cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 382 results. Next

A055302 Triangle of number of labeled rooted trees with n nodes and k leaves, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 0, 6, 3, 0, 24, 36, 4, 0, 120, 360, 140, 5, 0, 720, 3600, 3000, 450, 6, 0, 5040, 37800, 54600, 18900, 1302, 7, 0, 40320, 423360, 940800, 588000, 101136, 3528, 8, 0, 362880, 5080320, 16087680, 15876000, 5143824, 486864, 9144, 9, 0, 3628800
Offset: 1

Views

Author

Christian G. Bower, May 11 2000

Keywords

Comments

Beginning with the second row, dividing each row by n gives the mirror of row n-1 of A141618. Under the exponential transform, the mirror of A141618 is generated, relating the number of connected graphs here to the number of disconnected graphs associated with A141618 (cf. A127671 and A036040). - Tom Copeland, Oct 25 2014

Examples

			Triangle begins
     1,
     2,     0;
     6,     3,     0;
    24,    36,     4,     0;
   120,   360,   140,     5,    0;
   720,  3600,  3000,   450,    6, 0;
  5040, 37800, 54600, 18900, 1302, 7, 0;
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 313.

Crossrefs

Row sums give A000169. Columns 1 through 12: A000142, A055303-A055313. Cf. A055314.
Cf. A248120 for a natural refinement.

Programs

  • Maple
    T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 13 2013
  • Mathematica
    Table[Table[n!/k! StirlingS2[n-1,n-k], {k,1,n}], {n,0,10}]//Grid  (* Geoffrey Critzer, Dec 01 2012 *)
  • PARI
    A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
    for(n=1,10,for(k=1,n,print1(A055302(n,k),", "));print());
    \\ Joerg Arndt, Oct 27 2014

Formula

E.g.f. (relative to x) satisfies: A(x,y) = xy + x*exp(A(x,y)) - x. Divides by n and shifts up under exponential transform.
T(n,k) = (n!/k!)*Stirling2(n-1, n-k). - Vladeta Jovovic, Jan 28 2004
T(n,k) = A055314(n,k)*(n-k) + A055314(n,k+1)*(k+1). The first term is the number of such trees with root degree > 1 while the second term is the number of such trees with root degree = 1. This simplifies to the above formula by Vladeta Jovovic. - Geoffrey Critzer, Dec 01 2012
E.g.f.: G(x,t) = log[1 + t * N(x*t,1/t)], where N(x,t) is the e.g.f. of A141618. Also, G(x*t,1/t)= log[1 + N(x,t)/t] is the comp. inverse in x of x / [1 + t * (e^x - 1)]. - Tom Copeland, Oct 26 2014

A063170 Schenker sums with n-th term.

Original entry on oeis.org

1, 2, 10, 78, 824, 10970, 176112, 3309110, 71219584, 1727242866, 46602156800, 1384438376222, 44902138752000, 1578690429731402, 59805147699103744, 2428475127395631750, 105224992014096760832, 4845866591896268695010, 236356356027029797011456
Offset: 0

Views

Author

Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)

Keywords

Comments

Urn, n balls, with replacement: how many selections if we stop after a ball is chosen that was chosen already? Expected value is a(n)/n^n.
Conjectures: The exponent in the power of 2 in the prime factorization of a(n) (its 2-adic valuation) equals 1 if n is odd and equals n - A000120(n) if n is even. - Gerald McGarvey, Nov 17 2007, Jun 29 2012
Amdeberhan, Callan, and Moll (2012) have proved McGarvey's conjectures. - Jonathan Sondow, Jul 16 2012
a(n), for n >= 1, is the number of colored labeled mappings from n points to themselves, where each component is one of two colors. - Steven Finch, Nov 28 2021

Examples

			a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) + 4*4*4*4.
G.f. = 1 + 2*x + 10*x^2 + 78*x^3 + 824*x^4 + 10970*x^5 + 176112*x^6 + ...
		

References

  • D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, p. 123, Exercise Section 1.2.11.3 18.

Crossrefs

Cf. A000312, A134095, A090878, A036505, A120266, A214402, A219546 (Schenker primes).

