Original entry on oeis.org
2, 10, 38, 130, 422, 1330, 4118, 12610, 38342, 116050, 350198, 1054690, 3172262, 9533170, 28632278, 85962370, 258018182, 774316690, 2323474358, 6971471650, 20916512102, 62753730610, 188269580438, 564825518530, 1694510110022
Offset: 1
A001047
a(n) = 3^n - 2^n.
Original entry on oeis.org
0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
Offset: 0
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 86-87.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..200
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Nathan Bliss, Ben Fulan, Stephen Lovett and Jeff Sommars, Strong divisibility, cyclotomic polynomials and iterated polynomials, Am. Math. Monthly, Vol. 120, No. 6 (2013), pp. 519-536.
- John Elias, Illustration: Sierpinski half-hexagons, Illustration: Nicomachus triangle 2^n & 3^n correlation, Koch Snowflake Fractal Configuration.
- Joël Gay, Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups, Doctoral Thesis, Discrete Mathematics [cs.DM], Université Paris-Saclay, 2018.
- Samuele Giraudo, Combinatorial operads from monoids, Journal of Algebraic Combinatorics, Vol. 41, No. 2 (2015), pp. 493-538; arXiv preprint, arXiv preprint arXiv:1306.6938 [math.CO], 2013-2015.
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, Advances in Applied Mathematics, Vol. 77 (2016), pp. 1-42; arXiv preprint, arXiv:1603.01040 [math.CO], 2016.
- Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 397.
- B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
- Germain Kreweras, Inversion des polynômes de Bell bidimensionnels et application au dénombrement des relations binaires connexes, C. R. Acad. Sci. Paris Ser. A-B, Vol. 268 (1969), pp. A577-A579.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Richard Miles, Synchronization points and associated dynamical invariants, Trans. Amer. Math. Soc., Vol. 365, No. 10 (2013), pp. 5503-5524.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Jon Perry, Relation to Collatz problem.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Kalika Prasad, Munesh Kumari, Rabiranjan Mohanta, and Hrishikesh Mahato, The sequence of higher order Mersenne numbers and associated binomial transforms, arXiv:2307.08073 [math.NT], 2023.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See p. 4.
- Ambrosio Valencia-Romero and P. T. Grogan, The strategy dynamics of collective systems: Underlying hindrances beyond two-actor coordination, PLOS ONE 19(4): e0301394 (S1 Appendix).
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Cf.
A000225,
A016189,
A036561,
A097934,
A038876,
A127071,
A127072,
A127073,
A127074,
A002997,
A057468,
A109235,
A281890,
A329064,
A350771.
-
a001047 n = a001047_list !! n
a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1)
-- Reinhard Zumkeller, Jun 09 2013
-
[3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
seq(3^n - 2^n, n=0..40); # Giorgio Balzarotti, Nov 18 2006
A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
-
Table[ 3^n - 2^n, {n, 0, 25} ]
LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *)
Numerator@NestList[(3#+1)/2&,1/2,100] (* Zak Seidov, Oct 03 2011 *)
-
{a(n) = 3^n - 2^n};
-
[3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
-
[lucas_number1(n, 5, 6) for n in range(26)] # Zerinvary Lajos, Apr 22 2009
A027649
a(n) = 2*(3^n) - 2^n.
Original entry on oeis.org
1, 4, 14, 46, 146, 454, 1394, 4246, 12866, 38854, 117074, 352246, 1058786, 3180454, 9549554, 28665046, 86027906, 258149254, 774578834, 2323998646, 6972520226, 20918609254, 62757924914, 188277969046, 564842295746, 1694543664454, 5083664547794, 15251060752246
Offset: 0
- Leonhard Euler, Introductio in analysin infinitorum (1748), section 216.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Taylor Brysiewicz, Holger Eble, and Lukas Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021.
- R. E. Crandall, On the 3x+1 problem, Math. Comp., 32 (1978) 1281-1292.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- John Elias, Illustration of initial terms: Reflected Sierpinski triangle
- K. Imatomi, M. Kaneko, and E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5
- Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.
- K. Kamano, Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers, J. Int. Seq. 13 (2010), 10.5.2.
- Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.
- Takao Komatsu, Some recurrence relations of poly-Cauchy numbers, J. Nonlinear Sci. Appl., (2019) Vol. 12, Issue 12, 829-845.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- S. Nkonkobe and V. Murali, On some properties and relations between restricted barred preferential arrangements, multi-poly-bernoulli numbers and related numbers, arXiv:1509.07352 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Sierpinski Sieve
- Wikipedia, Sierpinski triangle
- Index entries for sequences related to Bernoulli numbers.
