18 2007
Alternatively, a(n) equals the expansion of the base-5 representation A007091(n) of n (i.e., where successive positions from right to left stand for 5^n or A000351(n)) under a scale of notation whose successive positions from right to left stand for (5^n - 1)/4 or A003463(n); for instance, n = 7392 has base-5 expression 2*5^5 + 1*5^4 + 4*5^3 + 0*5^2 + 3*5^1 + 2*5^0, so that a(7392) = 2*781 + 1*156 + 4*31 + 0*6 + 3*1 + 2*0 = 1845. - Lekraj Beedassy, Nov 03 2010
Partial sums of A112765. - Hieronymus Fischer, Jun 06 2012
Also the number of trailing zeros in A000165(n) = (2*n)!!. - Stefano Spezia, Aug 18 2024

Examples

			a(100)  = 24.
a(10^3) = 249.
a(10^4) = 2499.
a(10^5) = 24999.
a(10^6) = 249998.
a(10^7) = 2499999.
a(10^8) = 24999999.
a(10^9) = 249999998.
a(10^n) = 10^n/4 - 3 for 10 <= n <= 15 except for a(10^14) = 10^14/4 - 2. - _M. F. Hasler_, Dec 27 2019
		

References

  • M. Gardner, "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, 1978, pp. 50-65.

Crossrefs

See A000966 for the missing numbers. See A011371 and A054861 for analogs involving powers of 2 and 3.
Cf. also A000142, A004154.

Programs

  • Haskell
    a027868 n = sum $ takeWhile (> 0) $ map (n `div`) $ tail a000351_list
    -- Reinhard Zumkeller, Oct 31 2012
    
  • Magma
    [Valuation(Factorial(n), 5): n in [0..80]]; // Bruno Berselli, Oct 11 2021
  • Maple
    0, seq(add(floor(n/5^i),i=1..floor(log[5](n))), n=1..100); # Robert Israel, Nov 13 2014
  • Mathematica
    Table[t = 0; p = 5; While[s = Floor[n/p]; t = t + s; s > 0, p *= 5]; t, {n, 0, 100} ]
    Table[ IntegerExponent[n!], {n, 0, 80}] (* Robert G. Wilson v *)
    zOF[n_Integer?Positive]:=Module[{maxpow=0},While[5^maxpow<=n,maxpow++];Plus@@Table[Quotient[n,5^i],{i,maxpow-1}]]; Attributes[zOF]={Listable}; Join[{0},zOF[ Range[100]]] (* Harvey P. Dale, Apr 11 2022 *)
  • PARI
    a(n)={my(s);while(n\=5,s+=n);s} \\ Charles R Greathouse IV, Nov 08 2012, edited by M. F. Hasler, Dec 27 2019
    
  • PARI
    a(n)=valuation(n!,5) \\ Charles R Greathouse IV, Nov 08 2012
    
  • PARI
    apply( A027868(n)=(n-sumdigits(n,5))\4, [0..99]) \\ M. F. Hasler, Dec 27 2019
    
  • Python
    from sympy import multiplicity
    A027868, p5 = [0,0,0,0,0], 0
    for n in range(5,10**3,5):
        p5 += multiplicity(5,n)
        A027868.extend([p5]*5) # Chai Wah Wu, Sep 05 2014
    
  • Python
    def A027868(n): return 0 if n<5 else n//5 + A027868(n//5) # David Radcliffe, Jun 26 2016
    
  • Python
    from sympy.ntheory.factor_ import digits
    def A027868(n): return n-sum(digits(n,5)[1:])>>2 # Chai Wah Wu, Oct 18 2024
    

