cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A061119 Primes in the sequence n^2 + 2^n (A001580).

Original entry on oeis.org

3, 17, 593, 32993, 2097593, 8589935681
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Comments

p and p^2 + 2^p are both prime only for p=3. All positive n satisfy the congruence n=3 (mod 6). - Lekraj Beedassy, Sep 07 2004
For values of n, see A064539. - Lekraj Beedassy, Jan 01 2007
The next term has 605 digits. - Harvey P. Dale, Jul 19 2017

Examples

			a(3) = 593 = 2^9 + 9^2.
a(4) = 32993 = 2^15 + 15^2.
		

References

  • J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 165 pp. 30; 160, Ellipses Paris 2004.

Crossrefs

Subsequence of A094133.

Programs

  • Mathematica
    Select[Table[n^2+2^n,{n,1000}],PrimeQ] (* Harvey P. Dale, Jul 19 2017 *)
  • PARI
    for(n=1,10^7, if(isprime(n^2+2^n),print(n^2+2^n)))

Formula

a(n) = A001580(A064539(n)). - Elmo R. Oliveira, Feb 18 2025

Extensions

More terms from Jason Earls, Aug 09 2001. Next term too large to include.

A174121 Partial sums of A001580.

Original entry on oeis.org

1, 4, 12, 29, 61, 118, 218, 395, 715, 1308, 2432, 4601, 8841, 17202, 33782, 66775, 132567, 263928, 526396, 1051045, 2100021, 4197614, 8392402, 16781539, 33559331, 67114388, 134223928, 268442385, 536878625, 1073750378, 2147493102, 4294977711, 8589946031
Offset: 1

Views

Author

Keywords

Comments

A001580 2^n+n^2 -> 1,3,8,17,32,57,100,177,320,593,1124,..

Crossrefs

Cf. A174120.

Programs

  • Mathematica
    f[n_]:=Sum[2^i+i^2,{i,0,n}];Table[f[n],{n,0,5!}]
    Accumulate[Table[2^n+n^2,{n,0,50}]] (* or *) LinearRecurrence[{6,-14,16,-9,2},{1,4,12,29,61},50] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    Vec(x*(1-2*x+2*x^2-3*x^3)/((1-x)^4*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 26 2016

Formula

From Colin Barker, Feb 26 2016: (Start)
a(n) = (n-2)*(2*n^2+n+3)/6+2^n.
a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-9*a(n-4)+2*a(n-5) for n>5.
G.f.: x*(1-2*x+2*x^2-3*x^3) / ((1-x)^4*(1-2*x)).
(End)

A007310 Numbers congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175
Offset: 1