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Cf.
A000079,
A000225,
A001047,
A007051,
A053581,
A056182,
A085350,
A091344,
A124929,
A166060,
A260217,
A318921.
-
a027649 n = a027649_list !! n
a027649_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (1, 1)
-- Reinhard Zumkeller, Jun 09 2013
-
[2*(3^n)-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
a(n, k):= (-1)^n*sum( (-1)^'m'*'m'!*Stirling2(n,'m')/('m'+1)^k,'m'=0..n);
seq(a(n, -2), n=0..30);
-
Table[2(3^n)-2^n,{n,0,30}] (* or *) LinearRecurrence[ {5,-6},{1,4},31] (* Harvey P. Dale, Apr 22 2011 *)
-
a(n)=2*(3^n)-2^n \\ Charles R Greathouse IV, Jul 16 2011
-
Vec((1-x)/((1-2*x)*(1-3*x)) + O(x^50)) \\ Altug Alkan, Oct 12 2015
-
[2*(3^n - 2^(n-1)) for n in (0..30)] # G. C. Greubel, Aug 01 2022
Duplications (due to corrections to A numbers) removed by
Peter Munn, Jun 15 2017
A028243
a(n) = 3^(n-1) - 2^n + 1 (essentially Stirling numbers of second kind).
Original entry on oeis.org
0, 0, 2, 12, 50, 180, 602, 1932, 6050, 18660, 57002, 173052, 523250, 1577940, 4750202, 14283372, 42915650, 128878020, 386896202, 1161212892, 3484687250, 10456158900, 31372671002, 94126401612, 282395982050, 847221500580, 2541731610602, 7625329049532
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..2096
- Ovidiu Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91-100.
- J. Brandts and C. Cihangir, Counting triangles that share their vertices with the unit n-cube, in Conference Applications of Mathematics 2013 in honor of the 70th birthday of Karel Segeth. Jan Brandts, Sergey Korotov, et al., eds., Institute of Mathematics AS CR, Prague 2013.
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, Electronics Letters, Volume: 50, Issue: 1, January 2 2014.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- P. Melotti, S. Ramassamy and P. Thévenin, Points and lines configurations for perpendicular bisectors of convex cyclic polygons, arXiv:2003.11006 [math.CO], 2020.
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- Kevin Ryde, Iterations of the Terdragon Curve, see index "T triple-visited points".
- Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
[3^(n-1) - 2*2^(n-1) + 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
-
Table[2 StirlingS2[n, 3], {n, 24}] (* or *)
Table[3^(n - 1) - 2*2^(n - 1) + 1, {n, 24}] (* or *)
Rest@ CoefficientList[Series[-2 x^3/(-1 + x)/(-1 + 3 x)/(-1 + 2 x), {x, 0, 24}], x] (* Michael De Vlieger, Sep 24 2016 *)
-
a(n) = 3^(n-1) - 2*2^(n-1) + 1 \\ G. C. Greubel, Nov 19 2017
-
[stirling_number2(i,3)*2 for i in range(1,30)] # Zerinvary Lajos, Jun 26 2008
A003063
a(n) = 3^(n-1) - 2^n.
Original entry on oeis.org
-1, -1, 1, 11, 49, 179, 601, 1931, 6049, 18659, 57001, 173051, 523249, 1577939, 4750201, 14283371, 42915649, 128878019, 386896201, 1161212891, 3484687249, 10456158899, 31372671001, 94126401611, 282395982049, 847221500579, 2541731610601, 7625329049531, 22876255584049
Offset: 1
Henrik Johansson (Henrik.Johansson(AT)Nexus.SE)
a(3) = 1 because 3^2 - 2^3 = 9 - 8 = 1.
a(4) = 11 because 3^3 - 2^4 = 27 - 16 = 11.
a(5) = 49 because 3^4 - 2^5 = 81 - 32 = 49.
From the third term onward the first differences of
A005173.
Difference between two leftmost columns of
A090888.
Right edge of irregular triangle
A252750.
