A005408 The odd numbers: a(n) = 2*n + 1.
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 0
Examples
G.f. = q + 3*q^3 + 5*q^5 + 7*q^7 + 9*q^9 + 11*q^11 + 13*q^13 + 15*q^15 + ...
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 28.
- T. Dantzig, The Language of Science, 4th Edition (1954) page 276.
- H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
- D. Hök, Parvisa mönster i permutationer [Swedish], (2007).
- E. Maor, Trigonometric Delights, Princeton University Press, NJ, 1998, pp. 203-205.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- D. Applegate and J. C. Lagarias, The 3x+1 semigroup, Journal of Number Theory, Vol. 177, Issue 1, March 2006, pp. 146-159; see also the arXiv version, arXiv:math/0411140 [math.NT], 2004-2005.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- Hongwei Chen, Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.
- K. Ciesielski and Z. Pogoda, On ordering the natural numbers, or the Sharkovski theorem, Amer. Math. Monthly, 115 (No. 2, 2008), 158-165.
- Mark W. Coffey, Bernoulli identities, zeta relations, determinant expressions, Mellin transforms, and representation of the Hurwitz numbers, arXiv:1601.01673 [math.NT], 2016. See p. 35.
- T.-X. He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41, theorem 2.5, k=4.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 935
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Jay Kappraff and Gary W. Adamson, Polygons and Chaos, Bridges.
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Michael Somos, Rational Function Multiplicative Coefficients
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, The modular forms database
- Leo Tavares, Illustration: Triangular Sides
- Eric Weisstein's World of Mathematics, Centipede Graph
- Eric Weisstein's World of Mathematics, Davenport-Schinzel Sequence
- Eric Weisstein's World of Mathematics, Gnomonic Number
- Eric Weisstein's World of Mathematics, Inverse Cotangent,
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cotangent
- Eric Weisstein's World of Mathematics, Inverse Hyperbolic Tangent
- Eric Weisstein's World of Mathematics, Inverse Tangent
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- Eric Weisstein's World of Mathematics, Nexus Number
- Eric Weisstein's World of Mathematics, Odd Number
- Eric Weisstein's World of Mathematics, Pythagorean Triple
- Chai Wah Wu, Can machine learning identify interesting mathematics? An exploration using empirically observed laws, arXiv:1805.07431 [cs.LG], 2018.
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..100],n->2*n+1); # Muniru A Asiru, Oct 16 2018
-
Haskell
a005408 n = (+ 1) . (* 2) a005408_list = [1, 3 ..] -- Reinhard Zumkeller, Feb 11 2012, Jun 28 2011
-
Magma
[ 2*n+1 : n in [0..100]];
-
Maple
A005408 := n->2*n+1; A005408:=(1+z)/(z-1)^2; # Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[2 n - 1, {n, 1, 50}] (* Stefan Steinerberger, Apr 01 2006 *) Range[1, 131, 2] (* Harvey P. Dale, Apr 26 2011 *) 2 Range[0, 20] + 1 (* Eric W. Weisstein, Dec 01 2017 *) LinearRecurrence[{2, -1}, {1, 3}, 20] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[(1 + x)/(-1 + x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
Maxima
makelist(2*n+1, n, 0, 30); /* Martin Ettl, Dec 11 2012 */
-
PARI
{a(n) = 2*n + 1}
-
PARI
first(n) = Vec((1 + x)/(1 - x)^2 + O(x^n)) \\ Iain Fox, Dec 29 2017
-
Python
a=lambda n: 2*n+1 # Indranil Ghosh, Jan 04 2017
-
Sage
[2*n+1 for n in range(100)] # G. C. Greubel, Nov 28 2018
Formula
a(n) = 2*n + 1. a(-1 - n) = -a(n). a(n+1) = a(n) + 2.
G.f.: (1 + x) / (1 - x)^2.
E.g.f.: (1 + 2*x) * exp(x).
