A005248 Bisection of Lucas numbers: a(n) = L(2*n) = A000032(2*n).
2, 3, 7, 18, 47, 123, 322, 843, 2207, 5778, 15127, 39603, 103682, 271443, 710647, 1860498, 4870847, 12752043, 33385282, 87403803, 228826127, 599074578, 1568397607, 4106118243, 10749957122, 28143753123, 73681302247, 192900153618, 505019158607, 1322157322203
Offset: 0
Examples
G.f. = 2 + 3*x + 7*x^2 + 18*x^3 + 47*x^4 + 123*x^5 + 322*x^6 + 843*x^7 + ... - _Michael Somos_, Aug 11 2009
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Richard P. Stanley, Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard André-Jeannin, Summation of Certain Reciprocal Series Related to Fibonacci and Lucas Numbers, The Fibonacci Quarterly, Vol. 29, No. 3 (1991), pp. 200-204.
- Peter Bala, Some simple continued fraction expansions for an infinite product, Part 1.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Pooja Bhadouria, Deepika Jhala and Bijendra Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Vol. 8, No. 1 (2014), pp. 81-92; sequences B_1, T_1 and R_1.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 51, 56.
- Noureddine Chair, Exact two-point resistance, and the simple random walk on the complete graph minus N edges, Ann. Phys., Vol. 327, No. 12 (2012), pp. 3116-3129, Eq. (18).
- Tony Crilly, Double sequences of positive integers, Math. Gaz., Vol. 69 (1985), pp. 263-271.
- Pedro P. B. de Oliveira, Enrico Formenti, Kévin Perrot, Sara Riva and Eurico L. P. Ruivo, Non-maximal sensitivity to synchronism in periodic elementary cellular automata: exact asymptotic measures, arXiv:2004.07128 [cs.FL], 2020.
- Robert G. Donnelly, Molly W. Dunkum, Murray L. Huber and Lee Knupp, Sign-alternating Gibonacci polynomials, arXiv:2012.14993 [math.CO], 2020.
- Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, Vol. 5, No. 15 (2014), pp. 2226-2234.
- Margherita Maria Ferrari and Norma Zagaglia Salvi, Aperiodic Compositions and Classical Integer Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.8.
- Sela Fried, A formula for the number of up-down words, arXiv:2503.02005 [math.CO], 2025.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 8.
- Dale Gerdemann, Collision of Digits "Also interesting are the two bisections of the Lucas numbers A005248 (digit minimizer) and A002878 (digit maximizer). I particularly like the multiples of A005248 because I have this image of the two digits piling up on top of each other and then spreading out like waves".
- André Gougenheim, About the linear sequence of integers such that each term is the sum of the two preceding Part 1 Part 2, Fib. Quart., Vol. 9, No. 3 (1971), pp. 277-295, 298.
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1986.
- Tanya Khovanova, Recursive Sequences.
- Emrah Kılıç, Yücel Türker Ulutaş and Neşe Ömür, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq., Vol. 14 (2011), Article 11.5.6, Table 2.
- Wentao T. Lu and F. Y. Wu, Close-packed dimers on nonorientable surfaces, Physics Letters A, Vol. 293, No. 5-6 (2002), pp. 235-246. [From Sarah-Marie Belcastro, Jul 04 2009]
- Yun-Tak Oh, Hosho Katsura, Hyun-Yong Lee and Jung Hoon Han, Proposal of a spin-one chain model with competing dimer and trimer interactions, arXiv:1709.01344 [cond-mat.str-el], 2017.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Sara Riva, Factorisation of Discrete Dynamical Systems, Ph.D. Thesis, Univ. Côte d'Azur (France 2023).
- Jeffrey Shallit, An interesting continued fraction, Math. Mag., Vol. 48, No. 4 (1975), pp. 207-211.
- Jeffrey Shallit, An interesting continued fraction, Math. Mag., Vol. 48, No. 4 (1975), pp. 207-211. [Annotated scanned copy]
- Jeffrey Shallit, Proving Properties of phi-Representations with the Walnut Theorem-Prover, arXiv:2305.02672 [math.NT], 2023.
- Jeffrey Shallit and N. J. A. Sloane, Correspondence, 1975.
- Paweł J. Szabłowski, On moments of Cantor and related distributions, arXiv preprint arXiv:1403.0386 [math.PR], 2014.
- Glenn Tesler, Matchings in Graphs on Non-Orientable Surfaces, Journal of Combinatorial Theory, Series B, Vol. 78, No. 2 (2000), pp. 198-231.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Eric Weisstein's World of Mathematics, Phi Number System.
