cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 4476 results. Next

A000532 Number of Hamiltonian paths from NW to SW corners in an n X n grid.

Original entry on oeis.org

1, 1, 2, 8, 86, 1770, 88418, 8934966, 2087813834, 1013346943033, 1111598871478668, 2568944901392936854, 13251059359839620127088, 145194816279817259193401518, 3524171261632305641165676374930, 182653259988707123426135593460533473
Offset: 1

Views

Author

Russ Cox, Mar 15 1996

Keywords

Comments

Number of walks reaching each cell exactly once.

Crossrefs

Extensions

More terms from Zhao Hui Du, Jul 08 2008
Edited by Franklin T. Adams-Watters, Jul 03 2009
Name clarified by Andrew Howroyd, Apr 10 2016

A037245 Number of unrooted self-avoiding walks of n steps on square lattice.

Original entry on oeis.org

1, 2, 4, 9, 22, 56, 147, 388, 1047, 2806, 7600, 20437, 55313, 148752, 401629, 1078746, 2905751, 7793632, 20949045, 56112530, 150561752, 402802376, 1079193821, 2884195424, 7717665979, 20607171273, 55082560423, 146961482787, 392462843329, 1046373230168, 2792115083878
Offset: 1

Views

Author

Keywords

Comments

Or, number of 2-sided polyedges with n cells. - Ed Pegg Jr, May 13 2009
A walk and its reflection (i.e., exchange start and end of walk, what Hayes calls a "retroreflection") are considered one and the same here. - Joerg Arndt, Jan 26 2018
With A001411 as main input and counting the symmetrical shapes separately, higher terms can be computed efficiently (see formula). - Bert Dobbelaere, Jan 07 2019

Crossrefs

Asymptotically approaches (1/16) * A001411.
Cf. A266549 (closed self-avoiding walks).
Cf. A323188, A323189 (program).

Formula

a(n) = (A001411(n) + A323188(n) + A323189(n) + 4) / 16. - Bert Dobbelaere, Jan 07 2019

Extensions

a(25)-a(27) from Luca Petrone, Dec 20 2015
More terms using formula by Bert Dobbelaere, Jan 07 2019

A054879 Closed walks of length 2n along the edges of a cube based at a vertex.

Original entry on oeis.org

1, 3, 21, 183, 1641, 14763, 132861, 1195743, 10761681, 96855123, 871696101, 7845264903, 70607384121, 635466457083, 5719198113741, 51472783023663, 463255047212961, 4169295424916643, 37523658824249781, 337712929418248023, 3039416364764232201, 27354747282878089803, 246192725545902808221
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

a(n) is the number of words of length 2n on alphabet {0,1,2} with an even number (possibly zero) of each letter. - Geoffrey Critzer, Dec 20 2012
Equivalently, the cogrowth sequence of the 8-element group C2^3. - Sean A. Irvine, Nov 04 2024

Crossrefs

Programs

  • Magma
    [(3^(2*n)+3)/4: n in [0..25]]; // Vincenzo Librandi, Jun 30 2011
  • Mathematica
    nn = 40; Select[Range[0, nn]! CoefficientList[Series[Cosh[x]^3, {x, 0, nn}], x], # > 0 &]  (* Geoffrey Critzer, Dec 20 2012 *)
    Table[(3^(2n)+3)/4,{n,0,30}] (* or *) LinearRecurrence[{10,-9},{1,3},30] (* Harvey P. Dale, Mar 17 2023 *)

Formula

a(n) = (3^(2*n)+3)/4.
G.f.: 1/4*1/(1-9*x)+3/4*1/(1-x).
a(n) = Sum_{k=0..n} 3^k*4^(n-k)*A121314(n,k). - Philippe Deléham, Aug 26 2006
E.g.f.: cosh^3(x). O.g.f.: 1/(1-3*1*x/(1-2*2*x/(1-1*3*x))) (continued fraction). - Peter Bala, Nov 13 2006
(-1)^n*a(n) = Sum_{k=0..n} A086872(n,k)*(-4)^(n-k). - Philippe Deléham, Aug 17 2007
a(n) = (1/2^3)*Sum_{j = 0..3} binomial(3,j)*(3 - 2*j)^(2*n). See Reyzin link. - Peter Bala, Jun 03 2019
a(n) = 9*a(n-1) - 6. - Klaus Purath, Mar 13 2021

A100982 Number of admissible sequences of order j; related to 3x+1 problem and Wagon's constant.

