cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1495 results. Next

A005248 Bisection of Lucas numbers: a(n) = L(2*n) = A000032(2*n).

Original entry on oeis.org

2, 3, 7, 18, 47, 123, 322, 843, 2207, 5778, 15127, 39603, 103682, 271443, 710647, 1860498, 4870847, 12752043, 33385282, 87403803, 228826127, 599074578, 1568397607, 4106118243, 10749957122, 28143753123, 73681302247, 192900153618, 505019158607, 1322157322203
Offset: 0

Views

Author

Keywords

Comments

Drop initial 2; then iterates of A050411 do not diverge for these starting values. - David W. Wilson
All nonnegative integer solutions of Pell equation a(n)^2 - 5*b(n)^2 = +4 together with b(n)=A001906(n), n>=0. - Wolfdieter Lang, Aug 31 2004
a(n+1) = B^(n)AB(1), n>=0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 3=`10`, 7=`010`, 18=`0010`, 47=`00010`, ..., in Wythoff code. a(0) = 2 = B(1) in Wythoff code.
Output of Tesler's formula (as well as that of Lu and Wu) for the number of perfect matchings of an m X n Möbius band where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
Numbers having two 1's in their base-phi representation. - Robert G. Wilson v, Sep 13 2010
Pisano period lengths: 1, 3, 4, 3, 2, 12, 8, 6, 12, 6, 5, 12, 14, 24, 4, 12, 18, 12, 9, 6, ... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Feb 18 2013: (Start)
a(n) is also one half of the total number of round trips, each of length 2*n, on the graph P_4 (o-o-o-o) (the simple path with 4 points (vertices) and 3 lines (or edges)). See the array and triangle A198632 for the general case of the graph P_N (there N is n and the length is l=2*k).
O.g.f. for w(4,l) (with zeros for odd l): y*(d/dy)S(4,y)/S(4,y) with y=1/x and Chebyshev S-polynomials (coefficients A049310). See also A198632 for a rewritten form. One half of this o.g.f. for x -> sqrt(x) produces the g.f. (2-3x)/(1-3x+x^2) given below. (End)
Solutions (x, y) = (a(n), a(n+1)) satisfying x^2 + y^2 = 3xy - 5. - Michel Lagneau, Feb 01 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 7xy + y^2 + 45 = 0. - Colin Barker, Feb 16 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 18xy + y^2 + 320 = 0. - Colin Barker, Feb 16 2014
a(n) are the numbers such that a(n)^2-2 are Lucas numbers. - Michel Lagneau, Jul 22 2014
All sequences of this form, b(n+1) = 3*b(n) - b(n-1), regardless of initial values, which includes this sequence, yield this sequence as follows: a(n) = (b(j+n) + b(j-n))/b(j), for any j, except where b(j) = 0. Also note formula below relating this a(n) to all sequences of the form G(n+1) = G(n) + G(n-1). - Richard R. Forberg, Nov 18 2014
A non-simple continued fraction expansion for F(2n*(k+1))/F(2nk) k>=1 is a(n) + (-1)/(a(n) + (-1)/(a(n) + ... + (-1)/a(n))) where a(n) appears exactly k times (F(n) denotes the n-th Fibonacci number). E.g., F(16)/F(12) equals 7 + (-1)/(7 + (-1)/7). Furthermore, these a(n) are exactly the positive integers k such that the non-simple infinite continued fraction k + (-1)/(k + (-1)/(k + (-1)/(k + ...))) belongs to Q(sqrt(5)). Compare to Benoit Cloitre and Thomas Baruchel's comments at A002878. - Greg Dresden, Aug 13 2019
For n >= 1, a(n) is the number of cyclic up-down words of length 2*n over an alphabet of size 3. - Sela Fried, Apr 08 2025

Examples

			G.f. = 2 + 3*x + 7*x^2 + 18*x^3 + 47*x^4 + 123*x^5 + 322*x^6 + 843*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032, A002878 (odd-indexed Lucas numbers), A001906 (Chebyshev S(n-1, 3)), a(n) = sqrt(4+5*A001906(n)^2), A228842.
a(n) = A005592(n)+1 = A004146(n)+2 = A065034(n)-1.
First differences of A002878. Pairwise sums of A001519. First row of array A103997.
Cf. A153415, A201157. Also Lucas(k*n): A000032 (k = 1), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Haskell
    a005248 n = a005248_list !! n
    a005248_list = zipWith (+) (tail a001519_list) a001519_list
    -- Reinhard Zumkeller, Jan 11 2012
  • Magma
    [Lucas(2*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Maple
    a:= n-> (<<2|3>>. <<3|1>, <-1|0>>^n)[1$2]: seq(a(n), n=0..30); # Alois P. Heinz, Jul 31 2008
    with(combinat): seq(5*fibonacci(n)^2+2*(-1)^n, n= 0..26);
  • Mathematica
    a[0] = 2; a[1] = 3; a[n_] := 3a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Jan 30 2004 *)
    Fibonacci[1 + 2n] + 1/2 (-Fibonacci[2n] + LucasL[2n]) (* Tesler. Sarah-Marie Belcastro, Jul 04 2009 *)
    LinearRecurrence[{3, -1}, {2, 3}, 50] (* Sture Sjöstedt, Nov 27 2011 *)
    LucasL[Range[0,60,2]] (* Harvey P. Dale, Sep 30 2014 *)
  • PARI
    {a(n) = fibonacci(2*n + 1) + fibonacci(2*n - 1)}; /* Michael Somos, Jun 23 2002 */
    