Programs

  • Maple
    seq(simplify(GAMMA(n+1,n)*exp(n)),n=0..20); # Vladeta Jovovic, Jul 21 2005
  • Mathematica
    a[n_] := Round[ Gamma[n+1, n]*Exp[n]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 16 2012, after Vladeta Jovovic *)
    a[ n_] := If[ n < 1, Boole[n == 0], n! Sum[ n^k / k!, {k, 0, n}]]; (* Michael Somos, Jun 05 2014 *)
    a[ n_] := If[ n < 0, 0, n! Normal[ Exp[x] + x O[x]^n] /. x -> n]; (* Michael Somos, Jun 05 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * sum( k=0, n, n^k / k!))};
    
  • PARI
    {a(n) = sum( k=0, n, binomial(n, k) * k^k * (n - k)^(n - k))}; /* Michael Somos, Jun 09 2004 */
    
  • PARI
    for(n=0,17,print1(round(intnum(x=0,[oo,1],exp(-x)*(n+x)^n)),", ")) \\ Gerald McGarvey, Nov 17 2007
    
  • Python
    from math import comb
    def A063170(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + (n**n<<1) if n else 1 # Chai Wah Wu, Apr 26 2023
  • UBASIC
    10 for N=1 to 42: T=N^N: S=T
    20 for K=N to 1 step -1: T/=N: T*=K: S+=T: next K
    30 print N,S: next N
    

Formula

a(n) = Sum_{k=0..n} n^k n!/k!.
a(n)/n! = Sum_{k=0..n} n^k/k!. (First n+1 terms of e^n power series.)
a(n) = A063169(n) + n^n.
E.g.f.: 1/(1-T)^2, where T=T(x) is Euler's tree function (see A000169).
E.g.f.: 1 / (1 - F), where F = F(x) is the e.g.f. of A003308. - Michael Somos, May 27 2012
a(n) = Sum_{k=0..n} binomial(n,k)*(n+k)^k*(-k)^(n-k). - Vladeta Jovovic, Oct 11 2007
Asymptotics of the coefficients: sqrt(Pi*n/2)*n^n. - N-E. Fahssi, Jan 25 2008
a(n) = A120266(n)*A214402(n) for n > 0. - Jonathan Sondow, Jul 16 2012
a(n) = Integral_{0..oo} exp(-x) * (n + x)^n dx. - Michael Somos, May 18 2004
a(n) = Integral_{0..oo} exp(-x)*(1+x/n)^n dx * n^n = A090878(n)/A036505(n-1) * n^n. - Gerald McGarvey, Nov 17 2007
EXP-CONV transform of A000312. - Tilman Neumann, Dec 13 2008
a(n) = n! * [x^n] exp(n*x)/(1 - x). - Ilya Gutkovskiy, Sep 23 2017
a(n) = (n+1)! - Sum_{k=0..n-1} binomial(n, k)*a(k)*(-k)^(n-k) for n > 0 with a(0) = 1 (see Max Alekseyev link). - Mikhail Kurkov, Jan 14 2025

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A045531 Number of sticky functions: endofunctions of [n] having a fixed point.

Original entry on oeis.org

1, 3, 19, 175, 2101, 31031, 543607, 11012415, 253202761, 6513215599, 185311670611, 5777672071535, 195881901213181, 7174630439858727, 282325794823047151, 11878335717996660991, 532092356706983938321, 25283323623228812584415, 1270184310304975912766347
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of functions f{1,2,...,n}->{1,2,...,n} with at least one element mapped to 1. - Geoffrey Critzer, Dec 10 2012
Equivalently, a(n) is the number of endofunctions with minimum 1. - Olivier Gérard, Aug 02 2016
Number of bargraphs of width n and height n. Equivalently: number of ordered n-tuples of positive integers such that the largest is n. Example: a(3) = 19 because we have 113, 123, 213, 223, 131, 132, 231, 232, 311, 312, 321, 322, 331, 332, 313, 323, 133, 233, and 333. - Emeric Deutsch, Jan 30 2017

Crossrefs

Column |a(n, 2)| of A039621. Row sums of triangle A055858.
Column k=1 of A246049.

