A000532
Number of Hamiltonian paths from NW to SW corners in an n X n grid.
Original entry on oeis.org
1, 1, 2, 8, 86, 1770, 88418, 8934966, 2087813834, 1013346943033, 1111598871478668, 2568944901392936854, 13251059359839620127088, 145194816279817259193401518, 3524171261632305641165676374930, 182653259988707123426135593460533473
Offset: 1
- Oliver R. Bellwood, Table of n, a(n) for n = 1..20 (first 19 terms from KeyTo9(AT)Fans, Ed Wynn)
- KeyTo9(AT)Fans, Counting paths in a grid - Chinese web page giving the sequence up to 18 items.
- Douglas M. McKenna, Tendril Motifs for Space-Filling, Half-Domino Curves, in: Bridges Finland Conference Proceedings, 2016, pp. 119-126.
- Douglas M. McKenna, Are Maximally Unbalanced Hilbert-Style Square-Filling Curve Motifs a Drawing Medium?, Bridges Conf. Proc.; Math., Art, Music, Architecture, Culture (2023) 91-98.
A037245
Number of unrooted self-avoiding walks of n steps on square lattice.
Original entry on oeis.org
1, 2, 4, 9, 22, 56, 147, 388, 1047, 2806, 7600, 20437, 55313, 148752, 401629, 1078746, 2905751, 7793632, 20949045, 56112530, 150561752, 402802376, 1079193821, 2884195424, 7717665979, 20607171273, 55082560423, 146961482787, 392462843329, 1046373230168, 2792115083878
Offset: 1
- Bert Dobbelaere, Table of n, a(n) for n = 1..60
- Joerg Arndt, The a(6) = 56 walks of length 6, 2018 (pdf, 2 pages).
- Brian Hayes, How to avoid yourself, American Scientist 86 (1998) 314-319.
- Ed Pegg, Jr., Illustrations of polyforms
- Eric Weisstein's World of Mathematics, Polyedge
Asymptotically approaches (1/16) *
A001411.
Cf.
A266549 (closed self-avoiding walks).
A054879
Closed walks of length 2n along the edges of a cube based at a vertex.
Original entry on oeis.org
1, 3, 21, 183, 1641, 14763, 132861, 1195743, 10761681, 96855123, 871696101, 7845264903, 70607384121, 635466457083, 5719198113741, 51472783023663, 463255047212961, 4169295424916643, 37523658824249781, 337712929418248023, 3039416364764232201, 27354747282878089803, 246192725545902808221
Offset: 0
Paolo Dominici (pl.dm(AT)libero.it), May 23 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- G. Benkart and D. Moon, A Schur-Weyl Duality Approach to Walking on Cubes, arXiv preprint arXiv:1409.8154 [math.RT], 2014 and Ann. Combin. 20 (3) (2016) 397-417
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- G. R. Franssens, On a number pyramid related to the binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, How big is BCI fragment of BCK logic, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. [From _N. J. A. Sloane_, Feb 21 2012]
- Ji-Hwan Jung, Oriented Riordan graphs and their fractal property, arXiv:2009.01677 [math.CO], 2020.
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 5.
- L. Reyzin, Number of closed walks on an n-cube, Mathoverflow.
- Index entries for linear recurrences with constant coefficients, signature (10,-9).
-
[(3^(2*n)+3)/4: n in [0..25]]; // Vincenzo Librandi, Jun 30 2011
-
nn = 40; Select[Range[0, nn]! CoefficientList[Series[Cosh[x]^3, {x, 0, nn}], x], # > 0 &] (* Geoffrey Critzer, Dec 20 2012 *)
Table[(3^(2n)+3)/4,{n,0,30}] (* or *) LinearRecurrence[{10,-9},{1,3},30] (* Harvey P. Dale, Mar 17 2023 *)
A100982
Number of admissible sequences of order j; related to 3x+1 problem and Wagon's constant.