  • PARI
    {a(n) = 2 * subst( poltchebi(n), x, 3/2)}; /* Michael Somos, Jun 28 2003 */
    
  • Sage
    [lucas_number2(n,3,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = Fibonacci(2*n-1) + Fibonacci(2*n+1).
G.f.: (2-3*x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = S(n, 3) - S(n-2, 3) = 2*T(n, 3/2) with S(n-1, 3) = A001906(n) and S(-2, x) = -1. U(n, x)=S(n, 2*x) and T(n, x) are Chebyshev's U- and T-polynomials.
a(n) = a(k)*a(n - k) - a(n - 2k) for all k, i.e., a(n) = 2*a(n) - a(n) = 3*a(n - 1) - a(n - 2) = 7*a(n - 2) - a(n - 4) = 18*a(n - 3) - a(n - 6) = 47*a(n - 4) - a(n - 8) etc., a(2n) = a(n)^2 - 2. - Henry Bottomley, May 08 2001
a(n) = A060924(n-1, 0) = 3*A001906(n) - 2*A001906(n-1), n >= 1. - Wolfdieter Lang, Apr 26 2001
a(n) ~ phi^(2*n) where phi=(1+sqrt(5))/2. - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(0)=2, a(1)=3, a(n) = 3*a(n-1) - a(n-2) = a(-n). - Michael Somos, Jun 28 2003
a(n) = phi^(2*n) + phi^(-2*n) where phi=(sqrt(5)+1)/2, the golden ratio. E.g., a(4)=47 because phi^(8) + phi^(-8) = 47. - Dennis P. Walsh, Jul 24 2003
With interpolated zeros, trace(A^n)/4, where A is the adjacency matrix of path graph P_4. Binomial transform is then A049680. - Paul Barry, Apr 24 2004
a(n) = (floor((3+sqrt(5))^n) + 1)/2^n. - Lekraj Beedassy, Oct 22 2004
a(n) = ((3-sqrt(5))^n + (3+sqrt(5))^n)/2^n (Note: substituting the number 1 for 3 in the last equation gives A000204, substituting 5 for 3 gives A020876). - Creighton Dement, Apr 19 2005
a(n) = (1/(n+1/2))*Sum_{k=0..n} B(2k)*L(2n+1-2k)*binomial(2n+1, 2k) where B(2k) is the (2k)-th Bernoulli number. - Benoit Cloitre, Nov 02 2005
a(n) = term (1,1) in the 1 X 2 matrix [2,3] . [3,1; -1,0]^n. - Alois P. Heinz, Jul 31 2008
a(n) = 2*cosh(2*n*psi), where psi=log((1+sqrt(5))/2). - Al Hakanson, Mar 21 2009
From Sarah-Marie Belcastro, Jul 04 2009: (Start)
a(n) - (a(n) - F(2n))/2 - F(2n+1) = 0. (Tesler)
Product_{r=1..n} (1 + 4*(sin((4r-1)*Pi/(4n)))^2). (Lu/Wu) (End)
a(n) = Fibonacci(2n+6) mod Fibonacci(2n+2), n > 1. - Gary Detlefs, Nov 22 2010
a(n) = 5*Fibonacci(n)^2 + 2*(-1)^n. - Gary Detlefs, Nov 22 2010
a(n) = A033888(n)/A001906(n), n > 0. - Gary Detlefs, Dec 26 2010
a(n) = 2^(2*n) * Sum_{k=1..2} (cos(k*Pi/5))^(2*n). - L. Edson Jeffery, Jan 21 2012
From Peter Bala, Jan 04 2013: (Start)
Let F(x) = Product_{n>=0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(3 - sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.31829 56058 81914 31334 ... = 2 + 1/(3 + 1/(7 + 1/(18 + ...))).
Also F(-alpha) = 0.64985 97768 07374 32950 has the continued fraction representation 1 - 1/(3 - 1/(7 - 1/(18 - ...))) and the simple continued fraction expansion 1/(1 + 1/((3-2) + 1/(1 + 1/((7-2) + 1/(1 + 1/((18-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((3^2-4) + 1/(1 + 1/((7^2-4) + 1/(1 + 1/((18^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + 1/2*F(alpha)/F(-alpha) = 1.5142923542... has the simple continued fraction expansion 1 + 1/((3 - 2) + 1/(1 + 1/((18 - 2) + 1/(1 + 1/(123 - 2) + 1/(1 + ...))))). (End)
G.f.: (W(0)+6)/(5*x), where W(k) = 5*x*k + x - 6 + 6*x*(5*k-9)/W(k+1) (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
Sum_{n >= 1} 1/( a(n) - 5/a(n) ) = 1. Compare with A001906, A002878 and A023039. - Peter Bala, Nov 29 2013
0 = a(n) * a(n+2) - a(n+1)^2 - 5 for all n in Z. - Michael Somos, Aug 24 2014
a(n) = (G(j+2n) + G(j-2n))/G(j), for n >= 0 and any j, positive or negative, except where G(j) = 0, and for any sequence of the form G(n+1) = G(n) + G(n-1) with any initial values for G(0), G(1), including non-integer values. G(n) includes Lucas, Fibonacci. Compare with A081067 for odd number offsets from j. - Richard R. Forberg, Nov 16 2014
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 5*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
From J. M. Bergot, Oct 28 2015: (Start)
For n>0, a(n) = F(n-1) * L(n) + F(2*n+1) - (-1)^n with F(k) = A000045(k).
For n>1, a(n) = F(n+1) * L(n) + F(2*n-1) - (-1)^n.
For n>2, a(n) = 5*F(2*n-3) + 2*L(n-3) * L(n) + 8*(-1)^n. (End)
For n>1, a(n) = L(n-2)*L(n+2) -7*(-1)^n. - J. M. Bergot, Feb 10 2016
a(n) = 6*F(n-1)*L(n-1) - F(2*n-6) with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Apr 21 2017
a(n) = F(2*n) + 2*F(n-1)*L(n) with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, May 01 2017
E.g.f.: exp(4*x/(1+sqrt(5))^2) + exp((1/4)*(1+sqrt(5))^2*x). - Stefano Spezia, Aug 13 2019
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(2*n+2) - F(2*n-2) = A001906(n+1) - A001906(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^2 = [1, 1; 1, 2].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 1/a(n) ) = 1/5.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 3/(a(n) + 2/(a(n))) ) = 1/6.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 9/(a(n) + 4/(a(n) + 1/(a(n)))) ) = 1/9.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. for A001906. (End)
a(n) = n + 2 + Sum_{k=1..n-1} k*a(n-k). - Yu Xiao, May 30 2020
Sum_{n>=1} 1/a(n) = A153415. - Amiram Eldar, Nov 11 2020
Sum_{n>=0} 1/(a(n) + 3) = (2*sqrt(5) + 1)/10 (André-Jeannin, 1991). - Amiram Eldar, Jan 23 2022
a(n) = 2*cosh(2*n*arccsch(2)) = 2*cosh(2*n*asinh(1/2)). - Peter Luschny, May 25 2022
a(n) = (5/2)*(Sum_{k=-n..n} binomial(2*n, n+5*k)) - (1/2)*4^n. - Greg Dresden, Jan 05 2023
a(n) = Sum_{k>=0} Lucas(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025