Views

Author

C. Christofferson (Magpie56(AT)aol.com)

Keywords

Comments

Numbers n such that phi(4n) = phi(3n). - Benoit Cloitre, Aug 06 2003
Or, numbers relatively prime to 2 and 3, or coprime to 6, or having only prime factors >= 5; also known as 5-rough numbers. (Edited by M. F. Hasler, Nov 01 2014: merged with comments from Zak Seidov, Apr 26 2007 and Michael B. Porter, Oct 09 2009)
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 38 ).
Numbers k such that k mod 2 = 1 and (k+1) mod 3 <> 1. - Klaus Brockhaus, Jun 15 2004
Also numbers n such that the sum of the squares of the first n integers is divisible by n, or A000330(n) = n*(n+1)*(2*n+1)/6 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Numbers n such that the sum of squares of n consecutive integers is divisible by n, because A000330(m+n) - A000330(m) = n*(n+1)*(2*n+1)/6 + n*(m^2+n*m+m) is divisible by n independent of m. - Kaupo Palo, Dec 10 2016
A126759(a(n)) = n + 1. - Reinhard Zumkeller, Jun 16 2008
Terms of this sequence (starting from the second term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For n > 1: a(n) is prime if and only if A075743(n-2) = 1; a(2*n-1) = A016969(n-1), a(2*n) = A016921(n-1). - Reinhard Zumkeller, Oct 02 2008
A156543 is a subsequence. - Reinhard Zumkeller, Feb 10 2009
Numbers n such that ChebyshevT(x, x/2) is not an integer (is integer/2). - Artur Jasinski, Feb 13 2010
If 12*k + 1 is a perfect square (k = 0, 2, 4, 10, 14, 24, 30, 44, ... = A152749) then the square root of 12*k + 1 = a(n). - Gary Detlefs, Feb 22 2010
A089128(a(n)) = 1. Complement of A047229(n+1) for n >= 1. See A164576 for corresponding values A175485(a(n)). - Jaroslav Krizek, May 28 2010
Cf. property described by Gary Detlefs in A113801 and in Comment: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (with h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 6). Also a(n)^2 - 1 == 0 (mod 12). - Bruno Berselli, Nov 05 2010 - Nov 17 2010
Numbers n such that ( Sum_{k = 1..n} k^14 ) mod n = 0. (Conjectured) - Gary Detlefs, Dec 27 2011
From Peter Bala, May 02 2018: (Start)
The above conjecture is true. Apply Ireland and Rosen, Proposition 15.2.2. with m = 14 to obtain the congruence 6*( Sum_{k = 1..n} k^14 )/n = 7 (mod n), true for all n >= 1. Suppose n is coprime to 6, then 6 is a unit in Z/nZ, and it follows from the congruence that ( Sum_{k = 1..n} k^14 )/n is an integer. On the other hand, if either 2 divides n or 3 divides n then the congruence shows that ( Sum_{k = 1..n} k^14 )/n cannot be integral. (End)
A126759(a(n)) = n and A126759(m) < n for m < a(n). - Reinhard Zumkeller, May 23 2013
(a(n-1)^2 - 1)/24 = A001318(n), the generalized pentagonal numbers. - Richard R. Forberg, May 30 2013
Numbers k for which A001580(k) is divisible by 3. - Bruno Berselli, Jun 18 2014
Numbers n such that sigma(n) + sigma(2n) = sigma(3n). - Jahangeer Kholdi and Farideh Firoozbakht, Aug 15 2014
a(n) are values of k such that Sum_{m = 1..k-1} m*(k-m)/k is an integer. Sums for those k are given by A062717. Also see Detlefs formula below based on A062717. - Richard R. Forberg, Feb 16 2015
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)/6 is integral, and also such that the sequence c(n) = n*(n + m)*(n + 2*m)*(n + 3*m)/24 is integral. Cf. A007775. - Peter Bala, Nov 13 2015
Along with 2, these are the numbers k such that the k-th Fibonacci number is coprime to every Lucas number. - Clark Kimberling, Jun 21 2016
This sequence is the Engel expansion of 1F2(1; 5/6, 7/6; 1/36) + 1F2(1; 7/6, 11/6; 1/36)/5. - Benedict W. J. Irwin, Dec 16 2016
The sequence a(n), n >= 4 is generated by the successor of the pair of polygonal numbers {P_s(4) + 1, P_(2*s - 1)(3) + 1}, s >= 3. - Ralf Steiner, May 25 2018
The asymptotic density of this sequence is 1/3. - Amiram Eldar, Oct 18 2020
Also, the only vertices in the odd Collatz tree A088975 that are branch values to other odd nodes t == 1 (mod 2) of A005408. - Heinz Ebert, Apr 14 2021
From Flávio V. Fernandes, Aug 01 2021: (Start)
For any two terms j and k, the product j*k is also a term (the same property as p^n and smooth numbers).
From a(2) to a(phi(A033845(n))), or a((A033845(n))/3), the terms are the totatives of the A033845(n) itself. (End)
Also orders n for which cyclic and semicyclic diagonal Latin squares exist (see A123565 and A342990). - Eduard I. Vatutin, Jul 11 2023
If k is in the sequence, then k*2^m + 3 is also in the sequence, for all m > 0. - Jules Beauchamp, Aug 29 2024

Examples

			G.f. = x + 5*x^2 + 7*x^3 + 11*x^4 + 13*x^5 + 17*x^6 + 19*x^7 + 23*x^8 + ...
		

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.