Original entry on oeis.org

1, 1, 2, 3, 7, 12, 30, 85, 173, 476, 961, 2652, 8045, 17637, 51033, 108950, 312455, 663535, 1900470, 5936673, 13472296, 39993895, 87986917, 257978502, 820236724, 1899474678, 5723030586, 12809477536, 38036848410, 84141805077, 248369601964
Offset: 1

Views

Author

Steven Finch, Jan 13 2005

Keywords

Comments

Eric Roosendaal counted all admissible sequences up to order j=1000 (2005). Note: there is a typo in both Wagon and Chamberland in the definition of Wagon's constant 9.477955... The expression floor(1 + 2*i + i*log_2(3)) should be replaced by floor(1 + i + i*log_2(3)).
The length of all admissible sequences of order j is A020914(j). - T. D. Noe, Sep 11 2006
Conjecture: a(n) is given for each n > 3 by a formula using a(2)..a(n-1). This allows us to create an iterative algorithm which generates a(n) for each n > 6. This has been proved for each n <= 53. For higher values of n the algorithm must be slightly modified. - Mike Winkler, Jan 03 2018
Theorem 1: a(k) is given for each k > 1 by a formula using a(1)..a(k-1). Namely, a(1)=1 and a(k+1) = Sum_{m=1..k} (-1)^(m-1)*binomial(floor((k-m+1)*(log(3)/log(2))) + m - 1, m)*a(k-m+1) for k >= 1. - Vladimir M. Zarubin, Sep 25 2015
Theorem 2: a(n) can be generated for each n > 2 algorithmically in a Pascal's triangle-like manner from the two starting values 0 and 1. This result is based on the fact that the Collatz residues (mod 2^k) can be evolved according to a binary tree. There is a direct connection with A076227, A056576 and A022921. - Mike Winkler, Sep 12 2017
A177789 shows another theorem and algorithm for generating a(n). - Mike Winkler, Sep 12 2017

Examples

			The unique admissible sequence of order 1 is 3/2, 1/2.
The unique admissible sequence of order 2 is 3/2, 3/2, 1/2, 1/2.
The two admissible sequences of order 3 are 3/2, 3/2, 3/2, 1/2, 1/2 and 3/2, 3/2, 1/2, 3/2, 1/2.
a(13) = 8045 = binomial(floor(5*(13-2)/3), 13-2)
- Sum_{i=2..6} binomial(floor((3*(13-i)+0)/2), 13-i)*a(i)
- Sum_{i=7..11} binomial(floor((3*(13-i)-1)/2), 13-i)*a(i)
- Sum_{i=12..12} binomial(floor((3*(13-i)-2)/2), 13-i)*a(i)
= 31824 - 4368*1 - 3003*2 - 715*3 - 495*7 - 120*12 - 28*30 - 21*85 - 5*173 - 4*476 - 1*961 - 0*2652. (Conjecture)
From _Mike Winkler_, Sep 12 2017: (Start)
The next table shows how Theorem 2 works. No entry is equal to zero.
n =       3  4  5   6   7   8   9  10  11   12 .. |A076227(k)=
--------------------------------------------------|
k =  2 |  1                                       |     1
k =  3 |  1  1                                    |     2
k =  4 |     2  1                                 |     3
k =  5 |        3   1                             |     4
k =  6 |        3   4   1                         |     8
k =  7 |            7   5   1                     |    13
k =  8 |               12   6   1                 |    19
k =  9 |               12  18   7   1             |    38
k = 10 |                   30  25   8   1         |    64
k = 11 |                   30  55  33   9    1    |   128
:      |                        :   :   :    : .. |    :
--------------------------------------------------|---------
a(n) =    2  3  7  12  30  85 173 476 961 2652 .. |
The entries (k,n) in this table are generated by the rule (k+1,n) = (k,n) + (k,n-1). The last value of (k+1,n) is given by k+1 = A056576(n-1), or the highest value in column n is given twice only if A022921(n-2) = 2. Then a(n) is equal to the sum of the entries in column n. For n = 7 there is 1 = 0 + 1, 5 = 1 + 4, 12 = 5 + 7, 12 = 12 + 0. Therefore a(7) = 1 + 5 + 12 + 12 = 30. The sum of row k is equal to A076227(k). (End)
From _Ruud H.G. van Tol_, Dec 04 2023: (Start)
A tree view.
n-tree--A098294--ids-----paths-----------------a(n)
0 ._          0  0       0                       -
1 |_          1  1       10                      1
2 |_._        2  2       1100                    1
3 |_|_        2  3-4     11010     -   11100     2
4 |_|_._      3  5-7     1101100   -  1111000    3
5 |_|_|_      3  8-14    11011010  - 11111000    7
6 |_|_|_._    4  15-26   1101101100-1111110000  12
7 |_|_|_|_._  5  27-56   ...                    30
8 |_|_|_|_|_  5  57-141  ...                    85
...
For n>=1, the endpoints are at A098294(n) to the right.
(End)
		