Extensions

Additional comments from Michael Somos, Jun 23 2001

A049685 a(n) = L(4*n+2)/3, where L=A000032 (the Lucas sequence).

Original entry on oeis.org

1, 6, 41, 281, 1926, 13201, 90481, 620166, 4250681, 29134601, 199691526, 1368706081, 9381251041, 64300051206, 440719107401, 3020733700601, 20704416796806, 141910183877041, 972666870342481, 6666757908520326, 45694638489299801, 313195711516578281
Offset: 0

Views

Author

Keywords

Comments

In general, Sum_{k=0..n} binomial(2*n-k,k)j^(n-k) = (-1)^n*U(2n, I*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,7), where L is defined as in A108299; see also A033890 for L(n,-7). - Reinhard Zumkeller, Jun 01 2005
Take 7 numbers consisting of 5 ones together with any two successive terms from this sequence. This set has the property that the sum of their squares is 7 times their product. (R. K. Guy, Oct 12 2005.) See also A111216.
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6} which do not end in 0. - Tanya Khovanova, Jan 10 2007
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(5)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
From Wolfdieter Lang, Feb 09 2021: (Start)
All positive solutions of the Diophantine equation x^2 + y^2 - 7*x*y = -5 are given by [x(n) = S(n, 7) - S(n-1, 7), y(n) = x(n-1)], for all integer numbers n, with the Chebyshev S-polynomials (A049310), with S(-1, 0) = 0, and S(-n, x) = -S(n-2, x), for n >= 2. x(n) = a(n), for n >= 0.
This indefinite binary quadratic form has discriminant D = +45. There is only this family representing -5 properly with x and y positive, and there are no improper solutions.
All proper and improper solutions of the generalized Pell equation X^2 - 45*Y^2 = +4 are given, up to a combined sign change in X and Y, in terms of x(n) = a(n) from the preceding comment, by X(n) = x(n) + x(n-1) = S(n-1, 7) - S(n-2, 7) and Y(n) = (x(n) - x(n-1))/3 = S(n-1, 7), for all integer numbers n. For positive integers X(n) = A056854(n) and Y(n) = A004187(n). X(-n) = X(n) and Y(-n) = - Y(n), for n >= 1.
The two conjugated proper family of solutions are given by [X(3*n+1), Y(3*n+1)] and [X(3*n+2), Y(3*n+2)], and the one improper family by [X(3*n), Y(3*n)], for all integer numbers n.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Examples

			a(3) = L(4*3 + 2)/3 = 843/3 = 281. - _Indranil Ghosh_, Feb 06 2017
		

Crossrefs

Row 7 of array A094954. First differences of A004187.
Cf. similar sequences listed in A238379.