Formula

a(n) = Sum_{i>=1} floor(n/5^i).
a(n) = (n - A053824(n))/4.
From Hieronymus Fischer, Jun 25 2007 and Aug 13 2007, edited by M. F. Hasler, Dec 27 2019: (Start)
G.f.: g(x) = Sum_{k>0} x^(5^k)/(1-x^(5^k))/(1-x).
a(n) = Sum_{k=5..n} Sum_{j|k, j>=5} (floor(log_5(j)) - floor(log_5(j-1))).
G.f.: g(x) = L[b(k)](x)/(1-x) where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k) = 1, if k>1 is a power of 5, else b(k) = 0.
G.f.: g(x) = Sum_{k>0} c(k)*x^k/(1-x), where c(k) = Sum_{j>1, j|k} floor(log_5(j)) - floor(log_5(j - 1)).
Recurrence:
a(n) = floor(n/5) + a(floor(n/5));
a(5*n) = n + a(n);
a(n*5^m) = n*(5^m-1)/4 + a(n).
a(k*5^m) = k*(5^m-1)/4, for 0 <= k < 5, m >= 0.
Asymptotic behavior:
a(n) = n/4 + O(log(n)),
a(n+1) - a(n) = O(log(n)), which follows from the inequalities below.
a(n) <= (n-1)/4; equality holds for powers of 5.
a(n) >= n/4 - 1 - floor(log_5(n)); equality holds for n = 5^m-1, m > 0.
lim inf (n/4 - a(n)) = 1/4, for n -> oo.
lim sup (n/4 - log_5(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_5(n)) = 0, for n -> oo.
(End)
a(n) <= A027869(n). - Reinhard Zumkeller, Jan 27 2008
10^a(n) = A000142(n) / A004154(n). - Reinhard Zumkeller, Nov 24 2012
a(n) = Sum_{k=1..floor(n/2)} floor(log_5(n/k)). - Ammar Khatab, Feb 01 2025

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A345531 Smallest prime power greater than the n-th prime.

Original entry on oeis.org

3, 4, 7, 8, 13, 16, 19, 23, 25, 31, 32, 41, 43, 47, 49, 59, 61, 64, 71, 73, 79, 81, 89, 97, 101, 103, 107, 109, 113, 121, 128, 137, 139, 149, 151, 157, 163, 167, 169, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 256, 263, 269, 271, 277
Offset: 1

Views

Author

Dario T. de Castro, Jun 20 2021

Keywords

Comments

Take the family of correlated prime-indexed conjectures appearing in A343249 - A343253, in which an alternative formula for the p-adic order of positive integers is proposed. There, the general p-indexed conjecture says that v_p(n), the p-adic order of n, is given by the formula: v_p(n) = log_p(n / L_p(k0, n)), where L_p(k0, n) is the lowest common denominator of the elements of the set S_p(k0, n) = {(1/n)*binomial(n, k), with 0 < k <= k0 such that k is not divisible by p}. Evidence suggests that the primality of p is a necessary condition in this general conjecture. So, if a composite number q is used instead of a prime p in the proposed formula for the p-adic (now, q-adic) order of n, the first counterexample (failure) is expected to occur for n = q * a(i), where i is the index of the smallest prime that divides q.
The prime-power a(n) is at most the next prime, so this sequence is strictly increasing. See also A366833. - Gus Wiseman, Nov 06 2024

Examples

			a(4) = 8 because the fourth prime number is 7, and the least power of a prime which is greater than 7 is 2^3 = 8.
		

Crossrefs

Starting with n instead of prime(n): A000015, A031218, A377468, A377780, A377782.
Opposite (greatest prime-power less than): A065514, A377289, A377781.
For squarefree instead of prime-power: A112926, opposite A112925.
The difference from prime(n) is A377281.
The prime terms have indices A377286(n) - 1.
First differences are A377703.
A version for perfect-powers is A378249.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 and A361102 list the non-prime-powers, differences A375735.