Programs

  • Magma
    [n^n-(n-1)^n: n in [1..20] ]; // Vincenzo Librandi, May 07 2011
    
  • Mathematica
    Table[Sum[Binomial[n, i] (n - 1)^(n - i), {i, 1, n}], {n, 1, 20}]
  • Maxima
    a(n) = sum(k!*binomial(n-1,k-1)*stirling2(n,k),k,1,n); /* Vladimir Kruchinin, Mar 01 2014 */
  • PARI
    a(n)=n^n-(n-1)^n; \\ Charles R Greathouse IV, May 08 2011
    

Formula

a(n) = n^n - (n-1)^n.
E.g.f.: (T - x)/(T-T^2), where T=T(x) is Euler's tree function (see A000169).
With interpolated zeros, ceiling(n/2)^ceiling(n/2) - floor(n/2)^ceiling(n/2). - Paul Barry, Jul 13 2005
a(n) = A047969(n,n). - Alford Arnold, May 07 2005
a(n) = Sum_{i=1..n} binomial(n,i)*(i-1)^(i-1)*(n-i)^(n-i) = Sum_{i=1..n} binomial(n,i)*A000312(i-1)*A000312(n-i). - Vladimir Shevelev, Sep 30 2010
a(n) = Sum_{k=1..n} k!*binomial(n-1,k-1)*Stirling2(n,k). - Vladimir Kruchinin, Mar 01 2014
a(n) = A350454(n+1, 1) / (n+1). - Mélika Tebni, Dec 20 2022
Limit_{n->oo} a(n)/n^n = 1 - 1/e = A068996. - Luc Rousseau, Jan 20 2023

A052182 Determinant of n X n matrix whose rows are cyclic permutations of 1..n.

Original entry on oeis.org

1, -3, 18, -160, 1875, -27216, 470596, -9437184, 215233605, -5500000000, 155624547606, -4829554409472, 163086595857367, -5952860799406080, 233543408203125000, -9799832789158199296, 437950726881001816329, -20766159817517617053696, 1041273502979112415328410
Offset: 1

Views

Author

Henry M. Gunn High School Mathematical Circle (Joshua Zucker), Jan 26 2000

Keywords

Comments

Each row is a cyclic shift to the right by one place of the previous row. See the example below. - N. J. A. Sloane, Jan 07 2019
|a(n)| = number of labeled mappings from n points to themselves (endofunctions) with an odd number of cycles. - Vladeta Jovovic, Mar 30 2006
|a(n)| = number of functions from {1,2,...,n}->{1,2,...,n} such that of all recurrent elements the least is always mapped to the greatest. - Geoffrey Critzer, Aug 29 2013

Examples

			a(3) = 18 because this is the determinant of [(1,2,3), (3,1,2), (2,3,1) ].
		

Crossrefs

Programs

  • Maple
    1,seq(LinearAlgebra:-Determinant(Matrix(n,shape=Circulant[$1..n])),n=2..30); # Robert Israel, Aug 31 2014
  • Mathematica
    f[n_] := Det[ Table[ RotateLeft[ Range@ n, -j], {j, 0, n - 1}]]; Array[f, 19] (* or *)
    f[n_] := (-1)^(n - 1)*n^(n - 2)*(n^2 + n)/2; Array[f, 19]
    (* Robert G. Wilson v, Aug 31 2014 *)
    Table[Det[Table[RotateRight[Range[k],n],{n,0,k-1}]],{k,30}] (* Harvey P. Dale, Jun 20 2024 *)
  • MuPAD
    (1+n)^(n-1)*binomial(n+2,n)*(-1)^(n) $ n=0..16 // Zerinvary Lajos, Apr 01 2007
    
  • PARI
    a(n) = (n+1)*(-n)^(n-1)/2; \\ Altug Alkan, Dec 17 2017

Formula

a(n) = (-1)^(n-1) * n^(n-2) * (n^2 + n)/2.
E.g.f.[A052182] = E.g.f.[A000312] * E.g.f.[A000272], so A052182(unsigned) is "tree-like". E.g.f.: (T-T^2/2)/(1-T), where T=T(x) is Euler's tree function (see A000169). E.g.f. for signed sequence: (W+W^2/2)/(1+W), where W=W(x)=-T(-x) is the Lambert W function. - Len Smiley, Dec 13 2001
Conjecture: a(n) = -Res( f(n), x^n - 1), where Res is the resultant and f(n) = Sum_{k=1..n} k*x^k. - Benedict W. J. Irwin, Dec 07 2016

Extensions

More terms from James Sellers, Jan 31 2000

A052750 a(n) = (2*n + 1)^(n - 1).