- A. V. Zarelua, On Matrix Analogs of Fermat’s Little Theorem, Mathematical Notes, Vol. 79, No. 6 (2006), pp. 783-796. Translated from Matematicheskie Zametki, Vol. 79, No. 6 (2006), pp. 840-855.
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2).
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (3,-1).
Crossrefs
Programs
-
Haskell
a005248 n = a005248_list !! n a005248_list = zipWith (+) (tail a001519_list) a001519_list -- Reinhard Zumkeller, Jan 11 2012
-
Magma
[Lucas(2*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
-
Maple
a:= n-> (<<2|3>>. <<3|1>, <-1|0>>^n)[1$2]: seq(a(n), n=0..30); # Alois P. Heinz, Jul 31 2008 with(combinat): seq(5*fibonacci(n)^2+2*(-1)^n, n= 0..26);
-
Mathematica
a[0] = 2; a[1] = 3; a[n_] := 3a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Jan 30 2004 *) Fibonacci[1 + 2n] + 1/2 (-Fibonacci[2n] + LucasL[2n]) (* Tesler. Sarah-Marie Belcastro, Jul 04 2009 *) LinearRecurrence[{3, -1}, {2, 3}, 50] (* Sture Sjöstedt, Nov 27 2011 *) LucasL[Range[0,60,2]] (* Harvey P. Dale, Sep 30 2014 *)
-
PARI
{a(n) = fibonacci(2*n + 1) + fibonacci(2*n - 1)}; /* Michael Somos, Jun 23 2002 */
-
PARI
{a(n) = 2 * subst( poltchebi(n), x, 3/2)}; /* Michael Somos, Jun 28 2003 */
-
Sage
[lucas_number2(n,3,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = Fibonacci(2*n-1) + Fibonacci(2*n+1).
G.f.: (2-3*x)/(1-3*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) = S(n, 3) - S(n-2, 3) = 2*T(n, 3/2) with S(n-1, 3) = A001906(n) and S(-2, x) = -1. U(n, x)=S(n, 2*x) and T(n, x) are Chebyshev's U- and T-polynomials.
a(n) = a(k)*a(n - k) - a(n - 2k) for all k, i.e., a(n) = 2*a(n) - a(n) = 3*a(n - 1) - a(n - 2) = 7*a(n - 2) - a(n - 4) = 18*a(n - 3) - a(n - 6) = 47*a(n - 4) - a(n - 8) etc., a(2n) = a(n)^2 - 2. - Henry Bottomley, May 08 2001
a(n) ~ phi^(2*n) where phi=(1+sqrt(5))/2. - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(0)=2, a(1)=3, a(n) = 3*a(n-1) - a(n-2) = a(-n). - Michael Somos, Jun 28 2003
a(n) = phi^(2*n) + phi^(-2*n) where phi=(sqrt(5)+1)/2, the golden ratio. E.g., a(4)=47 because phi^(8) + phi^(-8) = 47. - Dennis P. Walsh, Jul 24 2003
With interpolated zeros, trace(A^n)/4, where A is the adjacency matrix of path graph P_4. Binomial transform is then A049680. - Paul Barry, Apr 24 2004
a(n) = (floor((3+sqrt(5))^n) + 1)/2^n. - Lekraj Beedassy, Oct 22 2004
a(n) = ((3-sqrt(5))^n + (3+sqrt(5))^n)/2^n (Note: substituting the number 1 for 3 in the last equation gives A000204, substituting 5 for 3 gives A020876). - Creighton Dement, Apr 19 2005
a(n) = (1/(n+1/2))*Sum_{k=0..n} B(2k)*L(2n+1-2k)*binomial(2n+1, 2k) where B(2k) is the (2k)-th Bernoulli number. - Benoit Cloitre, Nov 02 2005
a(n) = term (1,1) in the 1 X 2 matrix [2,3] . [3,1; -1,0]^n. - Alois P. Heinz, Jul 31 2008
a(n) = 2*cosh(2*n*psi), where psi=log((1+sqrt(5))/2). - Al Hakanson, Mar 21 2009
From Sarah-Marie Belcastro, Jul 04 2009: (Start)
a(n) - (a(n) - F(2n))/2 - F(2n+1) = 0. (Tesler)
Product_{r=1..n} (1 + 4*(sin((4r-1)*Pi/(4n)))^2). (Lu/Wu) (End)
a(n) = Fibonacci(2n+6) mod Fibonacci(2n+2), n > 1. - Gary Detlefs, Nov 22 2010
a(n) = 5*Fibonacci(n)^2 + 2*(-1)^n. - Gary Detlefs, Nov 22 2010
a(n) = 2^(2*n) * Sum_{k=1..2} (cos(k*Pi/5))^(2*n). - L. Edson Jeffery, Jan 21 2012
From Peter Bala, Jan 04 2013: (Start)
Let F(x) = Product_{n>=0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(3 - sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.31829 56058 81914 31334 ... = 2 + 1/(3 + 1/(7 + 1/(18 + ...))).