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 30, 85, 173, 476, 961, 2652, 8045, 17637, 51033, 108950, 312455, 663535, 1900470, 5936673, 13472296, 39993895, 87986917, 257978502, 820236724, 1899474678, 5723030586, 12809477536, 38036848410, 84141805077, 248369601964
Offset: 1
The unique admissible sequence of order 1 is 3/2, 1/2.
The unique admissible sequence of order 2 is 3/2, 3/2, 1/2, 1/2.
The two admissible sequences of order 3 are 3/2, 3/2, 3/2, 1/2, 1/2 and 3/2, 3/2, 1/2, 3/2, 1/2.
a(13) = 8045 = binomial(floor(5*(13-2)/3), 13-2)
- Sum_{i=2..6} binomial(floor((3*(13-i)+0)/2), 13-i)*a(i)
- Sum_{i=7..11} binomial(floor((3*(13-i)-1)/2), 13-i)*a(i)
- Sum_{i=12..12} binomial(floor((3*(13-i)-2)/2), 13-i)*a(i)
= 31824 - 4368*1 - 3003*2 - 715*3 - 495*7 - 120*12 - 28*30 - 21*85 - 5*173 - 4*476 - 1*961 - 0*2652. (Conjecture)
From _Mike Winkler_, Sep 12 2017: (Start)
The next table shows how Theorem 2 works. No entry is equal to zero.
n = 3 4 5 6 7 8 9 10 11 12 .. |A076227(k)=
--------------------------------------------------|
k = 2 | 1 | 1
k = 3 | 1 1 | 2
k = 4 | 2 1 | 3
k = 5 | 3 1 | 4
k = 6 | 3 4 1 | 8
k = 7 | 7 5 1 | 13
k = 8 | 12 6 1 | 19
k = 9 | 12 18 7 1 | 38
k = 10 | 30 25 8 1 | 64
k = 11 | 30 55 33 9 1 | 128
: | : : : : .. | :
--------------------------------------------------|---------
a(n) = 2 3 7 12 30 85 173 476 961 2652 .. |
The entries (k,n) in this table are generated by the rule (k+1,n) = (k,n) + (k,n-1). The last value of (k+1,n) is given by k+1 = A056576(n-1), or the highest value in column n is given twice only if A022921(n-2) = 2. Then a(n) is equal to the sum of the entries in column n. For n = 7 there is 1 = 0 + 1, 5 = 1 + 4, 12 = 5 + 7, 12 = 12 + 0. Therefore a(7) = 1 + 5 + 12 + 12 = 30. The sum of row k is equal to A076227(k). (End)
From _Ruud H.G. van Tol_, Dec 04 2023: (Start)
A tree view.
n-tree--A098294--ids-----paths-----------------a(n)
0 ._ 0 0 0 -
1 |_ 1 1 10 1
2 |_._ 2 2 1100 1
3 |_|_ 2 3-4 11010 - 11100 2
4 |_|_._ 3 5-7 1101100 - 1111000 3
5 |_|_|_ 3 8-14 11011010 - 11111000 7
6 |_|_|_._ 4 15-26 1101101100-1111110000 12
7 |_|_|_|_._ 5 27-56 ... 30
8 |_|_|_|_|_ 5 57-141 ... 85
...
For n>=1, the endpoints are at A098294(n) to the right.
(End)
- T. D. Noe, Table of n, a(n) for n = 1..500
- M. Chamberland, Una actualizacio del problema 3x+1, Butl. Soc. Catalana Mat. 18 (2003) 19-45.
- M. Chamberland, English translation
- Ruud H.G. van Tol, Sequence as counts of lattice walks
- Ruud H.G. van Tol, A100982 Musings
- Stan Wagon, The Collatz problem, Math. Intelligencer 7 (1985) 72-76.
- Mike Winkler, On a stopping time algorithm of the 3n + 1 function, 2011.