Original entry on oeis.org

1, 1, 5, 49, 729, 14641, 371293, 11390625, 410338673, 16983563041, 794280046581, 41426511213649, 2384185791015625, 150094635296999121, 10260628712958602189, 756943935220796320321, 59938945498865420543457
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n+1) is the number of labeled incomplete ternary trees on n vertices in which each left child has a larger label than its parent. - Brian Drake, Jul 28 2008
Put a(0) = 1. For n > 0, let x(n,k) = 2*cos((2*k-1)*Pi/(2*n+1)), k=1..n. Define the recurrences S(n;0,x(n,k)) = 1, S(n;1,x(n,k)) = x(n,k), S(n;r,x(n,k)) = x(n,k)*S(n;r-1,x(n,k)) - S(n;r-2,x(n,k)), r > 1 an integer, k=1..n. CONJECTURE: For n > 0, a(n) = Product_{k=1..n} (Sum_{m=0..n-1} S(n;2*m,x(n,k))^2). - L. Edson Jeffery, Sep 11 2013
From Wolfdieter Lang, Dec 16 2013: (Start)
Discriminants of the first difference of Chebyshev S-polynomials.
The coefficient table for the first difference polynomials P(n, x) = S(n, x) - S(n-1, x), n >= 0, S(-1, x) = 0, with the Chebyshev S polynomials (see A049310), is given in A130777.
For the discriminant of a polynomial in terms of the square of a determinant of a Vandermonde matrix build from the zeros of the polynomial see, e.g., A127670.
For the proof that D(n) := discriminant(P(n,x)) = (2*n + 1)^(n - 1), n >= 1, use the formula given e.g., in the Rivlin reference, p. 218, Theorem 5.13, eq. (5.3), namely D(n) = (-1)^(n*(n-1)/2)*Product_{j=1..n} P'(n, x(n,j)), with the zeros x(n,j) = -2*cos(2*Pi*j/(2*n+1)) of P(n, x) (see A130777). P'(n, x(n,j)) = (2*n+1)*P(n-1, x(n,j))/(2*sin(Pi*j/(2*n+1))*2*cos(Pi*j/(2*n+1)))^2. P(n-1, x(n,j)) = (-1)^(n+j)*2*cos(Pi*j/(2*n+1)). Product_{j=1..n} 2*sin(Pi*j/(2*n+1)) = 2*n+1 (see the Oct 10 2013 formula in A005408. Product_{j=1..n} 2*cos(Pi*j/(2*n+1)) = 1, because S(2*n, 0) = (-1)^n.
(End)
a(n) is the number of labeled 2-trees with n+2 vertices, rooted at a given edge. - Nikos Apostolakis, Nov 30 2018
a(n) is also the number of 2-trees with n labeled triangles and with a distinguished oriented edge. - Nikos Apostolakis, Dec 14 2018

Examples

			Discriminant: n=4: P(4, x) = 1 + 2*x - 3*x^2 - x^3 + x^4 with the zeros x[1] = -2*cos((2/9)*Pi), x[2] = -2*cos((4/9)*Pi), x[3] = 1, x[4] = 2*cos((1/9)*Pi). D(4) = (Det(Vandermonde(4,[x[1],x[2],x[3],x[4]])))^2 = 729 = a(4). - _Wolfdieter Lang_, Dec 16 2013
		

References

  • L. W. Beineke, and J. W. Moon, Several proofs of the number of labelled 2-dimensional trees, In "Proof Techniques in Graph Theory" (F. Harary editor). Academic Press, New York, 1969, pp. 11-20.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20],n->(2*n+1)^(n-1)); # Muniru A Asiru, Dec 05 2018
  • Magma
    [(2*n+1)^(n-1) : n in [0..20]]; // Wesley Ivan Hurt, Jan 20 2017
    
  • Maple
    spec := [S,{B=Prod(Z,S,S),S=Set(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    max = 16; (Series[Exp[-1/2*ProductLog[-2*x]], {x, 0, max}] // CoefficientList[#, x] & ) * Range[0, max]! (* Jean-François Alcover, Jun 20 2013 *)
    Table[(2*n+1)^(n-1),{n,0,20}] (* Harvey P. Dale, Jul 14 2025 *)
  • PARI
    a(n)=(2*n+1)^(n-1) \\ Charles R Greathouse IV, Nov 20 2011
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,21,A=sqrt(1+2*sum(n=1,21,x^(2*n-1)/(2*n-1)!*A^(4*n-1))+x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Sep 07 2012
    