G.f. with interpolated zeros: (x^3+x)/((1-x)^2 * (1+x)^2); e.g.f. with interpolated zeros: x*(exp(x)+exp(-x))/2. - Geoffrey Critzer, Aug 25 2012
a(n) = L(n,-2)*(-1)^n, where L is defined as in A108299. - Reinhard Zumkeller, Jun 01 2005
Euler transform of length 2 sequence [3, -1]. - Michael Somos, Mar 30 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 + 2*u) * (1 - 2*u + 16*v) - (u - 4*v)^2 * (1 + 2*u + 2*u^2). - Michael Somos, Mar 30 2007
a(n) = b(2*n + 1) where b(n) = n if n is odd is multiplicative. [This seems to say that A000027 is multiplicative? - R. J. Mathar, Sep 23 2011]
From Hieronymus Fischer, May 25 2007: (Start)
a(n) = (n+1)^2 - n^2.
G.f. g(x) = Sum_{k>=0} x^floor(sqrt(k)) = Sum_{k>=0} x^A000196(k). (End)
a(0) = 1, a(1) = 3, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
a(n) = A034856(n+1) - A000217(n) = A005843(n) + A000124(n) - A000217(n) = A005843(n) + 1. - Jaroslav Krizek, Sep 05 2009
a(n) = (n - 1) + n (sum of two sequential integers). - Dominick Cancilla, Aug 09 2010
a(n) = 4*A000217(n)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. - Bruno Berselli, Nov 17 2010
n*a(2n+1)^2+1 = (n+1)*a(2n)^2; e.g., 3*15^2+1 = 4*13^2. - Charlie Marion, Dec 31 2010
arctanh(x) = Sum_{n>=0} x^(2n+1)/a(n). - R. J. Mathar, Sep 23 2011
a(n) = det(f(i-j+1))A113311(n);%20for%20n%20%3C%200%20we%20have%20f(n)=0.%20-%20_Mircea%20Merca">{1<=i,j<=n}, where f(n) = A113311(n); for n < 0 we have f(n)=0. - _Mircea Merca, Jun 23 2012
G.f.: Q(0), where Q(k) = 1 + 2*(k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
a(n) = floor(sqrt(2*A000384(n+1))). - Ivan N. Ianakiev, Jun 17 2013
a(n) = Product_{k=1..2*n} 2*sin(Pi*k/(2*n+1)) = Product_{k=1..n} (2*sin(Pi*k/(2*n+1)))^2, n >= 0 (undefined product = 1). See an Oct 09 2013 formula contribution in A000027 with a reference. - Wolfdieter Lang, Oct 10 2013
Noting that as n -> infinity, sqrt(n^2 + n) -> n + 1/2, let f(n) = n + 1/2 - sqrt(n^2 + n). Then for n > 0, a(n) = round(1/f(n))/4. - Richard R. Forberg, Feb 16 2014
a(n) = Sum_{k=0..n+1} binomial(2*n+1,2*k)*4^(k)*bernoulli(2*k). - Vladimir Kruchinin, Feb 24 2015
a(n) = Sum_{k=0..n} binomial(6*n+3, 6*k)*Bernoulli(6*k). - Michel Marcus, Jan 11 2016
O.g.f.: Sum_{n >= 1} phi(2*n-1)*x^(n-1)/(1 - x^(2*n-1)), where phi(n) is the Euler totient function A000010. - Peter Bala, Mar 22 2019
Sum_{n>=0} 1/a(n)^2 = Pi^2/8 = A111003. - Bernard Schott, Dec 10 2020
Sum_{n >= 1} (-1)^n/(a(n)*a(n+1)) = Pi/4 - 1/2 = 1/(3 + (1*3)/(4 + (3*5)/(4 + ... + (4*n^2 - 1)/(4 + ... )))). Cf. A016754. - Peter Bala, Mar 28 2024
a(n) = A055112(n)/oblong(n) = A193218(n+1)/Hex number(n). Compare to the Sep 27 2008 comment by Pierre CAMI. - Klaus Purath, Apr 23 2024
a(k*m) = k*a(m) - (k-1). - Ya-Ping Lu, Jun 25 2024
a(n) = A000217(a(n))/n for n > 0. - Stefano Spezia, Feb 15 2025
Extensions
Incorrect comment and example removed by Joerg Arndt, Mar 11 2010
Peripheral comments deleted by N. J. A. Sloane, May 09 2022
Comments