Programs

  • Maple
    f:= proc(n) local p,x;
      p:= ithprime(n);
      for x from p+1 do
        if nops(numtheory:-factorset(x)) = 1 then return x fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 25 2024
  • Mathematica
    a[i_]:= Module[{j, k, N = 0, tab={}}, tab = Sort[Drop[DeleteDuplicates[Flatten[Table[ If[Prime[j]^k > Prime[i], Prime[j]^k], {j, 1, i+1}, {k, 1, Floor[Log[Prime[j], Prime[i+1]]]}]]], 1]]; N = Take[tab, 1][[1]]; N];
    tabseq = Table[a[i],{i, 1, 100}];
    (* second program *)
    Table[NestWhile[#+1&,Prime[n]+1, Not@*PrimePowerQ],{n,100}] (* Gus Wiseman, Nov 06 2024 *)
  • PARI
    A000015(n) = for(k=n,oo,if((1==k)||isprimepower(k),return(k)));
    A345531(n) = A000015(1+prime(n)); \\ Antti Karttunen, Jul 19 2021
    
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A345531(n): return next(filter(lambda m:len(factorint(m))<=1, count(prime(n)+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(1+A000040(n)). - Antti Karttunen, Jul 19 2021
a(n) = A000015(A008864(n)). - Omar E. Pol, Oct 27 2021

A122840 a(n) is the number of 0's at the end of n when n is written in base 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2006

Keywords

Comments

Greatest k such that 10^k divides n.
a(n) = the number of digits in n - A160093(n).
a(A005117(n)) <= 1. - Reinhard Zumkeller, Mar 30 2010
See A054899 for the partial sums. - Hieronymus Fischer, Jun 08 2012
From Amiram Eldar, Mar 10 2021: (Start)
The asymptotic density of the occurrences of k is 9/10^(k+1).
The asymptotic mean of this sequence is 1/9. (End)

Examples

			a(160) = 1 because there is 1 zero at the end of 160 when 160 is written in base 10.
		

Crossrefs

A007814 is the base 2 equivalent of this sequence.

Programs

  • Haskell
    a122840 n = if n < 10 then 0 ^ n else 0 ^ d * (a122840 n' + 1)
                where (n', d) = divMod n 10
    -- Reinhard Zumkeller, Mar 09 2013
    
  • Mathematica
    a[n_] := IntegerExponent[n, 10]; Array[a, 100] (* Amiram Eldar, Mar 10 2021 *)
  • PARI
    a(n)=valuation(n,10) \\ Charles R Greathouse IV, Feb 26 2014
    
  • Python
    def a(n): return len(str(n)) - len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jun 09 2017
    
  • Python
    def A122840(n): return len(s:=str(n))-len(s.rstrip('0')) # Chai Wah Wu, Jul 06 2022
    
  • Python
    A122840 = lambda n: sympy.multiplicity(10,n) # M. F. Hasler, Apr 05 2024

Formula

a(n) = A160094(n) - 1.
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n) = A054899(n) - A054899(n-1).
G.f.: g(x) = Sum_{j>0} x^10^j/(1-x^10^j). (End)
a(n) = min(A007814(n), A112765(n)). - Jianing Song, Jul 23 2022

A008904 a(n) is the final nonzero digit of n!.

Original entry on oeis.org

1, 1, 2, 6, 4, 2, 2, 4, 2, 8, 8, 8, 6, 8, 2, 8, 8, 6, 8, 2, 4, 4, 8, 4, 6, 4, 4, 8, 4, 6, 8, 8, 6, 8, 2, 2, 2, 4, 2, 8, 2, 2, 4, 2, 8, 6, 6, 2, 6, 4, 2, 2, 4, 2, 8, 4, 4, 8, 4, 6, 6, 6, 2, 6, 4, 6, 6, 2, 6, 4, 8, 8, 6, 8, 2, 4, 4, 8, 4, 6, 8, 8, 6, 8, 2, 2, 2, 4, 2, 8, 2, 2, 4, 2, 8, 6, 6, 2, 6
Offset: 0

Views

Author

Keywords

Comments

This sequence is not ultimately periodic. This can be deduced from the fact that the sequence can be obtained as a fixed point of a morphism. - Jean-Paul Allouche, Jul 25 2001
The decimal number 0.1126422428... formed from these digits is a transcendental number; see the article by G. Dresden. The Mathematica code uses Dresden's formula for the last nonzero digit of n!; this is more efficient than simply calculating n! and then taking its least-significant digit. - Greg Dresden, Feb 21 2006
From Robert G. Wilson v, Feb 16 2011: (Start)
(mod 10) == 2 4 6 8
10^
1 4 2 1 1
2 28 23 22 25
3 248 247 260 243
4 2509 2486 2494 2509
5 25026 24999 24972 25001
6 249993 250012 250040 249953
7 2500003 2499972 2499945 2500078
8 25000078 24999872 25000045 25000003
9 249999807 250000018 250000466 249999707 (End)