Also F(-alpha) = 0.64985 97768 07374 32950 has the continued fraction representation 1 - 1/(3 - 1/(7 - 1/(18 - ...))) and the simple continued fraction expansion 1/(1 + 1/((3-2) + 1/(1 + 1/((7-2) + 1/(1 + 1/((18-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((3^2-4) + 1/(1 + 1/((7^2-4) + 1/(1 + 1/((18^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + 1/2*F(alpha)/F(-alpha) = 1.5142923542... has the simple continued fraction expansion 1 + 1/((3 - 2) + 1/(1 + 1/((18 - 2) + 1/(1 + 1/(123 - 2) + 1/(1 + ...))))). (End)
G.f.: (W(0)+6)/(5*x), where W(k) = 5*x*k + x - 6 + 6*x*(5*k-9)/W(k+1) (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
Sum_{n >= 1} 1/( a(n) - 5/a(n) ) = 1. Compare with A001906, A002878 and A023039. - Peter Bala, Nov 29 2013
0 = a(n) * a(n+2) - a(n+1)^2 - 5 for all n in Z. - Michael Somos, Aug 24 2014
a(n) = (G(j+2n) + G(j-2n))/G(j), for n >= 0 and any j, positive or negative, except where G(j) = 0, and for any sequence of the form G(n+1) = G(n) + G(n-1) with any initial values for G(0), G(1), including non-integer values. G(n) includes Lucas, Fibonacci. Compare with A081067 for odd number offsets from j. - Richard R. Forberg, Nov 16 2014
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 5*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
From J. M. Bergot, Oct 28 2015: (Start)
For n>0, a(n) = F(n-1) * L(n) + F(2*n+1) - (-1)^n with F(k) = A000045(k).
For n>1, a(n) = F(n+1) * L(n) + F(2*n-1) - (-1)^n.
For n>2, a(n) = 5*F(2*n-3) + 2*L(n-3) * L(n) + 8*(-1)^n. (End)
For n>1, a(n) = L(n-2)*L(n+2) -7*(-1)^n. - J. M. Bergot, Feb 10 2016
a(n) = 6*F(n-1)*L(n-1) - F(2*n-6) with F(n)=A000045(n) and L(n)=A000032(n). - J. M. Bergot, Apr 21 2017
E.g.f.: exp(4*x/(1+sqrt(5))^2) + exp((1/4)*(1+sqrt(5))^2*x). - Stefano Spezia, Aug 13 2019
From Peter Bala, Oct 14 2019: (Start)
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^2 = [1, 1; 1, 2].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 1/a(n) ) = 1/5.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 3/(a(n) + 2/(a(n))) ) = 1/6.
Sum_{n >= 1} (-1)^(n+1)/( a(n) + 9/(a(n) + 4/(a(n) + 1/(a(n)))) ) = 1/9.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 3*x^2 + 8*x^3 + 21*x^4 + ... is the o.g.f. for A001906. (End)
a(n) = n + 2 + Sum_{k=1..n-1} k*a(n-k). - Yu Xiao, May 30 2020
Sum_{n>=1} 1/a(n) = A153415. - Amiram Eldar, Nov 11 2020
Sum_{n>=0} 1/(a(n) + 3) = (2*sqrt(5) + 1)/10 (André-Jeannin, 1991). - Amiram Eldar, Jan 23 2022
a(n) = 2*cosh(2*n*arccsch(2)) = 2*cosh(2*n*asinh(1/2)). - Peter Luschny, May 25 2022
a(n) = (5/2)*(Sum_{k=-n..n} binomial(2*n, n+5*k)) - (1/2)*4^n. - Greg Dresden, Jan 05 2023
a(n) = Sum_{k>=0} Lucas(2*n*k)/(Lucas(2*n)^(k+1)). - Diego Rattaggi, Jan 12 2025
Extensions
Additional comments from Michael Somos, Jun 23 2001
Comments