  • Python
    for n in range(0, 20): print((2*n + 1)**(n - 1), end=', ') # Stefano Spezia, Dec 01 2018
    

Formula

E.g.f.: exp(-1/2*W(-2*x)), where W is Lambert's W function.
E.g.f. satisfies: A(x) = sqrt(1 + 2*Sum_{n>=1} x^(2*n-1)/(2*n-1)! * A(x)^(4*n-1)). - Paul D. Hanna, Sep 07 2012
E.g.f. satisfies: A(x) = 1/A(-x*A(x)^4). - Paul D. Hanna, Sep 07 2012
a(n) = discriminant of P(n,x) = S(n,x) - S(n-1,x), n >= 1, with the Chebyshev S polynomials from A049310. For the proof see the comment above. a(n) is also the discriminant of S(n,x) + S(n-1,x) = (-1)^n*(S(n,-x) - S(n-1,-x)). - Wolfdieter Lang, Dec 16 2013
From Peter Bala, Dec 19 2013: (Start)
The e.g.f. A(x) = 1 + x + 5*x^2/2! + 49*x^3/3! + 729*x^4/4! + ... satisfies:
1) A(x*exp(-2*x)) = exp(x) = 1/A(-x*exp(2*x));
2) A^2(x) = 1/x*series reversion(x*exp(-2*x));
3) A(x^2) = 1/x*series reversion(x*exp(-x^2));
4) A(x) = exp(x*A(x)^2). (End)
E.g.f.: sqrt(-LambertW(-2*x)/(2*x)). - Vaclav Kotesovec, Dec 07 2014
Related to A001705 by Sum_{n >= 1} a(n)*x^n/n! = series reversion( 1/(1 + x)^2*log(1 + x) ) = series reversion(x - 5*x^2/2! + 26*x^3/3! - 154*x^4/4! + ...). Cf. A000272, A052752, A052774, A052782. - Peter Bala, Jun 15 2016
From Peter Bala, Dec 13 2022: (Start)
The e.g.f. A(x) = 1/x * series reversion of x^2/T(x), where the tree function T(x) = Sum_{n >= 1} n^(n-1)*x^n/n!. See A000169.
For c in C, A(x)^c = 1 + Sum_{n >= 1} c*(2*n + c)^(n-1)*x^n/n!.
First derivative A'(x) = A(x)^3/(1 - 2*x*A(x)^2).
Series reversion of (1 - A(-z)) = -log(1 - z)/(1 - z)^2 is the e.g.f. of A001705.
1/z * series reversion of z/A(z) = 1 + z + 7*z^2/2! + (10^2)*z^3/3! + (13^3)*z^4/4! + ... is the e.g.f. of A052752.
1/z * series reversion of z/A(z^2) = 1 + z^2 + 9*z^4/2! + (13^2)*z^6/3! + (17^3)*z^8/4! + ... = Sum_{n >= 0} A052774(n)*z^(2*n)/n!.
1/z * series reversion of z/A(z^3) = 1 + z^3 + 11*z^6/2! + (16^2)*z^9/3! + (21^3)*z^12/4! + ... = Sum_{n >= 0} A052782(n)*z^(3*n)/n!.
1/z * series reversion of z/A(z)^2 = A(2*z) = 2*Sum_{n >= 0} (4*n + 2)^(n-1)*z^n/n!.
1/z * series reversion of z/A(z)^k = k*Sum_{n >= 0} ((k+2)*n + k)^(n-1)*z^n/n!. (End)
a(n) = Sum_{k=1..n} (-1)^(n-k)*(n+k)^(n-1)*binomial(n,k-1), a(0)=1. - Vladimir Kruchinin, Aug 14 2025

Extensions

Better description from Vladeta Jovovic, Sep 02 2003

A060281 Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.