Programs

  • Magma
    [Lucas(4*n+2)/3: n in [0..30]]; // G. C. Greubel, Dec 17 2017
  • Mathematica
    Table[LucasL[4*n+2]/3, {n,0,50}] (* or *) LinearRecurrence[{7,-1}, {1,6}, 50] (* G. C. Greubel, Dec 17 2017 *)
  • PARI
    a(n)=(fibonacci(4*n+1)+fibonacci(4*n+3))/3 \\ Charles R Greathouse IV, Jun 16 2014
    
  • Sage
    [lucas_number1(n,7,1)-lucas_number1(n-1,7,1) for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i); then q(n, 5)=a(n); a(n) = 7a(n-1) - a(n-2). - Benoit Cloitre, Nov 10 2002
From Ralf Stephan, May 29 2004: (Start)
a(n+2) = 7a(n+1) - a(n).
G.f.: (1-x)/(1-7x+x^2).
a(n)*a(n+3) = 35 + a(n+1)*a(n+2). (End)
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*5^k. - Paul Barry, Aug 30 2004
If another "1" is inserted at the beginning of the sequence, then A002310, A002320 and A049685 begin with 1, 2; 1, 3; and 1, 1; respectively and satisfy a(n+1) = (a(n)^2+5)/a(n-1). - Graeme McRae, Jan 30 2005
a(n) = (-1)^n*U(2n, i*sqrt(5)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005
[a(n), A004187(n+1)] = [1,5; 1,6]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = S(n, 7) - S(n-1, 7) with Chebyshev S polynomials S(n-1, 7) = A004187(n), for n >= 0. - Wolfdieter Lang, Feb 09 2021
E.g.f.: exp(7*x/2)*(3*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2))/3. - Stefano Spezia, Apr 14 2025
From Peter Bala, May 04 2025: (Start)
a(n) = sqrt(2/9) * sqrt(1 - T(2*n+1, -7/2)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind.
a(n) divides a(3*n+1); a(n) divides a(5*n+2); in general, for k >= 0, a(n) divides a((2*k+1)*n + k).
The aerated sequence [b(n)]n>=1 = [1, 0, 6, 0, 41, 0, 281, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -9, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy.
Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1/5 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A290903(n-1) - 1/A290903(n).) (End)

A067595 Number of partitions of n into distinct Lucas parts (A000032).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 5, 4, 4, 4, 5, 3, 3, 4, 4, 4, 4, 6, 5, 5, 5, 6, 4, 4, 6, 5, 5, 5, 6, 4, 4, 4, 5, 4, 4, 7, 6, 6, 6, 8, 5, 5, 7, 6, 6, 6, 8, 6, 6, 6, 7, 5, 5, 8, 6, 6, 6, 7, 4, 4, 5, 5, 5, 5, 8, 7, 7, 7, 9, 6, 6, 9, 8, 8, 8, 10, 7, 7, 7, 8, 6, 6, 10, 8, 8, 8, 10, 6, 6, 8
Offset: 0

Views

Author

Naohiro Nomoto, Jan 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    n1 = 10; n2 = LucasL[n1]; (1 + x^2)*Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 17 2017, after Joerg Arndt *)
  • PARI
    L(n) = fibonacci(n+1) + fibonacci(n-1);
    N = 66;  x = 'x + O('x^N);
    gf = prod(n=0, 11, 1 + x^L(n) );
    \\gf = prod(n=1, 11, 1 + x^L(n) ) * (1+x^2); \\ same g.f.
    Vec(gf) \\ Joerg Arndt, Jul 14 2013

Formula

G.f.: B(x) * (1 + x^2) where B(x) is the g.f. of A003263. [Joerg Arndt, Jul 14 2013]

Extensions

Corrected a(0), Joerg Arndt, Jul 14 2013

A130241 Maximal index k of a Lucas number such that Lucas(k) <= n (the 'lower' Lucas (A000032) Inverse).

Original entry on oeis.org

1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Hieronymus Fischer, May 19 2007, Jul 02 2007

Keywords

Comments

Inverse of the Lucas sequence (A000032), nearly, since a(Lucas(n))=n for n>=1 (see A130242 and A130247 for other versions). For n>=2, a(n)+1 is equal to the partial sum of the Lucas indicator sequence (see A102460). Identical to A130247 except for n=2.