- Mike Winkler, On the structure and the behaviour of Collatz 3n + 1 sequences - Finite subsequences and the role of the Fibonacci sequence, arXiv:1412.0519 [math.GM], 2014.
- Mike Winkler, New results on the stopping time behaviour of the Collatz 3x + 1 function, arXiv:1504.00212 [math.GM], 2015.
- Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x + 1 function, arXiv:1709.03385 [math.GM], 2017.
-
(* based on Eric Roosendaal's algorithm *) nn=100; Clear[x,y]; Do[x[i]=0, {i,0,nn+1}]; x[1]=1; t=Table[Do[y[cnt]=x[cnt]+x[cnt-1], {cnt,p+1}]; Do[x[cnt]=y[cnt], {cnt,p+1}]; admis=0; Do[If[(p+1-cnt)*Log[3]T. D. Noe, Sep 11 2006 *)
-
/* translation of the above code from T. D. Noe */
{limit=100; n=1; x=y=vector(limit+1); x[1]=1; for(b=2, limit, for(c=2, b+1, y[c]=x[c]+x[c-1]); for(c=2, b+1, x[c]=y[c]); a_n=0; for(c=1, b+1, if((b+1-c)*log(3)Mike Winkler, Feb 28 2015
-
/* algorithm for the Conjecture */
{limit=53; zn=vector(limit); zn[2]=1; zn[3]=2; zn[4]=3; zn[5]=7; zn[6]=12; f=1; e1=-1; e2=-2; for(n=7, limit, m=floor((n-1)*log(3)/log(2))-(n-1); j=(m+n-2)!/(m!*(n-2)!); if(n>6*f, if(frac(n/2)==0, e=e1, e=e2)); if(frac((n-6 )/12)==0, f++; e1=e1+2); if(frac((n-12)/12)==0, f++; e2=e2+2); Sum=a=b=0; c=1; d=5; until(c>=n-1, for(i=2+a*5+b, 1+d+a*5, if(i>11 && frac((i+2)/6)==0, b++); delta=e-a; Sum=Sum+binomial(floor((3*(n-i)+delta)/2),n-i)*zn[i]; c++); a++; for(k=3, 50, if(n>=k*6 && a==k-1, d=k+3))); zn[n]=j-Sum; print(n" "zn[n]))} \\ Mike Winkler, Jan 03 2018
-
/* cf. code for Theorem 2 */
{limit=100; /*or limit>100*/ p=q=vector(limit); c=2; w=log(3)/log(2); for(n=3, limit, p[1]=Sum=1; for(i=2, c, p[i]=p[i-1]+q[i]; Sum=Sum+p[i]); a_n=Sum; print(n" "a_n); for(i=1, c, q[i]=p[i]); d=floor(n*w)-floor((n-1)*w); if(d==2, c++)); } \\ Mike Winkler, Apr 14 2015
-
/* algorithm for Theorem 1 */
n=20; a=vector(n); log32=log(3)/log(2);
{a[1]=1; for ( k=1, n-1, a[k+1]=sum( m=1,k,(-1)^(m-1)*binomial( floor( (k-m+1)*log32)+m-1,m)*a[k-m+1] ); print(k" "a[k]) );
} \\ Vladimir M. Zarubin, Sep 25 2015
-
/* algorithm for Theorem 2 */
{limit=30; /*or limit>30*/ R=matrix(limit,limit); R[2,1]=0; R[2,2]=1; for(n=2, limit, print; print1("For n="n" in column n: "); Kappa_n=floor(n*log(3)/log(2)); a_n=0; for(k=n, Kappa_n, R[k+1,n]=R[k,n]+R[k,n-1]; print1(R[k+1,n]", "); a_n=a_n+R[k+1,n]); print; print(" and the sum is a(n)="a_n))} \\ Mike Winkler, Sep 12 2017
Two more terms from Jules Renucci (jules.renucci(AT)wanadoo.fr), Nov 02 2005
A109499
Number of closed walks of length n on the complete graph on 5 nodes from a given node.