Crossrefs

A005408 \ A016945. Union of A016921 and A016969; union of A038509 and A140475. Essentially the same as A038179. Complement of A047229. Subsequence of A186422.
Cf. A000330, A001580, A002194, A019670, A032528 (partial sums), A038509 (subsequence of composites), A047209, A047336, A047522, A056020, A084967, A090771, A091998, A144065, A175885-A175887.
For k-rough numbers with other values of k, see A000027, A005408, A007775, A008364-A008366, A166061, A166063.
Cf. A126760 (a left inverse).
Row 3 of A260717 (without the initial 1).
Cf. A105397 (first differences).

Programs

Formula

a(n) = (6*n + (-1)^n - 3)/2. - Antonio Esposito, Jan 18 2002
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4. - Roger L. Bagula
a(n) = 3*n - 1 - (n mod 2). - Zak Seidov, Jan 18 2006
a(1) = 1 then alternatively add 4 and 2. a(1) = 1, a(n) = a(n-1) + 3 + (-1)^n. - Zak Seidov, Mar 25 2006
1 + 1/5^2 + 1/7^2 + 1/11^2 + ... = Pi^2/9 [Jolley]. - Gary W. Adamson, Dec 20 2006
For n >= 3 a(n) = a(n-2) + 6. - Zak Seidov, Apr 18 2007
From R. J. Mathar, May 23 2008: (Start)
Expand (x+x^5)/(1-x^6) = x + x^5 + x^7 + x^11 + x^13 + ...
O.g.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^2). (End)
a(n) = 6*floor(n/2) - 1 + 2*(n mod 2). - Reinhard Zumkeller, Oct 02 2008
1 + 1/5 - 1/7 - 1/11 + + - - ... = Pi/3 = A019670 [Jolley eq (315)]. - Jaume Oliver Lafont, Oct 23 2009
a(n) = ( 6*A062717(n)+1 )^(1/2). - Gary Detlefs, Feb 22 2010
a(n) = 6*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), with n > 1. - Bruno Berselli, Nov 05 2010
a(n) = 6*n - a(n-1) - 6 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 18 2010
Sum_{n >= 1} (-1)^(n+1)/a(n) = A093766 [Jolley eq (84)]. - R. J. Mathar, Mar 24 2011
a(n) = 6*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
a(n) = 3*n + ((n+1) mod 2) - 2. - Gary Detlefs, Jan 08 2012
a(n) = 2*n + 1 + 2*floor((n-2)/2) = 2*n - 1 + 2*floor(n/2), leading to the o.g.f. given by R. J. Mathar above. - Wolfdieter Lang, Jan 20 2012
1 - 1/5 + 1/7 - 1/11 + - ... = Pi*sqrt(3)/6 = A093766 (L. Euler). - Philippe Deléham, Mar 09 2013
1 - 1/5^3 + 1/7^3 - 1/11^3 + - ... = Pi^3*sqrt(3)/54 (L. Euler). - Philippe Deléham, Mar 09 2013
gcd(a(n), 6) = 1. - Reinhard Zumkeller, Nov 14 2013
a(n) = sqrt(6*n*(3*n + (-1)^n - 3)-3*(-1)^n + 5)/sqrt(2). - Alexander R. Povolotsky, May 16 2014
a(n) = 3*n + 6/(9*n mod 6 - 6). - Mikk Heidemaa, Feb 05 2016
From Mikk Heidemaa, Feb 11 2016: (Start)
a(n) = 2*floor(3*n/2) - 1.
a(n) = A047238(n+1) - 1. (suggested by Michel Marcus) (End)
E.g.f.: (2 + (6*x - 3)*exp(x) + exp(-x))/2. - Ilya Gutkovskiy, Jun 18 2016
From Bruno Berselli, Apr 27 2017: (Start)
a(k*n) = k*a(n) + (4*k + (-1)^k - 3)/2 for k>0 and odd n, a(k*n) = k*a(n) + k - 1 for even n. Some special cases:
k=2: a(2*n) = 2*a(n) + 3 for odd n, a(2*n) = 2*a(n) + 1 for even n;
k=3: a(3*n) = 3*a(n) + 4 for odd n, a(3*n) = 3*a(n) + 2 for even n;
k=4: a(4*n) = 4*a(n) + 7 for odd n, a(4*n) = 4*a(n) + 3 for even n;
k=5: a(5*n) = 5*a(n) + 8 for odd n, a(5*n) = 5*a(n) + 4 for even n, etc. (End)
From Antti Karttunen, May 20 2017: (Start)
a(A273669(n)) = 5*a(n) = A084967(n).
a((5*n)-3) = A255413(n).
A126760(a(n)) = n. (End)
a(2*m) = 6*m - 1, m >= 1; a(2*m + 1) = 6*m + 1, m >= 0. - Ralf Steiner, May 17 2018
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(3) (A002194).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi/3 (A019670). (End)

A100357 Numbers k such that 2^k + k^2 + 1 is prime.