Original entry on oeis.org

1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 09 2001

Keywords

Comments

Also called sagittal graphs.
T(n,k)=1 iff n=k (counts the identity mapping of [n]). - Len Smiley, Apr 03 2006
Also the coefficients of the tree polynomials t_{n}(y) defined by (1-T(z))^(-y) = Sum_{n>=0} t_{n}(y) (z^n/n!) where T(z) is Cayley's tree function T(z) = Sum_{n>=1} n^(n-1) (z^n/n!) giving the number of labeled trees A000169. - Peter Luschny, Mar 03 2009

Examples

			Triangle T(n,k) begins:
        1;
        3,       1;
       17,       9,       1;
      142,      95,      18,      1;
     1569,    1220,     305,     30,     1;
    21576,   18694,    5595,    745,    45,    1;
   355081,  334369,  113974,  18515,  1540,   63,  1;
  6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
  ...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From _Peter Luschny_, Mar 03 2009: (Start)
  Tree polynomials (with offset 0):
  t_0(y) = 1;
  t_1(y) = y;
  t_2(y) = 3*y + y^2;
  t_3(y) = 17*y + 9*y^2 + y^3; (End)
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
  • W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009

Crossrefs

Row sums: A000312.
Main diagonal and first lower diagonal give: A000012, A045943.

Programs

  • Magma
    A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
    [A060281(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
    
  • Maple
    with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # Len Smiley, Apr 03 2006
    From Peter Luschny, Mar 03 2009: (Start)
    T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
    p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
    seq(print(coeff(p,z,i)*i!),i=0..8); (End)
  • Mathematica
    t=Sum[n^(n-1) x^n/n!,{n,1,10}];
    Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
    Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
  • SageMath
    @CachedFunction
    def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
    flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Nov 06 2024

Formula

E.g.f.: 1/(1 + LambertW(-x))^y.
T(n,k) = Sum_{j=0..n-1} C(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*A008275(j+1,k) = Sum_{j=0..n-1} binomial(n-1,j)*n^(n-1-j)*s(j+1,k). [Riordan] (Note: s(m,p) denotes signless Stirling cycle number (first kind), A008275 is the signed triangle.) - Len Smiley, Apr 03 2006
T(2*n, n) = A273442(n), n >= 1. - Alois P. Heinz, May 22 2016
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A190314(n).
Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A000169(n) for n>=1. (End)

A134991 Triangle of Ward numbers T(n,k) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 10, 15, 1, 25, 105, 105, 1, 56, 490, 1260, 945, 1, 119, 1918, 9450, 17325, 10395, 1, 246, 6825, 56980, 190575, 270270, 135135, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025, 1, 1012, 74316, 1487200, 12122110, 47507460, 94594500, 91891800, 34459425
Offset: 1

Views

Author

Tom Copeland, Feb 05 2008

Keywords

Comments

This is the triangle of associated Stirling numbers of the second kind, A008299, read along the diagonals.
This is also a row-reversed version of A181996 (with an additional leading 1) - see the table on p. 92 in the Ward reference. A134685 is a refinement of the Ward table.
The first and second diagonals are A001147 and A000457 and appear in the diagonals of several OEIS entries. The polynomials also appear in Carlitz (p. 85), Drake et al. (p. 8) and Smiley (p. 7).
First few polynomials (with a different offset) are
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 3*t^2
P(4,t) = t + 10*t^2 + 15*t^3
P(5,t) = t + 25*t^2 + 105*t^3 + 105*t^4
These are the "face" numbers of the tropical Grassmannian G(2,n),related to phylogenetic trees (with offset 0 beginning with P(2,t)). Corresponding h-vectors are A008517. - Tom Copeland, Oct 03 2011
A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=-t, and (a_n)=-(1+t) P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 = 0. - Tom Copeland, Oct 08 2011
Beginning with the second column, the rows give the faces of the Whitehouse simplicial complex with the fourth-order complex being three isolated vertices and the fifth-order being the Petersen graph with 10 vertices and 15 edges (cf. Readdy). - Tom Copeland, Oct 03 2014
Stratifications of smooth projective varieties which are fine moduli spaces for stable n-pointed rational curves. Cf. pages 20 and 30 of the Kock and Vainsencher reference and references in A134685. - Tom Copeland, May 18 2017
Named after the American mathematician Morgan Ward (1901-1963). - Amiram Eldar, Jun 26 2021

Examples

			Triangle begins:
  1
  1   3
  1  10   15
  1  25  105  105
  1  56  490 1260   945
  1 119 1918 9450 17325 10395
  ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, page 222.