Original entry on oeis.org
1, 0, 4, 12, 52, 204, 820, 3276, 13108, 52428, 209716, 838860, 3355444, 13421772, 53687092, 214748364, 858993460, 3435973836, 13743895348, 54975581388, 219902325556, 879609302220, 3518437208884, 14073748835532
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Christopher R. Kitching, Henri Kauhanen, Jordan Abbott, Deepthi Gopal, Ricardo Bermúdez-Otero, and Tobias Galla, Estimating transmission noise on networks from stationary local order, arXiv:2405.12023 [cond-mat.stat-mech], 2024. See p. 48.
- Index entries for linear recurrences with constant coefficients, signature (3,4).
-
a:=[1,0];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Mar 23 2019
-
[(4^n + 4*(-1)^n)/5: n in [0..30]]; // Vincenzo Librandi, Aug 12 2011
-
CoefficientList[Series[(1-3*x)/(1-3*x-4*x^2), {x,0,30}], x] (* or *) LinearRecurrence[{3,4}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
-
a(n)=(4^n+4*(-1)^n)/5 \\ Charles R Greathouse IV, Oct 01 2012
-
[(4^n+4*(-1)^n)/5 for n in (0..30)] # G. C. Greubel, Mar 23 2019
A139271
a(n) = 2*n*(4*n-3).
Original entry on oeis.org
0, 2, 20, 54, 104, 170, 252, 350, 464, 594, 740, 902, 1080, 1274, 1484, 1710, 1952, 2210, 2484, 2774, 3080, 3402, 3740, 4094, 4464, 4850, 5252, 5670, 6104, 6554, 7020, 7502, 8000, 8514, 9044, 9590, 10152, 10730, 11324, 11934, 12560, 13202, 13860, 14534, 15224
Offset: 0
Cf.
A000217,
A014634,
A014635,
A033585,
A033586,
A033587,
A035008,
A051870,
A069129,
A085250,
A139272,
A139273,
A139274,
A139275,
A139276,
A139278,
A139279,
A139280,
A139281,
A139282.
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A226488 (this sequence is the case k=16). -
Bruno Berselli, Jun 10 2013
-
Table[8n^2-6n,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,2,20},50] (* Harvey P. Dale, Sep 26 2016 *)
-
a(n)=2*n*(4*n-3) \\ Charles R Greathouse IV, Jun 17 2017
A002899
Number of n-step polygons on f.c.c. lattice.
Original entry on oeis.org
1, 0, 12, 48, 540, 4320, 42240, 403200, 4038300, 40958400, 423550512, 4434978240, 46982827584, 502437551616, 5417597053440, 58831951546368, 642874989479580, 7063600894137216, 77991775777488144, 864910651813116480
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Christoph Koutschan, Table of n, a(n) for n = 0..931
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
- C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
- Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
- Index entries for sequences related to f.c.c. lattice
-
f[n_] := Sum[ Binomial[n, k]*(-4)^(n - k)*Sum[ Binomial[k, j]^2*Binomial[2k - 2j, k - j]*Binomial[2j, j], {j, 0, k}], {k, 0, n}]; Array[f, 20, 0]
-
{a(n)=sum(k=0, n, binomial(n, k)*(-4)^(n-k)*sum(j=0, k, binomial(k, j)^2*binomial(2*k-2*j, k-j)*binomial(2*j, j)))};
print(vector(20, n, a(n-1))) \\ David Broadhurst, Feb 06 2008; fixed by Vaclav Kotesovec, Apr 08 2016
A258206
Number of strictly non-overlapping holeless polyhexes of perimeter 2n, counted up to rotations and turning over.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 2, 12, 14, 50, 97, 312, 744, 2291, 6186, 18714, 53793, 162565, 482416, 1467094, 4436536, 13594266, 41640513, 128564463, 397590126, 1236177615, 3852339237, 12053032356, 37802482958, 118936687722, 375079338476
Offset: 1
- S. J. Cyvin, J. Brunvoll and B. N. Cyvin, Theory of Coronoid Hydrocarbons, Springer-Verlag, 1991. See sections 4.7 Annulene and 6.5 Annulenes.