Original entry on oeis.org

0, 6, 12, 18, 162, 192, 216, 420, 1524, 5112, 7404, 24216, 25944, 101832, 346854
Offset: 1

Views

Author

Labos Elemer, Nov 19 2004

Keywords

Comments

a(15) > 200000. - Giovanni Resta, Mar 23 2014
All terms are multiples of 6. Corresponding primes of the form 2^n+n^2+1 are in A035325. - Zak Seidov, Apr 05 2014
a(16) > 5*10^5. - Robert Price, Jun 15 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..800] | IsPrime(2^n + n^2 + 1) ]; // Vincenzo Librandi, Sep 03 2012
    
  • Mathematica
    {ta={{0}}, tb={{0}}}; Do[g=n;s=2^n+n^2+1;If[PrimeQ[s], Print[n];ta=Append[ta, n];tb=Append[tb, s]], {n, 0, 10000, 6}];{ta, tb, g}
    Select[Range[0, 10000, 6], PrimeQ[2^# + #^2 + 1] &] (* Vincenzo Librandi, Sep 03 2012 *)
  • PARI
    is(n)=isprime(2^n+n^2+1) \\ Charles R Greathouse IV, Jul 01 2013

Extensions

Added a(1) from Vincenzo Librandi, Sep 03 2012
a(12)-a(14) from Giovanni Resta, Mar 23 2014
Mathematica codes edited by Zak Seidov, Apr 05 2014
a(15) from Robert Price, Jun 15 2014

A001585 a(n) = 3^n + n^3.

Original entry on oeis.org

1, 4, 17, 54, 145, 368, 945, 2530, 7073, 20412, 60049, 178478, 533169, 1596520, 4785713, 14352282, 43050817, 129145076, 387426321, 1162268326, 3486792401, 10460362464, 31381070257, 94143190994, 282429550305, 847288625068
Offset: 0

Views

Author

Keywords

Comments

In this sequence if we do a forward difference, then the 4th forward difference when considered as a sequence will be a geometric progression with common ratio 3. - Gopalakrishnan (gopala498(AT)yahoo.co.in), May 26 2010

Crossrefs

Cf. A001580.

Programs

Formula

G.f.: (-1+2*x^4+15*x^3-7*x^2+3*x)/((3*x-1)*(x-1)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, May 07 2010

A001589 a(n) = 4^n + n^4.

Original entry on oeis.org

1, 5, 32, 145, 512, 1649, 5392, 18785, 69632, 268705, 1058576, 4208945, 16797952, 67137425, 268473872, 1073792449, 4295032832, 17179952705, 68719581712, 274878037265, 1099511787776, 4398046705585, 17592186278672
Offset: 0

Views

Author

Keywords

Comments

a(n) is prime if and only if n = 1. - Reinhard Zumkeller, May 24 2009
The statement above (and the corollary that 5 is the only prime term in this sequence) can be proved using Sophie Germain's identity x^4 + 4y^4 = (x^2 + 2xy + 2y^2)(x^2 - 2xy + 2y^2). - Alonso del Arte, Oct 31 2013 [exponents corrected by Thomas Ordowski, Nov 29 2017]

Crossrefs

Programs

Formula

G.f.: -(5*x^5 + 38*x^4 + 43*x^3 - 17*x^2 + 4*x - 1) / ((x - 1)^5*(4*x - 1)). - Colin Barker, Jan 01 2013

A001593 a(n) = 5^n + n^5.