-
[3^(n-1) -2^n: n in [1..30]]; // G. C. Greubel, Nov 03 2022
-
Table[3^(n-1) - 2^n, {n, 25}] (* Alonso del Arte, Feb 01 2013 *)
LinearRecurrence[{5,-6},{-1,-1},30] (* Harvey P. Dale, Feb 02 2015 *)
-
a(n)=3^(n-1)-2^n \\ Charles R Greathouse IV, Oct 07 2015
-
[3^(n-1) -2^n for n in range(1,31)] # G. C. Greubel, Nov 03 2022
A293181
Irregular triangle read by rows: T(n,k) is the number of k-partitions of {1..2n} that are invariant under a permutation consisting of n 2-cycles (1 <= k <= 2n).
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 1, 7, 10, 9, 3, 1, 1, 15, 38, 53, 34, 18, 4, 1, 1, 31, 130, 265, 261, 195, 80, 30, 5, 1, 1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1, 1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1
Offset: 1
Triangle begins:
1, 1;
1, 3, 2, 1;
1, 7, 10, 9, 3, 1;
1, 15, 38, 53, 34, 18, 4, 1;
1, 31, 130, 265, 261, 195, 80, 30, 5, 1;
1, 63, 422, 1221, 1700, 1696, 1016, 515, 155, 45, 6, 1;
1, 127, 1330, 5369, 10143, 13097, 10508, 6832, 2926, 1120, 266, 63, 7, 1;
...
For T(2,2)=3, the row patterns are AABB, ABAB, and ABBA. The loop patterns are AAAB, AABB, and ABAB. - _Robert A. Russell_, Apr 24 2018
Number of achiral color patterns of length odd n in
A140735.
-
(* Ach[n, k] is the number of achiral color patterns for a row or loop of n
colors containing k different colors *)
Ach[n_, k_] := Ach[n, k] = Which[0==k, Boole[0==n], 1==k, Boole[n>0],
OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1], {i, 0, (n-1)/2}],
True, Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]
Table[Ach[n, k], {n, 2, 14, 2}, {k, 1, n}] // Flatten
(* Robert A. Russell, Feb 06 2018 *)
Table[Drop[MatrixPower[Table[Switch[j-i, 0, i-1, 1, 1, 2, 1, _, 0],
{i, 1, 2n+1}, {j, 1, 2n+1}], n][[1]], 1], {n, 1, 10}] // Flatten
(* Robert A. Russell, Apr 14 2018 *)
Aeven[m_, k_] := Aeven[m, k] = If[m>0, k Aeven[m-1, k] + Aeven[m-1, k-1]
+ Aeven[m-1, k-2], Boole[m == 0 && k == 0]]
Table[Aeven[m, k], {m, 1, 10}, {k, 1, 2m}] // Flatten (* Robert A. Russell, Apr 24 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = 2*NonequivalentStructsExactly(CylinderPerms(2,n),k) - stirling(2*n,k,2);
-
seq(n)={Vec(serlaplace(exp(y*(exp(x + O(x*x^n))-1)+(1/2)*y^2*(exp(2*x + O(x*x^n))-1))) - 1)}
{my(T=seq(10)); for(n=1, #T, for(k=1, 2*n, print1(polcoeff(T[n], k), ", ")); print)} \\ Andrew Howroyd, Jan 31 2018
A091344
a(n) = 2*3^n - 3*2^n + 1.
Original entry on oeis.org
0, 1, 7, 31, 115, 391, 1267, 3991, 12355, 37831, 115027, 348151, 1050595, 3164071, 9516787, 28599511, 85896835, 257887111, 774054547, 2322950071, 6970423075, 20914414951, 62749536307, 188261191831, 564808741315, 1694476555591
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Jan 01 2004
- Christian Ballot and Florian Luca, Prime factors of a^f(n)-1 with an irreducible polynomial f(x),New York J. Math. 12 (2006), 39-45 (electronic).
- Christian Ballot and Florian Luca, Common prime factors of a^n-b and c^n-d, Unif. Distrib. Theory 2 (2007), no. 2, 19-34 (electronic).
- John Elias, Illustration of initial terms: Sixfold Sierpinski Stars
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
a:=n->sum((3^(n-j-1)-2^(n-2-j))*12, j=0..n): seq(a(n), n=-1..24); # Zerinvary Lajos, Feb 11 2007
with (combinat):a:=n->stirling2(n,3)+stirling2(n+1,3): seq(a(n), n=1..26); # Zerinvary Lajos, Oct 07 2007
-
Table[Sum[i!i^2 StirlingS2[n, i](-1)^(n - i), {i, 1, n}], {n, 0, 30}]
Table[2*3^n-3*2^n+1,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{0,1,7},30] (* Harvey P. Dale, Dec 31 2013 *)
A217764
Array defined by a(n,k) = floor((k+2)/2)*3^n - floor((k+1)/2)*2^n, read by antidiagonals.