A005558
a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.
Original entry on oeis.org
1, 1, 3, 6, 20, 50, 175, 490, 1764, 5292, 19404, 60984, 226512, 736164, 2760615, 9202050, 34763300, 118195220, 449141836, 1551580888, 5924217936, 20734762776, 79483257308, 281248448936, 1081724803600, 3863302870000, 14901311070000, 53644719852000
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides for Séminaire de Combinatoire Ph. Flajolet, Mar 28 2013.
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech, Hypergeometric expressions for generating functions of walks with small steps in the quarter plane, Eur. J. Comb. 61, 242-275 (2017)
- Sergi Elizalde, The degree of symmetry of lattice paths, arXiv:2002.12874 [math.CO], 2020.
- R. K. Guy, Letter to N. J. A. Sloane, May 1990
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6. See Column 1 of Figure 5.
- Heinrich Niederhausen, A Note on the Enumeration of Diffusion Walks in the First Octant by Their Number of Contacts with the Diagonal, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.3.
-
[Binomial(n+1, Ceiling(n/2))*Binomial(n, Floor(n/2)) - Binomial(n+1, Ceiling((n-1)/2))*Binomial(n, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Sep 30 2015
-
A:= proc(n,x,y) option remember;
local j, xpyp, xp,yp, res;
xpyp:= [[x-1,y],[x+1,y],[x,y-1],[x,y+1]];
res:= 0;
for j from 1 to 4 do
xp:= xpyp[j,1];
yp:= xpyp[j,2];
if xp < 0 or xp > yp or xp + yp > n then next fi;
res:= res + procname(n-1,xp,yp)
od;
return res
end proc:
A(0,0,0) := 1:
seq(add(add(A(n,x,y), y = x .. n - x), x = 0 .. floor(n/2)), n = 0 .. 50); # Robert Israel, Oct 07 2015
-
a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n]//Abs, {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)
-
a(n)=binomial(n+1,ceil(n/2))*binomial(n,floor(n/2)) - binomial(n+1,ceil((n-1)/2))*binomial(n,floor((n-1)/2))
-
from sympy import ceiling as c, binomial
def a(n):
return binomial(n + 1, c(n/2))*binomial(n, n//2) - binomial(n + 1, c((n - 1)/2))*binomial(n, (n - 1)//2)
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 02 2017
A005573
Number of walks on cubic lattice (starting from origin and not going below xy plane).
Original entry on oeis.org
1, 5, 26, 139, 758, 4194, 23460, 132339, 751526, 4290838, 24607628, 141648830, 817952188, 4736107172, 27487711752, 159864676803, 931448227590, 5435879858958, 31769632683132, 185918669183370, 1089302293140564
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch and Jim Brawner, Problem 10795: Three-Dimensional Lattice Walks in the Upper Half-Space, Amer. Math. Monthly, 108 (Dec. 2001), 980.
- Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
- R. K. Guy, Letter to N. J. A. Sloane, May 1990
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 97.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1-2*x)/(1-6*x)) -1)/(2*x) )); // G. C. Greubel, May 02 2019
-
CoefficientList[Series[(Sqrt[(1-2x)/(1-6x)]-1)/(2x),{x,0,20}],x] (* Harvey P. Dale, Jun 24 2011 *)
a[n_] := 6^n Hypergeometric2F1[1/2, -n, 2, 2/3]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 11 2017 *)
-
my(x='x+O('x^30)); Vec((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)) \\ G. C. Greubel, May 02 2019
-
((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019
Comments