Examples

			6! = 720, so a(6) = 2.
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 202.
  • Gardner, M. "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 50-65, 1978
  • S. Kakutani, Ergodic theory of shift transformations, in Proc. 5th Berkeley Symp. Math. Stat. Prob., Univ. Calif. Press, vol. II, 1967, 405-414.
  • Popular Computing (Calabasas, CA), Problem 120, Factorials, Vol. 4 (No. 36, Mar 1976), page PC36-3.

Crossrefs

Programs

  • Haskell
    a008904 n = a008904_list !! n
    a008904_list = 1 : 1 : f 2 1 where
       f n x = x' `mod` 10 : f (n+1) x' where
          x' = g (n * x) where
             g m | m `mod` 5 > 0 = m
                 | otherwise     = g (m `div` 10)
    -- Reinhard Zumkeller, Apr 08 2011
  • Mathematica
    f[n_]:=Module[{m=n!},While[Mod[m,10]==0,m=m/10];Mod[m,10]]
    Table[f[i],{i,0,100}]
    f[n_] := Mod[6Times @@ (Rest[FoldList[{ 1 + #1[[1]], #2!2^(#1[[1]]#2)} &, {0, 0}, Reverse[IntegerDigits[n, 5]]]]), 10][[2]]; Join[{1, 1}, Table[f[n], {n, 2, 100}]] (* program contributed by Jacob A. Siehler, Greg Dresden, Feb 21 2006 *)
    zOF[n_Integer?Positive] := Module[{maxpow=0}, While[5^maxpow<=n,maxpow++]; Plus@@Table[Quotient[n,5^i], {i,maxpow-1}]]; Flatten[Table[ Take[ IntegerDigits[ n!], {-zOF[n]-1}],{n,100}]] (* Harvey P. Dale, Dec 16 2010 *)
    f[n_]:=Block[{id=IntegerDigits[n!, 10]}, While[id[[-1]]==0, id=Most@id]; id[[-1]]]; Table[f@n, {n, 0, 100}] (* Vincenzo Librandi, Sep 07 2017 *)
  • PARI
    a(n) = r=1; while(n>0, r *= Mod(4, 10)^((n\10)%2) * [1, 2, 6, 4, 2, 2, 4, 2, 8][max(n%10, 1)]; n\=5); lift(r) \\ Charles R Greathouse IV, Nov 05 2010; cleaned up by Max Alekseyev, Jan 28 2012
    
  • Python
    def a(n):
        if n <= 1: return 1
        return 6*[1,1,2,6,4,4,4,8,4,6][n%10]*3**(n/5%4)*a(n/5)%10
    # Maciej Ireneusz Wilczynski, Aug 23 2010
    
  • Python
    from functools import reduce
    from sympy.ntheory.factor_ import digits
    def A008904(n): return reduce(lambda x,y:x*y%10,(((6,2,4,8,6,2,4,8,2,4,8,6,6,2,4,8,4,8,6,2)[(a<<2)|(i*a&3)] if i*a else (1,1,2,6,4)[a]) for i, a in enumerate(digits(n,5)[-1:0:-1])),6) if n>1 else 1 # Chai Wah Wu, Dec 07 2023
    
  • Sage
    def A008904(n):
        # algorithm from David Wilson, http://oeis.org/A008904/a008904b.txt
        if n == 0 or n == 1: return 1
        dd = n.digits(base=5)
        x = sum(i*d for i,d in enumerate(dd))
        y = sum(d for d in dd if d % 2 == 0)/2
        z = 2**((x+y) % 4)
        if z == 1: z = 6
        return z # D. S. McNeil, Dec 09 2010
    