Crossrefs

Cf. A122790 (Wagon's constant), A076227, A056576, A022921, A098294, A177789.

Programs

  • Mathematica
    (* based on Eric Roosendaal's algorithm *) nn=100; Clear[x,y]; Do[x[i]=0, {i,0,nn+1}]; x[1]=1; t=Table[Do[y[cnt]=x[cnt]+x[cnt-1], {cnt,p+1}]; Do[x[cnt]=y[cnt], {cnt,p+1}]; admis=0; Do[If[(p+1-cnt)*Log[3]T. D. Noe, Sep 11 2006 *)
  • PARI
    /* translation of the above code from T. D. Noe */
    {limit=100; n=1; x=y=vector(limit+1); x[1]=1; for(b=2, limit, for(c=2, b+1, y[c]=x[c]+x[c-1]); for(c=2, b+1, x[c]=y[c]); a_n=0; for(c=1, b+1, if((b+1-c)*log(3)Mike Winkler, Feb 28 2015
    
  • PARI
    /* algorithm for the Conjecture */
    {limit=53; zn=vector(limit); zn[2]=1; zn[3]=2; zn[4]=3; zn[5]=7; zn[6]=12; f=1; e1=-1; e2=-2; for(n=7, limit, m=floor((n-1)*log(3)/log(2))-(n-1); j=(m+n-2)!/(m!*(n-2)!); if(n>6*f, if(frac(n/2)==0, e=e1, e=e2)); if(frac((n-6 )/12)==0, f++; e1=e1+2); if(frac((n-12)/12)==0, f++; e2=e2+2); Sum=a=b=0; c=1; d=5; until(c>=n-1, for(i=2+a*5+b, 1+d+a*5, if(i>11 && frac((i+2)/6)==0, b++); delta=e-a; Sum=Sum+binomial(floor((3*(n-i)+delta)/2),n-i)*zn[i]; c++); a++; for(k=3, 50, if(n>=k*6 && a==k-1, d=k+3))); zn[n]=j-Sum; print(n" "zn[n]))} \\ Mike Winkler, Jan 03 2018
    
  • PARI
    /* cf. code for Theorem 2 */
    {limit=100; /*or limit>100*/ p=q=vector(limit); c=2; w=log(3)/log(2); for(n=3, limit, p[1]=Sum=1; for(i=2, c, p[i]=p[i-1]+q[i]; Sum=Sum+p[i]); a_n=Sum; print(n" "a_n); for(i=1, c, q[i]=p[i]); d=floor(n*w)-floor((n-1)*w); if(d==2, c++)); } \\ Mike Winkler, Apr 14 2015
    
  • PARI
    /* algorithm for Theorem 1 */
    n=20; a=vector(n); log32=log(3)/log(2);
    {a[1]=1; for ( k=1, n-1, a[k+1]=sum( m=1,k,(-1)^(m-1)*binomial( floor( (k-m+1)*log32)+m-1,m)*a[k-m+1] ); print(k" "a[k]) );
    } \\ Vladimir M. Zarubin, Sep 25 2015
    