Examples

			a(10)=4, since Lucas(4)=7<=10 but Lucas(5)=11>10.
		

Crossrefs

For partial sums see A130243. Other related sequences: A000032, A130242, A130245, A130247, A130249, A130255, A130259. Indicator sequence A102460. Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Magma
    [Floor(Log((2*n+1)/2)/Log((1+Sqrt(5))/2)): n in [2..50]]; // G. C. Greubel, Sep 09 2018
    
  • Mathematica
    Join[{1}, Table[Floor[Log[GoldenRatio, n + 1/2]], {n, 2, 50}]] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    for(n=1,50, print1(floor(log((2*n+1)/2)/log((1+sqrt(5))/2)), ", ")) \\ G. C. Greubel, Sep 09 2018
    
  • Python
    from itertools import count, islice
    def A130241_gen(): # generator of terms
        a, b = 1, 3
        for i in count(1):
            yield from (i,)*(b-a)
            a, b = b, a+b
    A130241_list = list(islice(A130241_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = floor(log_phi((n+sqrt(n^2+4))/2)) = floor(arcsinh((n+1)/2)/log(phi)) where phi=(1+sqrt(5))/2.
a(n) = A130242(n+1) - 1 for n>=2.
a(n) = A130247(n) except for n=2.
G.f.: g(x) = 1/(1-x) * Sum{k>=1, x^Lucas(k)}.
a(n) = floor(log_phi(n+1/2)) for n>=2, where phi is the golden ratio.

A016089 Numbers n such that n divides n-th Lucas number A000032(n).

Original entry on oeis.org

1, 6, 18, 54, 162, 486, 1458, 1926, 4374, 5778, 13122, 17334, 39366, 52002, 118098, 156006, 206082, 354294, 468018, 618246, 1062882, 1404054, 1854738, 2471058, 3188646, 4212162, 5564214, 7413174, 9565938, 12636486, 16692642, 22050774
Offset: 1

Views

Author

Keywords

Comments

Note that if n divides A000032(n) and p is an odd prime divisor of A000032(n), then pn divides A000032(pn) and, furthermore, p^k*n divides A000032(p^k*n) for every integer k>=0.
In particular, since 6 divides A000032(6) = 2*3^2, A016089 includes all terms of the geometric progression 2*3^k for k>0 (see A099856); since 18 divides A000032(18) = 2*3^3*107, A016089 includes all terms of the form 2*107^m*3^k for k>1 and m>=0; etc.
Terms of A016089 starting with 18 are multiples of 18. There are no other terms of the form 18p where p is prime, except for p=3 and p=107. - Alexander Adamchuk, May 11 2007

Crossrefs

Cf. A099856, A072378 = numbers n such that 12n divides Fibonacci(12n), A023172 = numbers n such that n divides Fibonacci(n).

Programs

  • Mathematica
    a = 1; b = 3; Do[c = a + b; a = b; b = c; If[Mod[c, n] == 0, Print[n]], {n, 3, 2, 10^6}]
  • PARI
    is(n)=(Mod([0,1;1,1],n)^n*[2;1])[1,1]==0 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

Extended and revised by Max Alekseyev, May 13 2007, May 15 2008, May 16 2008

A005845 Bruckman-Lucas pseudoprimes: k | (L_k - 1), where k is composite and L_k = Lucas numbers A000032.

Original entry on oeis.org

705, 2465, 2737, 3745, 4181, 5777, 6721, 10877, 13201, 15251, 24465, 29281, 34561, 35785, 51841, 54705, 64079, 64681, 67861, 68251, 75077, 80189, 90061, 96049, 97921, 100065, 100127, 105281, 113573, 118441, 146611, 161027
Offset: 1

Views

Author

Keywords

Comments

This uses the definition of "Lucas pseudoprime" by Bruckman, not the one by Baillie and Wagstaff. - R. J. Mathar, Jul 15 2012
Unlike the earlier Baillie-Wagstaff Lucas pseudoprimes A217120, these have significant overlap with the Fermat primality test. For example, the number 82380774001 is both an A005845 Lucas pseudoprime and a Fermat pseudoprime to the first 407 prime bases. - Dana Jacobsen, Jan 10 2015
k in A002808 such that A213060(k) = 1. - Robert Israel, Jul 14 2015

References

  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 104.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 105.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Somer, Lawrence. "Generalization of a Theorem of Bruckman on Dickson Pseudoprimes." Fibonacci Quarterly 60:4 (2022), 357-361.

Crossrefs

Cf. A094394, A094395 (analogous numbers with the Fibonacci sequence). - Robert FERREOL, Jul 14 2015
Cf. A213060 (L(n) mod n).