Formula

The generating function for n>1 is as follows: for n = a_0 + 5*a_1 + 5^2*a_2 + ... + 5^N*a_N (the expansion of n in base-5), then the last nonzero digit of n!, for n>1, is 6*Product_{i=0..N} (a_i)! (2^(i a_i)) mod 10. - Greg Dresden, Feb 21 2006
a(n) = f(n,1,0) with f(n,x,e) = if n < 2 then A010879(x*A000079(e)) else f(n-1, A010879(x)*A132740(n), e+A007814(n)-A112765(n)). - Reinhard Zumkeller, Aug 16 2008
From Washington Bomfim, Jan 09 2011: (Start)
a(0) = 1, a(1) = 1, if n >= 2, with
n represented in base 5 as (a_h, ..., a_1, a_0)_5,
t = Sum_{i = h, h-1, ... , 0} (a_i even),
x = Sum_{i=h, h-1, ... , 1} (Sum_{k=h, h-1, ..., i}(a_i)),
z = (x + t/2) mod 4, and y = 2^z,
a(n) = 6*(y mod 2) + y*(1-(y mod 2)).
For n >= 5, and n mod 5 = 0,
i) a(n) = a(n+1) = a(n+3),
ii) a(n+2) = 2*a(n) mod 10, and
iii) a(n+4) = 4*a(n) mod 10.
For k not equal to 1, a(10^k) = a(2^k). See second Dresden link, and second Bomfim link.
(End)

Extensions

More terms from Greg Dresden, Feb 21 2006

A214411 The maximum exponent k of 7 such that 7^k divides n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Redjan Shabani, Jul 16 2012

Keywords

Comments

7-adic valuation of n.

Examples

			n=147 = 3*7*7 is divisible by 7^2, so a(147)=2.
		

Crossrefs

Cf. A007814 (2-adic), A007949 (3-adic), A112765 (5-adic), A082784.

Programs

  • Maple
    seq(padic:-ordp(n,7), n=1..100); # Robert Israel, Mar 05 2020
  • Mathematica
    mek[n_]:=Module[{k=Ceiling[Log[7,n]]},While[!Divisible[n,7^k],k--];k]; Array[ mek,140] (* Harvey P. Dale, Mar 27 2017 *)
    IntegerExponent[Range[150],7] (* Suggested by Amiram Eldar *) (* Harvey P. Dale, Mar 07 2020 *)
  • PARI
    a(n)=valuation(n,7) \\ Charles R Greathouse IV, Jul 17 2012
    
  • PARI
    A=vector(1000);for(i=1,log(#A+.5)\log(7),forstep(j=7^i,#A,7^i,A[j]++));A \\ Charles R Greathouse IV, Jul 17 2012

Formula

G.f.: Sum_{k>=1} x^(7^k)/(1-x^(7^k)). See A112765. - Wolfdieter Lang, Jun 18 2014
If n == 0 (mod 7) then a(n) = 1 + a(n/7), otherwise a(n) = 0. - M. F. Hasler, Mar 05 2020
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/6. - Amiram Eldar, Jan 17 2022
a(n) = 7*Sum_{j=1..floor(log(n)/log(7))} frac(binomial(n, 7^j)*7^(j-1)/n). - Dario T. de Castro, Jul 12 2022

A004154 a(n) = n! with trailing zeros omitted.

Original entry on oeis.org

1, 1, 2, 6, 24, 12, 72, 504, 4032, 36288, 36288, 399168, 4790016, 62270208, 871782912, 1307674368, 20922789888, 355687428096, 6402373705728, 121645100408832, 243290200817664, 5109094217170944, 112400072777760768, 2585201673888497664, 62044840173323943936
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000142, A004151, A008904 (mod 10).