  • PARI
    /* algorithm for Theorem 2 */
    {limit=30; /*or limit>30*/ R=matrix(limit,limit); R[2,1]=0; R[2,2]=1; for(n=2, limit, print; print1("For n="n" in column n: "); Kappa_n=floor(n*log(3)/log(2)); a_n=0; for(k=n, Kappa_n, R[k+1,n]=R[k,n]+R[k,n-1]; print1(R[k+1,n]", "); a_n=a_n+R[k+1,n]); print; print(" and the sum is a(n)="a_n))} \\ Mike Winkler, Sep 12 2017

Formula

A sequence s(k), where k=1, 2, ..., n, is *admissible* if it satisfies s(k)=3/2 exactly j times, s(k)=1/2 exactly n-j times, s(1)*s(2)*...*s(n) < 1 but s(1)*s(2)*...*s(m) > 1 for all 1 < m < n.
a(n) = (m+n-2)!/(m!*(n-2)!) - Sum_{i=2..n-1} binomial(floor((3*(n-i)+b)/2), n-i)*a(i), where m = floor((n-1)*log_2(3))-(n-1) and b assumes different integer values within the sum at intervals of 5 or 6 terms. (Conjecture)
a(n) = Sum_{k=n-1..A056576(n-1)} (k,n). (Theorem 2, cf. example)
a(k) = 2*A076227(A020914(k)-1) - A076227(A020914(k)), for k > 0. - Vladimir M. Zarubin, Sep 29 2019
a(1)=1, a(n) = Sum_{k=0..A020914(n-1)-n-2} A325904(k)*binomial(A020914(n-1)-k-2, n-2) for n>1. - Benjamin Lombardo, Oct 18 2019

Extensions

Two more terms from Jules Renucci (jules.renucci(AT)wanadoo.fr), Nov 02 2005
More terms from T. D. Noe, Sep 11 2006

A109499 Number of closed walks of length n on the complete graph on 5 nodes from a given node.

Original entry on oeis.org

1, 0, 4, 12, 52, 204, 820, 3276, 13108, 52428, 209716, 838860, 3355444, 13421772, 53687092, 214748364, 858993460, 3435973836, 13743895348, 54975581388, 219902325556, 879609302220, 3518437208884, 14073748835532
Offset: 0

Views

Author

Mitch Harris, Jun 30 2005

Keywords

Crossrefs

Cf. A108020 (bisection), A109502.

Programs

  • GAP
    a:=[1,0];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Mar 23 2019
  • Magma
    [(4^n + 4*(-1)^n)/5: n in [0..30]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    CoefficientList[Series[(1-3*x)/(1-3*x-4*x^2), {x,0,30}], x] (* or *) LinearRecurrence[{3,4}, {1,0}, 30] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    a(n)=(4^n+4*(-1)^n)/5 \\ Charles R Greathouse IV, Oct 01 2012
    
  • Sage
    [(4^n+4*(-1)^n)/5 for n in (0..30)] # G. C. Greubel, Mar 23 2019
    

Formula

G.f.: (1 - 3*x)/(1 - 3*x - 4*x^2).
a(n) = (4^n + 4*(-1)^n)/5.
a(n+1) = 4*A015521(n). - Paul Curtz, Nov 01 2009
a(n) = 3*a(n-1) + 4*a(n-1). - G. C. Greubel, Dec 30 2017
a(n) = A108020((n - 1) / 2) = 'ccc...c' (n digits) in base 16, for odd n. - Georg Fischer, Mar 23 2019
E.g.f.: (exp(4*x) + 4*exp(-x))/5. - G. C. Greubel, Mar 23 2019

Extensions

Corrected by Franklin T. Adams-Watters, Sep 18 2006

A139271 a(n) = 2*n*(4*n-3).

Original entry on oeis.org

0, 2, 20, 54, 104, 170, 252, 350, 464, 594, 740, 902, 1080, 1274, 1484, 1710, 1952, 2210, 2484, 2774, 3080, 3402, 3740, 4094, 4464, 4850, 5252, 5670, 6104, 6554, 7020, 7502, 8000, 8514, 9044, 9590, 10152, 10730, 11324, 11934, 12560, 13202, 13860, 14534, 15224
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A033585 in the same spiral.
Twice decagonal numbers (or twice 10-gonal numbers). - Omar E. Pol, May 15 2008
a(n) is the number of walks in a cubic lattice of n dimensions that reach the point of origin for the first time after 4 steps. - Shel Kaphan, Mar 20 2023

Crossrefs

Cf. A001107.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=16). - Bruno Berselli, Jun 10 2013
Row n=2 of A361397.