Programs

  • Haskell
    a005845 n = a005845_list !! (n-1)
    a005845_list = filter (\x -> (a000032 x - 1) `mod` x == 0) a002808_list
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Maple
    with(combinat):lucas:=n->fibonacci(n-1)+fibonacci(n+1):
    test:=n->lucas(n) mod n=1:select(test and not isprime,[seq(n,n=1..10000)]); # Robert FERREOL, Jul 14 2015
  • Mathematica
    Select[Range[2,170000],!PrimeQ[#]&&Divisible[LucasL[#]-1,#]&] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    is(n)=my(M=Mod([1,1;1,0],n)^n);M[1,1]+M[2,2]==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Dec 27 2013
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        L0, L1 = 2, 1
        for k in count(1):
            L0, L1 = L1, L0+L1
            if k > 1 and not isprime(k) and (L0-1)%k == 0:
                yield k
    print(list(islice(agen(), 32))) # Michael S. Branicky, Apr 07 2024

Extensions

More terms from David Broadhurst

A087131 a(n) = 2^n*Lucas(n), where Lucas = A000032.

Original entry on oeis.org

2, 2, 12, 32, 112, 352, 1152, 3712, 12032, 38912, 125952, 407552, 1318912, 4268032, 13811712, 44695552, 144637952, 468058112, 1514668032, 4901568512, 15861809152, 51329892352, 166107021312, 537533612032, 1739495309312
Offset: 0

Views

Author

Paul Barry, Aug 16 2003

Keywords

Comments

Number of ways to tile an n-bracelet with two types of colored squares and four types of colored dominoes.
Inverse binomial transform of even Lucas numbers (A014448).
From L. Edson Jeffery, Apr 25 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=(Trace(A^n)-1)/2. Also a(n)=Trace((2*A_(5,1))^n), where A_(5,1)=[(0,1); (1,1)] is also a unit-primitive matrix. (End)
Also the number of connected dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, May 02 2017
Also the number of total dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, Apr 27 2018

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, identity 237, p. 132.

Crossrefs

First differences of A006483 and A103435.

Programs

  • Magma
    [2] cat [2^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[Tr[MatrixPower[{{2, 2}, {2, 0}}, x]], {x, 1, 20}] (* Artur Jasinski, Jan 09 2007 *)
    Join[{2}, Table[2^n LucasL[n], {n, 20}]] (* Eric W. Weisstein, May 02 2017 *)
    Join[{2}, 2^# LucasL[#] & [Range[20]]] (* Eric W. Weisstein, May 02 2017 *)
    LinearRecurrence[{2, 4}, {2, 12}, {0, 20}] (* Eric W. Weisstein, Apr 27 2018 *)
    CoefficientList[Series[(2 (-1 + x))/(-1 + 2 x + 4 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 27 2018 *)
  • PARI
    for(n=0,30, print1(if(n==0, 2, 2^n*(fibonacci(n+1) + fibonacci(n-1))), ", ")) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    first(n) = Vec(2*(1-x)/(1-2*x-4*x^2) + O(x^n)) \\ Iain Fox, Dec 19 2017
    
  • Sage
    [lucas_number2(n,2,-4) for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = 2*A084057(n).
Recurrence: a(n) = 2a(n-1) + 4a(n-2), a(0)=2, a(1)=2.
G.f.: 2*(1-x)/(1-2*x-4*x^2).
a(n) = (1+sqrt(5))^n + (1-sqrt(5))^n.
For n>=2, a(n) = Trace of matrix [({2,2},{2,0})^n]. - Artur Jasinski, Jan 09 2007
a(n) = 2*[A063727(n)-A063727(n-1)]. - R. J. Mathar, Nov 16 2007
a(n) = (5*A052899(n)-1)/2. - L. Edson Jeffery, Apr 25 2011
a(n) = [x^n] ( 1 + x + sqrt(1 + 2*x + 5*x^2) )^n for n >= 1. - Peter Bala, Jun 23 2015
Sum_{n>=1} 1/a(n) = (1/2) * A269992. - Amiram Eldar, Nov 17 2020
From Amiram Eldar, Jan 15 2022: (Start)
a(n) == 2 (mod 10).
a(n) = 5 * A014334(n) + 2.
a(n) = 10 * A014335(n) + 2. (End)

Extensions

Edited by Ralf Stephan, Feb 08 2005

A106291 Period of the Lucas sequence A000032 mod n.