Programs

  • Haskell
    a004154 = a004151 . a000142
    a004154_list = scanl (\u v -> a004151 $ u * v) 1 [1..]
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [Factorial(n)/10^Valuation(Factorial(n), 5): n in [0..30]]; // Vincenzo Librandi, Oct 16 2014
    
  • Maple
    a:= n-> (f-> f/10^padic[ordp](f,10))(n!):
    seq(a(n), n=0..29);  # Alois P. Heinz, Dec 29 2021
  • Mathematica
    Array[#!//.x_/;x~Mod~5==0:>x/10&,22]  (* Giorgos Kalogeropoulos, Aug 17 2020 *)
    Join[{1,1,2,6,24},Table[FromDigits[Flatten[Most[Split[IntegerDigits[n!]]]]],{n,5,30}]] (* or *) Table[n!/10^IntegerExponent[n!,10],{n,0,30}] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    a(n)=n!/10^valuation(n!,5) \\ M. F. Hasler, Oct 16 2014
    
  • Python
    from sympy import factorial
    from sympy.ntheory.factor_ import digits
    def A004154(n): return factorial(n)//10**(n-sum(digits(n,5)[1:])>>2) # Chai Wah Wu, Oct 18 2024
    
  • Python
    from itertools import count, islice
    def agen(): # generator of terms
        f = 1
        for n in count(1):
            yield f
            while n%10 == 0: n //= 10
            f *= n
            while f%10 == 0: f //= 10
    print(list(islice(agen(), 25))) # Michael S. Branicky, Apr 11 2025

Formula

a(n) = A000142(n) / 10^A027868(n). - Reinhard Zumkeller, Nov 24 2012
a(n+1) = A004151((n+1)*a(n)). - Reinhard Zumkeller, Nov 24 2012, corrected by M. F. Hasler, Oct 16 2014
a(n) = A004151(A000142(n)) = A000142(n)/A011557(A112765(n)), or A122840 instead of A112765. - M. F. Hasler, Oct 16 2014

A055457 5^a(n) exactly divides 5n. Or, 5-adic valuation of 5n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Alford Arnold, Jun 25 2000

Keywords

Comments

More generally, consider the sequence defined by p^a(n) exactly divides p*n. For p = 3 we have A051064 and for p = 2 we have A001511.
The number of powers of 5 that divide n. - Amiram Eldar, Mar 29 2025

Examples

			a(5) = 2 since 5^2 exactly divides 5 times 5;
a(25) = 3 since 5^3 exactly divides 5 times 25;
a(125) = 4 since 5^4 exactly divides 5 times 125.
		

Crossrefs

Cf. A007949, A112765, A191610 (partial sums).

Programs

  • Maple
    seq(padic:-ordp(5*n,5), n=1..1000); # Robert Israel, Dec 07 2015
  • Mathematica
    max = 1000; s = (1/x)*Sum[x^(5^k)/(1-x^5^k), {k, 0, Log[5, max] // Ceiling }] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 04 2015 *)
    Table[IntegerExponent[n, 5] + 1, {n, 1, 100}] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=-sumdiv(n,d,moebius(5*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
    
  • PARI
    a(n)=valuation(5*n,5) \\ Anders Hellström, Dec 04 2015
    
  • Python
    def A055457(n):
        c = 1
        while not (a:=divmod(n,5))[1]:
            c += 1
            n = a[0]
        return c # Chai Wah Wu, Feb 28 2025

Formula

G.f.: Sum_{k>=0} x^(5^k)/(1-x^5^k). - Ralf Stephan, Apr 12 2002
Multiplicative with a(p^e) = e+1 if p = 5, 1 otherwise.
a(n) = -Sum_{d|n} mu(5d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/(1-1/5^s). - R. J. Mathar, Feb 09 2011
a(n) = A112765(5n). - R. J. Mathar, Jul 17 2012
a(5n) = 1 + a(n). a(5n+k) = 1 for k = 1..4. - Robert Israel, Dec 07 2015
G.f. satisfies A(x^5) = A(x) - x/(1-x). - Robert Israel, Dec 08 2015
a(n) = A112765(n) + 1. - Amiram Eldar, Sep 21 2020
Sum_{k=1..n} a(k) ~ 5*n/4. - Vaclav Kotesovec, Sep 21 2020
G.f.: Sum_{i>=1, j>=0} x^(i*5^j). - Seiichi Manyama, Mar 23 2025
Previous Showing 11-20 of 72 results. Next