Programs

Formula

a(n) = 8*n^2 - 6*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3a(n-1) - 3a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = A001107(n)*2. - Omar E. Pol, May 15 2008
a(n) = 16*n + a(n-1) - 14 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Jul 18 2017: (Start)
G.f.: (2*x)*(7*x+1)/(1-x)^3.
E.g.f.: (8*x^2 + 2*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = Pi/12 + log(2)/2. - Amiram Eldar, Mar 28 2023

Extensions

Corrected by Harvey P. Dale, Sep 26 2016

A002899 Number of n-step polygons on f.c.c. lattice.

Original entry on oeis.org

1, 0, 12, 48, 540, 4320, 42240, 403200, 4038300, 40958400, 423550512, 4434978240, 46982827584, 502437551616, 5417597053440, 58831951546368, 642874989479580, 7063600894137216, 77991775777488144, 864910651813116480
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of 2 X n matrices with entries from {1,2,3,4}, with (1) second row a (multiset) permutation of the first, and (2) no constant columns. - David Callan, Aug 25 2009
a(n) is the constant coefficient in the expansion of (x + y + z + 1/x + 1/y + 1/z + x/y + y/z + z/x + y/x + z/y + x/z)^n. - Seiichi Manyama, Oct 26 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ Binomial[n, k]*(-4)^(n - k)*Sum[ Binomial[k, j]^2*Binomial[2k - 2j, k - j]*Binomial[2j, j], {j, 0, k}], {k, 0, n}]; Array[f, 20, 0]
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)*(-4)^(n-k)*sum(j=0, k, binomial(k, j)^2*binomial(2*k-2*j, k-j)*binomial(2*j, j)))};
    print(vector(20, n, a(n-1))) \\ David Broadhurst, Feb 06 2008; fixed by Vaclav Kotesovec, Apr 08 2016

Formula

G.f.: hypergeom([1/6, 1/3],[1],108*x^2*(4*x+1))^2. - Mark van Hoeij, Oct 29 2011
Recurrence: n^3*a(n) - 2*n*(2*n-1)*(n-1)*a(n-1) - 16*(n-1)*(5*n^2-10*n+6)*a(n-2) - 96*(n-1)*(n-2)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Dec 10 2013
a(n) ~ 2^(2*n-2) * 3^(n+3/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 08 2016

Extensions

More terms from David Broadhurst, Feb 06 2008

A258206 Number of strictly non-overlapping holeless polyhexes of perimeter 2n, counted up to rotations and turning over.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 2, 12, 14, 50, 97, 312, 744, 2291, 6186, 18714, 53793, 162565, 482416, 1467094, 4436536, 13594266, 41640513, 128564463, 397590126, 1236177615, 3852339237, 12053032356, 37802482958, 118936687722, 375079338476
Offset: 1

Views

Author

Antti Karttunen, May 31 2015

Keywords

Comments

Differs from A057779 for the first time at n=12 as here a(12) = 97, one less than A057779(12) because this sequence excludes polyhexes with holes, the smallest which contains six hexagons in a ring, enclosing a hole of one hex, having thus perimeter of 18+6 = 24 (= 2*12) edges.
Differs from A258019 for the first time at n=13 as here a(13) = 312, one less than A258019(13) because this sequence counts only strictly non-overlapping and non-touching polyhex-patterns, while A258019(13) already includes one specimen of helicene-like self-reaching structures.
If one counts these structures by the number of hexagons (instead of perimeter length), one obtains sequence 1, 1, 3, 7, 22, 81, ... (A018190).
a(n) is also the number of 2n-step 2-dimensional closed self-avoiding paths on honeycomb lattice, reduced for symmetry. - Luca Petrone, Jan 08 2016

References

  • S. J. Cyvin, J. Brunvoll and B. N. Cyvin, Theory of Coronoid Hydrocarbons, Springer-Verlag, 1991. See sections 4.7 Annulene and 6.5 Annulenes.