Original entry on oeis.org

1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, 16, 30, 48, 24, 20, 84, 72, 48, 14, 24, 30, 48, 40, 36, 16, 24, 76, 18, 56, 12, 40, 48, 88, 30, 24, 48, 32, 24, 112, 60, 72, 84, 108, 72, 20, 48, 72, 42, 58, 24, 60, 30, 48, 96, 28, 120, 136, 36, 48, 48
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence differs from the Fibonacci periods (A001175) only when n is a multiple of 5, which can be traced to 5 being the discriminant of the characteristic polynomial x^2-x-1.
This sequence coincides with the Fibonacci periods (A001175) if n is a multiple of 5^j and the following conditions apply: n contains at least one prime factor of the form p = 10*k+1 (A030430) which occurs in Fibonacci(m) or Lucas(m) as prime factor, where m must be the smallest possible index containing p and a factor 5^i and j <= i. If n contains several prime factors from A030430 that satisfy the above conditions, the largest applicable i is decisive. - Klaus Purath, Apr 26 2019

Examples

			From _Klaus Purath_, Jul 10 2019: (Start)
n = 3*5*31 = 465, j = 1; L(15) is the smallest Lucas number with prime factor 31; 15 = 3*5, i = 1 = j. Hence Lucas period (mod 465) = Fibonacci period (mod 465) = 120, but if n = 3*5^2*31 = 2325, j = 2 > i. Hence Lucas period (mod 2325) = 120 < Fibonacci period (mod 2325) = 600.
n = 5*701 = 3505, j = 1; F(175) is the smallest Fibonacci number with prime factor 701; 175 = 7*5^2, i = 2 > j. Therefore Lucas period (mod 3505) = Fibonacci period (mod 3505) = 700, but if n = 5^3*701 = 87625, j = 3 > i. Therefore Lucas period (mod 87625) = 700 < Fibonacci period (mod 87625) = 3500.
n = 5^2*11*101 = 27775, j =2; L(5) is the smallest Lucas number with prime factor 11, i = 1; L(25) = is the smallest Lucas number with prime factor 101; 25 = 5^2, i = 2 ( decisive); j = i. Hence Lucas period (mod 27775) = Fibonacci period (mod 27775) = 100, but if n = 5^3*11*101 = 138875, j = 3 > i. Hence Lucas period (mod 138875) = 100 < Fibonacci period (mod 138875) = 500. (End)
		

References

  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989. See p. 89. - From N. J. A. Sloane, Feb 20 2013

Crossrefs

Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1).

Programs

  • Mathematica
    n=2; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 70}]
  • Python
    from math import lcm
    from functools import lru_cache
    from sympy import factorint
    @lru_cache(maxsize=None)
    def A106291(n):
        if n < 3:
            return (n<<1)-1
        f = factorint(n).items()
        if len(f) > 1:
            return lcm(*(A106291(a**b) for a,b in f))
        else:
            k,x = 1, (1,3)
            while x != (2,1):
                k += 1
                x = (x[1], (x[0]+x[1]) % n)
            return k # Chai Wah Wu, Apr 25 2025
  • Sage
    def a(n): return BinaryRecurrenceSequence(1, 1, 2, 1).period(n)
    [a(n) for n in (1..100)] # G. C. Greubel, Apr 27 2019
    

Formula

Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).

A005013 a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=4. Alternates Fibonacci (A000045) and Lucas (A000032) sequences for even and odd n.

Original entry on oeis.org

0, 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199, 144, 521, 377, 1364, 987, 3571, 2584, 9349, 6765, 24476, 17711, 64079, 46368, 167761, 121393, 439204, 317811, 1149851, 832040, 3010349, 2178309, 7881196, 5702887, 20633239, 14930352, 54018521, 39088169, 141422324
Offset: 0

Views

Author

Keywords

Comments

S(n,sqrt(5)), with the Chebyshev polynomials A049310, is an integer sequence in the real quadratic number field Q(sqrt(5)) with basis numbers <1,phi>, phi:=(1+sqrt(5))/2. S(n,sqrt(5)) = A(n) + 2*B(n)*phi, with A(n)= a(n+1)*(-1)^n and B(n)= A147600(n-1), n>=0, with A147600(-1):=0.
a(n) = p(n+1) where p(x) is the unique degree-(n-1) polynomial such that p(k) = Fibonacci(k) for k = 1, ..., n. - Michael Somos, Jan 08 2012
Row sums of A227431. - Richard R. Forberg, Jul 29 2013
This is the sequence of Lehmer numbers u_n(sqrt(R),Q) with the parameters R = 5 and Q = 1. It is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence satisfies a linear recurrence of order four. - Peter Bala, Apr 18 2014
The sequence of convergents of the 2-periodic continued fraction [0; 1, -5, 1, -5, ...] = 1/(1 - 1/(5 - 1/(1 - 1/(5 - ...)))) = (1/2)*(5 - sqrt(5)) begins [0/1, 1/1, 5/4, 4/3, 15/11, 11/8, 40/29, ...]; the denominators give the present sequence. The sequence of numerators [0, 1, 5, 4, 15, 11, 40, ...] is A203976. Cf. A108412 and A026741. - Peter Bala, May 19 2014
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. We have (1/2)*a(2*n + 1) = 1/2 o 1/2 o ... o 1/2 (2*n + 1 terms) and (1/2)*sqrt(5)* a(2*n) = 1/2 o 1/2 o ... o 1/2 (2*n terms). Cf. A084068 and A049629. - Peter Bala, Mar 23 2018