Original entry on oeis.org

1, 6, 57, 368, 1649, 6250, 23401, 94932, 423393, 2012174, 9865625, 48989176, 244389457, 1221074418, 6104053449, 30518337500, 152588939201, 762940872982, 3814699155193, 19073488804224, 95367434840625, 476837162287226, 2384185796169257, 11920928961514468
Offset: 0

Views

Author

Keywords

Comments

a(24) is prime; a(1036) and a(104824) are probable primes (3-PRP). - David Radcliffe, Dec 23 2016

Crossrefs

Programs

Formula

G.f.: (4*x^6+135*x^5+289*x^4+84*x^3-36*x^2+5*x-1) / ((x-1)^6*(5*x-1)). - Colin Barker, May 07 2013

Extensions

More terms from Colin Barker, May 07 2013

A001594 a(n) = 6^n + n^6.

Original entry on oeis.org

1, 7, 100, 945, 5392, 23401, 93312, 397585, 1941760, 10609137, 61466176, 364568617, 2179768320, 13065520825, 78371693632, 470196375201, 2821126684672, 16926683582305, 101559990680640, 609359787056377
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. sequences of the form k^n+n^k: A001580 (k=2), A001585 (k=3), A001589 (k=4), A001593 (k=5), this sequence (k=6), A001596 (k=7), A198401 (k=8), A185277 (k=9), A177068 (k=10), A177069 (k=11).

Programs

  • Magma
    [6^n+n^6: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
    
  • Maple
    seq(seq(k^n+n^k, k=6..6), n=0..19); # Zerinvary Lajos, Jun 29 2007
  • Mathematica
    Table[6^n + n^6, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 6 x + 72 x^2 - 75 x^3 - 1475 x^4 - 1776 x^5 - 334 x^6 - 7 x^7)/((1-x)^7 (1-6 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 28 2014 *)
    LinearRecurrence[{13,-63,161,-245,231,-133,43,-6},{1,7,100,945,5392,23401,93312,397585},20] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    a(n)=6^n+n^6 \\ Charles R Greathouse IV, Feb 14 2011
    
  • Sage
    [6^n+n^6 for n in (0..30)] # Bruno Berselli, Aug 28 2014

Formula

G.f.: (1 - 6*x + 72*x^2 - 75*x^3 - 1475*x^4 - 1776*x^5 - 334*x^6 - 7*x^7)/((1-x)^7*(1-6*x)). - Vincenzo Librandi, Aug 28 2014

A061421 Primes of the form 2^n+n+1.

Original entry on oeis.org

2, 7, 71, 110427941548649020598956093796432407239217743554726184882600387580788973
Offset: 1

Views

Author

Jason Earls, May 02 2001

Keywords

Comments

Next term is 2^1884+1884+1, with 568 digits and is too large to include. - Emeric Deutsch, May 13 2006
The Wikipedia article "Zeisel number" gives a historical connection to A051015. - Jonathan Sondow, Oct 17 2017

Crossrefs

Programs

  • Maple
    a:=proc(n) if isprime(2^n+n+1)=true then 2^n+n+1 else fi end: seq(a(n),n=0..1000); # Emeric Deutsch, May 13 2006
  • Mathematica
    {ta={{0}}, tb={{0}}};Do[g=n;s=2^n+n+1; If[PrimeQ[s], Print[n];ta=Append[ta, n]; tb=Append[tb, s]], {n, 1, 10000}];{ta, tb, g} (* Labos Elemer, Nov 19 2004 *)

Extensions

Edited by N. J. A. Sloane, May 04 2007

A001596 a(n) = 7^n + n^7.

Original entry on oeis.org

1, 8, 177, 2530, 18785, 94932, 397585, 1647086, 7861953, 45136576, 292475249, 1996813914, 13877119009, 96951758924, 678328486353, 4747732369318, 33233199005057, 232630924325880, 1628414210130481
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [7^n+n^7: n in [0..30]]; // Vincenzo Librandi, Oct 27 2011
  • Maple
    seq(seq(k^n+n^k, k=7..7), n=0..18); # Zerinvary Lajos, Jun 29 2007
  • Mathematica
    f[n_]:=7^n+n^7;f[Range[0,40]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)
    LinearRecurrence[{15,-84,252,-462,546,-420,204,-57,7},{1,8,177,2530,18785,94932,397585,1647086,7861953},20] (* Harvey P. Dale, Sep 16 2018 *)
  • PARI
    a(n)=7^n+n^7
    
Showing 1-10 of 27 results. Next