Crossrefs

Programs

Formula

a(n) = (1/2) * (A258204(n) + A258205(n)).
Other observations. For all n >= 1:
a(n) <= A057779(n).
a(n) <= A258019(n).

Extensions

a(14)-a(15) from Luca Petrone, Jan 08 2016
a(16)-a(23) from Cyvin, Brunvoll & Cyvin added by Andrey Zabolotskiy, Mar 01 2023
a(24)-a(32) from Bert Dobbelaere, May 12 2025

A005558 a(n) is the number of n-step walks on square lattice such that 0 <= y <= x at each step.

Original entry on oeis.org

1, 1, 3, 6, 20, 50, 175, 490, 1764, 5292, 19404, 60984, 226512, 736164, 2760615, 9202050, 34763300, 118195220, 449141836, 1551580888, 5924217936, 20734762776, 79483257308, 281248448936, 1081724803600, 3863302870000, 14901311070000, 53644719852000
Offset: 0

Views

Author

Keywords

Comments

Number of n-step walks that start at the origin, constrained to stay in the first octant (0 <= y <= x). (Conjectured) - Benjamin Phillabaum, Mar 11 2011, corrected by Robert Israel, Oct 07 2015
For n >= 1, a(n-1) is the number of Dyck Paths with semilength n having floor((n+2)/2) U's in odd numbered positions. Example: (U is in odd numbered position and u is in even numbered position) Dyck path with n=5, floor ((5+2)/2)=3: UuddUuUddd. - Roger Ford, May 27 2017
The ratio of the number of n-step walks on the octant with an equal number of North steps and South steps to the total number of n-step walks on the octant is A005817(n)/a(n). For the reduced ratio, if n is divisible by 4 or n-1 is divisible by 4 the ratio is 1:floor(n/4)+1 and for all other values of n the ratio is 2:floor(n/2)+2. Example n = 4: A005817(4) = 10; EEEE, EEEW, EEWE, EWEE, EWEW, EEWW, ENSE, ENES, ENSW, EENS; a(4) = 20; 10:20 reduces to 1:2. - Roger Ford, Nov 04 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A138350 for a signed version.
Bisections are A000891 and A000888/2.
Cf. A000108, A005817. Column y=0 of A052174.

Programs

  • Magma
    [Binomial(n+1, Ceiling(n/2))*Binomial(n, Floor(n/2)) - Binomial(n+1, Ceiling((n-1)/2))*Binomial(n, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Sep 30 2015
    
  • Maple
    A:= proc(n,x,y) option remember;
        local j, xpyp, xp,yp, res;
        xpyp:= [[x-1,y],[x+1,y],[x,y-1],[x,y+1]];
        res:= 0;
        for j from 1 to 4 do
          xp:= xpyp[j,1];
          yp:= xpyp[j,2];
          if xp < 0 or xp > yp or xp + yp > n then next fi;
          res:= res + procname(n-1,xp,yp)
        od;
    return res
    end proc:
    A(0,0,0) := 1:
    seq(add(add(A(n,x,y), y = x .. n - x), x = 0 .. floor(n/2)), n = 0 .. 50); # Robert Israel, Oct 07 2015
  • Mathematica
    a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n]//Abs, {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)
  • PARI
    a(n)=binomial(n+1,ceil(n/2))*binomial(n,floor(n/2)) - binomial(n+1,ceil((n-1)/2))*binomial(n,floor((n-1)/2))
    
  • Python
    from sympy import ceiling as c, binomial
    def a(n):
        return binomial(n + 1, c(n/2))*binomial(n, n//2) - binomial(n + 1, c((n - 1)/2))*binomial(n, (n - 1)//2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 02 2017