Crossrefs

The same as A269939, with column k = 0 removed.
A reshaped version of the triangle of associated Stirling numbers of the second kind, A008299.
A181996 is the mirror image.
Columns k = 2, 3, 4 are A000247, A000478, A058844.
Diagonal k = n is A001147.
Diagonal k = n - 1 is A000457.
Row sums are A000311.
Alternating row sums are signed factorials (-1)^(n-1)*A000142(n).
Cf. A112493.

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^i*Binomial[n, i]*Sum[(-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!), {j, 0, k-i}], {i, 0, k}]; row[n_] := Table[t[k, k-n], {k, n+1, 2*n}]; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Apr 23 2014, after A008299 *)

Formula

E.g.f. for the polynomials is A(x,t) = (x-t)/(t+1) + T{ (t/(t+1)) * exp[(x-t)/(t+1)] }, where T(x) is the Tree function, the e.g.f. of A000169. The compositional inverse in x (about x = 0) is B(x) = x + -t * [exp(x) - x - 1]. Special case t = 1 gives e.g.f. for A000311. These results are a special case of A134685 with u(x) = B(x).
From Tom Copeland, Oct 26 2008: (Start)
Umbral-Sheffer formalism gives, for m a positive integer and u = t/(t+1),
[P(.,t)+Q(.,x)]^m = [m Q(m-1,x) - t Q(m,x)]/(t+1) + sum(n>=1) { n^(n-1)[u exp(-u)]^n/n! [n/(t+1)+Q(.,x)]^m }, when the series is convergent for a sequence of functions Q(n,x).
Check: With t=1; Q(n,x)=0^n, for n>=0; and Q(-1,x)=0, then [P(.,1)+Q(.,x)]^m = P(m,1) = A000311(m).
(End)
Let h(x,t) = 1/(dB(x)/dx) = 1/(1-t*(exp(x)-1)), an e.g.f. in x for row polynomials in t of A019538, then the n-th row polynomial in t of the table A134991, P(n,t), is given by ((h(x,t)*d/dx)^n)x evaluated at x=0, i.e., A(x,t) = exp(x*P(.,t)) = exp(x*h(u,t)*d/du) u evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t). - Tom Copeland, Sep 05 2011
The polynomials (1+t)/t*P(n,t) are the row polynomials of A112493. Let f(x) = (1+x)/(1-x*t). Then for n >= 0, P(n+1,t) is given by t/(1+t)*(f(x)*d/dx)^n(f(x)) evaluated at x = 0. - Peter Bala, Sep 30 2011
From Tom Copeland, Oct 04 2011: (Start)
T(n,k) = (k+1)*T(n-1,k) + (n+k+1)*T(n-1,k-1) with starting indices n=0 and k=0 beginning with P(2,t) (as suggested by a formula of David Speyer on MathOverflow).
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) with starting indices n=1 and k=1 of table (cf. Smiley above and Riordin ref.[10] therein).
P(n,t) = (1/(1+t))^n * Sum_{k>=1} k^(n+k-1)*(u*exp(-u))^k / k! with u=(t/(t+1)) for n>1; therefore, Sum_{k>=1} (-1)^k k^(n+k-1) x^k/k! = [1+LW(x)]^(-n) P{n,-LW(x)/[1+LW(x)]}, with LW(x) the Lambert W-Fct.
T(n,k) = Sum_{i=0..k} ((-1)^i binomial(n+k,i) Sum_{j=0..k-i} (-1)^j (k-i-j)^(n+k-i)/(j!(k-i-j)!)) from relation to A008299. (End)
The e.g.f. A(x,t) = -v * ( Sum_{j=>1} D(j-1,u) (-z)^j / j! ) where u = (x-t)/(1+t), v = 1+u, z = x/((1+t) v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = 1/((1+t)(v-A)) = 1/(1-t*(exp(A)-1)). - Tom Copeland, Oct 06 2011
The general results on the convolution of the refined partition polynomials of A134685, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
E.g.f.: C(u,t) = (u-t)/(1+t) - W( -((t*exp((u-t)/(1+t)))/(1+t)) ), where W is the principal value of the Lambert W-function. - Cheng Peng, Sep 11 2021
The function C(u,t) in the previous formula by Peng is precisely the function A(u,t) given in the initial 2008 formula of this section and the Oct 06 2011 formula from Copeland. As noted in A000169, Euler's tree function is T(x) = -LambertW(-x), where W(x) is the principal branch of Lambert's function, and T(x) is the e.g.f. of A000169. - Tom Copeland, May 13 2022

Extensions

Reference to A181996 added by N. J. A. Sloane, Apr 05 2012
Further edits by N. J. A. Sloane, Jan 24 2020

A368927 Number of labeled loop-graphs covering a subset of {1..n} such that it is possible to choose a different vertex from each edge.