Original entry on oeis.org
1, 3, 0, 9, 1, 1, 27, 5, 4, 0, 81, 19, 14, 2, 1, 243, 65, 46, 10, 5, 0, 729, 211, 146, 38, 19, 3, 1, 2187, 665, 454, 130, 65, 15, 6, 0, 6561, 2059, 1394, 422, 211, 57, 24, 4, 1, 19683, 6305, 4246, 1330, 665, 195, 84, 20, 7, 0, 59049, 19171, 12866, 4118, 2059, 633, 276, 76, 29, 5, 1
Offset: 0
a(4,4) = 211 because floor((4+2)/2)*3^4 - floor((4+1)/2)*2^4 = 3*3^4 - 2*2^4 = 243 - 32 = 211.
Cf. a(1,k) =
A084964(k+2); a(n,0) =
A000244(n); a(n,1) =
A001047(n); a(n,2) =
A027649(n); a(n,3) =
A056182(n); a(n,4) =
A001047(n+1); a(n,5) =
A210448(n); a(n,6) =
A166060(n); a(n,7) =
A145563(n); a(n,8) =
A102485(n).
A056151
Distribution of maximum inversion table entry.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 7, 10, 6, 1, 15, 38, 42, 24, 1, 31, 130, 222, 216, 120, 1, 63, 422, 1050, 1464, 1320, 720, 1, 127, 1330, 4686, 8856, 10920, 9360, 5040, 1, 255, 4118, 20202, 50424, 80520, 91440, 75600, 40320, 1, 511, 12610, 85182, 276696, 558120, 795600, 851760, 685440, 362880
Offset: 1
Triangle starts:
1;
1, 1;
1, 3, 2;
1, 7, 10, 6;
1, 15, 38, 42, 24;
1, 31, 130, 222, 216, 120;
1, 63, 422, 1050, 1464, 1320, 720;
1, 127, 1330, 4686, 8856, 10920, 9360, 5040;
1, 255, 4118, 20202, 50424, 80520, 91440, 75600, 40320;
- R. Sedgewick and Ph. Flajolet, "An Introduction to the Analysis of Algorithms", Addison-Wesley, 1996, ISBN 0-201-40009-X, table 6.10 (page 356)
- Alois P. Heinz, Rows n = 1..141, flattened
- Mathilde Bouvel, Lapo Cioni, and Luca Ferrari, Preimages under the bubblesort operator, arXiv:2204.12936 [math.CO], 2022. See Table 1 p. 12.
- E. Deutsch, I. M. Gessel and D. Callan, Problem 10634: Permutation Parameters with the Same Distribution, Amer. Math. Monthly, 107 (2000), 567-568.
-
T:=proc(n,k) if k>0 and k<=n then k!*(k+1)^(n-k)-(k-1)!*k^(n-k+1) elif k=0 then 1 else 0 fi end: TT:=(n,k)->T(n,k-1): matrix(10,10,TT);
# Alternative, assuming offset 0:
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(coeff(ser, x, n), y, 12):
T := (n, k) -> k!^2 * (n-k)! * coeff(cx(n - k), y, k):
for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Dec 14 2021
-
T[, 0] = 1; T[n, k_] := k! (k + 1)^(n - k) - (k - 1)! k^(n - k + 1);
Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 03 2017 *)
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000
A210204
Triangle of coefficients of polynomials v(n,x) jointly generated with A210203; see the Formula section.
Original entry on oeis.org
1, 3, 2, 7, 8, 2, 15, 24, 12, 2, 31, 64, 48, 16, 2, 63, 160, 160, 80, 20, 2, 127, 384, 480, 320, 120, 24, 2, 255, 896, 1344, 1120, 560, 168, 28, 2, 511, 2048, 3584, 3584, 2240, 896, 224, 32, 2, 1023, 4608, 9216, 10752, 8064, 4032, 1344, 288, 36, 2, 2047
Offset: 1
First five rows:
1
3....2
7....8....2
15...24...12...2
31...64...48...16...2
First three polynomials v(n,x): 1, 3 + 2x , 7 + 8x + 2x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210203 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210204 *)
Showing 1-10 of 15 results.
Comments