Formula

a(n) = C(n+1, ceiling(n/2))*C(n, floor(n/2)) - C(n+1, ceiling((n-1)/2))*C(n, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
G.f.: (1/(4x^2))*((16*x^2-1)*(hypergeom([1/2, 1/2],[1],16*x^2)+2*x*(4*x-1)*hypergeom([3/2, 3/2],[2],16*x^2))-2*x+1). - Mark van Hoeij, Oct 13 2009
E.g.f (conjectured): BesselI(1,2*x)*(BesselI(0,2*x)+BesselI(1,2*x))/x. - Benjamin Phillabaum, Feb 25 2011
Conjecture: (2*n+1)*(n+3)*(n+2)*a(n) - 4*(2*n^2+4*n+3)*a(n-1) - 16*n*(2*n+3)*(n-1)*a(n-2) = 0. - R. J. Mathar, Apr 02 2017
Conjecture: (n+3)*(n+2)*a(n) - 4*(n^2+3*n+1)*a(n-1) + 16*(-n^2+n+1)*a(n-2) + 64*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} n!/(k!*k!*(floor(n/2)-k)!*(floor((n+1)/2)-k)!*(k+1)) (conjectured). - Roger Ford, Aug 04 2017
a(n) = A000108(floor((n+1)/2))*A000108(floor(n/2))*(2*(floor(n/2))+1). - Roger Ford, Nov 15 2019
a(n) = Product_{k=3..n} (4*floor((k-1)/2) + 2) / (floor((k+2)/2)). - Roger Ford, Apr 29 2024

A005573 Number of walks on cubic lattice (starting from origin and not going below xy plane).

Original entry on oeis.org

1, 5, 26, 139, 758, 4194, 23460, 132339, 751526, 4290838, 24607628, 141648830, 817952188, 4736107172, 27487711752, 159864676803, 931448227590, 5435879858958, 31769632683132, 185918669183370, 1089302293140564
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A026378, second binomial transform of A001700. - Philippe Deléham, Jan 28 2007
The Hankel transform of [1,1,5,26,139,758,...] is [1,4,15,56,209,...](see A001353). - Philippe Deléham, Apr 13 2007

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1-2*x)/(1-6*x)) -1)/(2*x) )); // G. C. Greubel, May 02 2019
    
  • Mathematica
    CoefficientList[Series[(Sqrt[(1-2x)/(1-6x)]-1)/(2x),{x,0,20}],x] (* Harvey P. Dale, Jun 24 2011 *)
    a[n_] := 6^n Hypergeometric2F1[1/2, -n, 2, 2/3]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)) \\ G. C. Greubel, May 02 2019
    
  • Sage
    ((sqrt((1-2*x)/(1-6*x)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

From Emeric Deutsch, Jan 09 2003; corrected by Roland Bacher: (Start)
a(n) = Sum_{i=0..n} (-1)^i*6^(n-i)*binomial(n, i)*binomial(2*i, i)/(i+1);
g.f. A(x) satisfies: x(1-6x)A^2 + (1-6x)A - 1 = 0. (End)
From Henry Bottomley, Aug 23 2001: (Start)
a(n) = 6*a(n-1) - A005572(n-1).
a(n) = Sum_{j=0..n} 4^(n-j)*binomial(n, floor(n/2))*binomial(n, j). (End)
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2*k+1, k)*2^(n-k).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Catalan(k)*6^(n-k).
D-finite with recurrence (n+1)*a(n) = (8*n+2)*a(n-1)-(12*n-12)*a(n-2). - Vladeta Jovovic, Jul 16 2004
a(n) = Sum_{k=0..n} A052179(n,k). - Philippe Deléham, Jan 28 2007
Conjecture: a(n)= 6^n * hypergeom([1/2,-n],[2], 2/3). - Benjamin Phillabaum, Feb 20 2011
From Paul Barry, Apr 21 2009: (Start)
G.f.: (sqrt((1-2*x)/(1-6*x)) - 1)/(2*x).
G.f.: 1/(1-5*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-4*x-x^2/(1-... (continued fraction). (End)
G.f.: 1/(1 - 4*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1 - 2*x - x*(1 - 2*x)/(1...(continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Jul 02 2010
a(n) ~ 6^(n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 05 2012
G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-2*x) - 2*x*(1-2*x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-2*x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
a(n) = 2^n*hypergeom([-n, 3/2], [2], -2). - Peter Luschny, Apr 26 2016
E.g.f.: exp(4*x)*(BesselI(0,2*x) + BesselI(1,2*x)). - Ilya Gutkovskiy, Sep 20 2017

Extensions

More terms from Henry Bottomley, Aug 23 2001
Previous Showing 41-50 of 4476 results. Next