Original entry on oeis.org

1, 2, 7, 39, 314, 3374, 45630, 744917, 14245978, 312182262, 7708544246, 211688132465, 6397720048692, 210975024924386, 7537162523676076, 289952739051570639, 11949100971787370300, 525142845422124145682, 24515591201199758681892, 1211486045654016217202663
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2024

Keywords

Comments

These are loop-graphs where every connected component has a number of edges less than or equal to the number of vertices. Also loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons):
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

Without the choice condition we have A006125.
The case of a unique choice is A088957, unlabeled A087803.
The case without loops is A133686, complement A367867, covering A367869.
For exactly n edges and no loops we have A137916, unlabeled A137917.
For exactly n edges we have A333331 (maybe), complement A368596.
For edges of any positive size we have A367902, complement A367903.
The covering case is A369140, complement A369142.
The complement is counted by A369141.
The complement for n edges and no loops is A369143, covering A369144.
The unlabeled version is A369145, complement A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(exp(3*t/2 - 3*t^2/4)/sqrt(1-t) ))} \\ Andrew Howroyd, Feb 02 2024

Formula

Binomial transform of A369140.
Exponential transform of A369197 with A369197(1) = 2.
E.g.f.: exp(3*T(x)/2 - 3*T(x)^2/4)/sqrt(1-T(x)), where T(x) is the e.g.f. of A000169. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A333331 Number of integer points in the convex hull in R^n of parking functions of length n.

Original entry on oeis.org

1, 3, 17, 144, 1623, 22804, 383415, 7501422
Offset: 1

Views

Author

Richard Stanley, Mar 15 2020

Keywords

Comments

It is observed by Gus Wiseman in A368596 and A368730 that this sequence appears to be the complement of those sequences. If this is the case, then a(n) is the number of labeled graphs with loops allowed in which each connected component has an equal number of vertices and edges and the conjectured formula holds. Terms for n >= 9 are expected to be 167341283, 4191140394, 116425416531, ... - Andrew Howroyd, Jan 10 2024
From Gus Wiseman, Mar 22 2024: (Start)
An equivalent conjecture is that a(n) is the number of loop-graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. I call these graphs choosable. For example, the a(3) = 17 choosable loop-graphs are the following (loops shown as singletons):
{{1},{2},{3}} {{1},{2},{1,3}} {{1},{1,2},{1,3}} {{1,2},{1,3},{2,3}}
{{1},{2},{2,3}} {{1},{1,2},{2,3}}
{{1},{3},{1,2}} {{1},{1,3},{2,3}}
{{1},{3},{2,3}} {{2},{1,2},{1,3}}
{{2},{3},{1,2}} {{2},{1,2},{2,3}}
{{2},{3},{1,3}} {{2},{1,3},{2,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
(End)

Examples

			For n=2 the parking functions are (1,1), (1,2), (2,1). They are the only integer points in their convex hull. For n=3, in addition to the 16 parking functions, there is the additional point (2,2,2).
		

References

  • R. P. Stanley (Proposer), Problem 12191, Amer. Math. Monthly, 127:6 (2020), 563.

Crossrefs

All of the following relative references pertain to the conjecture:
The case of unique choice A000272.
The version without the choice condition is A014068, covering A368597.
The case of just pairs A137916.
For any number of edges of any positive size we have A367902.
The complement A368596, covering A368730.
Allowing edges of any positive size gives A368601, complement A368600.
Counting by singletons gives A368924.
For any number of edges we have A368927, complement A369141.
The connected case is A368951.
The unlabeled version is A368984, complement A368835.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.

Formula

Conjectured e.g.f.: exp(-log(1-T(x))/2 + T(x)/2 - T(x)^2/4) where T(x) = -LambertW(-x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 10 2024
Previous Showing 41-50 of 382 results. Next