Examples

			G.f. = x + x^2 + 4*x^3 + 3*x^4 + 11*x^5 + 8*x^6 + 29*x^7 + 21*x^8 + 76*x^9 + ...
a(3) = 4 since p(x) = (x^2 - 3*x + 4) / 2 interpolates p(1) = 1, p(2) = 1, p(3) = 2, and p(4) = 4. - _Michael Somos_, Jan 08 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[0,1,1,4];; for n in [5..40] do a[n]:=3*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Oct 21 2018
  • Haskell
    a005013 n = a005013_list !! n
    a005013_list = alt a000045_list a000032_list where
       alt (f::fs) (:l:ls) = f : l : alt fs ls
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,1,1,4]; [n le 4 select I[n]  else 3*Self(n-2) - Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 09 2016
    
  • Maple
    with(combinat): A005013 := n-> if n mod 2 = 0 then fibonacci(n) else fibonacci(n+1)+fibonacci(n-1); fi;
    A005013:=z*(z**2+z+1)/((z**2+z-1)*(z**2-z-1)); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(x + x^2 + x^3)/(1 - 3x^2 + x^4), {x, 0, 40}], x]
    f[n_] = Product[(1 + 4*Sin[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; a = Table[f[n], {n, 0, 30}]; Round[a]; FullSimplify[ExpandAll[a]] (* Roger L. Bagula and Gary W. Adamson, Nov 26 2008 *)
    LinearRecurrence[{0, 3, 0, -1}, {0, 1, 1, 4}, 100] (* G. C. Greubel, Feb 08 2016 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1) + fibonacci(n-1), fibonacci(n))}; /* Michael Somos, Jan 08 2012 */
    
  • PARI
    {a(n) = if( n<0, -a(-n), subst( polinterpolate( vector( n, k, fibonacci(k))), x, n+1))}; /* Michael Somos, Jan 08 2012 */
    

Formula

a(1) = a(2) = 1, a(3) = 4, a(n) = (a(n-1) * a(n-2) - 1) / a(n-3), unless n=3. a(-n) = -a(n).
a(2n) = A001906(n), a(2n+1) = A002878(n). a(n)=F(n+1)+(-1)^(n+1)F(n-1). - Mario Catalani (mario.catalani(AT)unito.it), Sep 20 2002
G.f.: x*(1+x+x^2)/((1-x-x^2)*(1+x-x^2)).
a(n) = Product_{k=1..floor((n-1)/2)} (1 + 4*sin(k*Pi/n)^2). - Roger L. Bagula and Gary W. Adamson, Nov 26 2008
Binomial transform is A096140. - Michael Somos, Apr 13 2012
From Peter Bala, Apr 18 2014: (Start)
a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, and a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even, where alpha = (1/2)*(sqrt(5) + 1) and beta = (1/2)*(sqrt(5) - 1). Equivalently, a(n) = U(n-1, sqrt(5)/2) for n odd and a(n) = (1/sqrt(5))*U(n-1, sqrt(5)/2) for n even, where U(n,x) is the Chebyshev polynomial of the second kind. (End)
E.g.f.: (Phi/sqrt(5))*exp(-Phi*x)*(exp(x)-1)*(exp(sqrt(5)*x) - 1/(Phi)^2), where Phi = (1+sqrt(5))/2. - G. C. Greubel, Feb 08 2016
a(n) = (5^floor((n-1)/2)/2^(n-1))*Sum_{k=0..n-1} binomial(n-1,k)/5^floor(k/2). - Tony Foster III, Oct 21 2018
a(n) = hypergeom([(1 - n)/2, (n + 1) mod 2 - n/2], [1 - n], -4) for n >= 2. - Peter Luschny, Sep 03 2019

Extensions

Additional comments from Michael Somos, Jun 01 2000

A005479 Prime Lucas numbers (cf. A000032).

Original entry on oeis.org

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149, 412670427844921037470771, 258899611203303418721656157249445530046830073044201152332257717521
Offset: 1

Views

Author

Keywords

Comments

It appears that a(n) is the intersection ( or a subset of the intersection ) of A113192[n], Primes that are the difference of two Lucas numbers and A113188[n], Primes that are the difference of two Fibonacci numbers, excluding A113192[1] = A113188[1] = 2. - Alexander Adamchuk, Aug 06 2006
For n>2 also: Primes which are the sum of four consecutive Fibonacci numbers, a(n) = A153867(n-2), cf. link to SeqFan list (Apr. 2014). - M. F. Hasler, Apr 24 2014
Conjectures: 7, 47 and 2207 are the only a(n) mod 10 = 7. They are also the only a(n) values where the Lucas index is not a prime. See A001606 for the Lucas index values of these primes. See A266587 for the divisibility of Lucas numbers by powers of primes. - Richard R. Forberg, Mar 24 2016

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Select[LucasL[Range[0,250]], PrimeQ] (* Harvey P. Dale, Nov 02 2011 *)

Extensions

One further term (from the Knott web site) from Parthasarathy Nambi, Jun 27 2008
Showing 1-10 of 1495 results. Next