cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 115 results. Next

A007805 a(n) = Fibonacci(6*n + 3)/2.

Original entry on oeis.org

1, 17, 305, 5473, 98209, 1762289, 31622993, 567451585, 10182505537, 182717648081, 3278735159921, 58834515230497, 1055742538989025, 18944531186571953, 339945818819306129, 6100080207560938369
Offset: 0

Views

Author

Keywords

Comments

Hypotenuse (z) of Pythagorean triples (x,y,z) with |2x-y|=1.
x(n) := 2*A049629(n) and y(n) := a(n), n >= 0, give all positive solutions of the Pell equation x^2 - 5*y^2 = -1. See the Gregory V. Richardson formula, where his x is the y here and A075796(n+1) = x(n). - Wolfdieter Lang, Jun 20 2013
Positive numbers n such that 5*n^2 - 1 is a square (A075796(n+1)^2). - Gregory V. Richardson, Oct 13 2002

Crossrefs

Cf. A000045.
Row 18 of array A094954.
Row 2 of array A188647.
Cf. similar sequences listed in A238379.

Programs

  • Haskell
    a007805 = (`div` 2) . a000045 . (* 3) . (+ 1) . (* 2)
    -- Reinhard Zumkeller, Mar 26 2013
    
  • Magma
    I:=[1, 17]; [n le 2 select I[n] else 18*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    seq(combinat:-fibonacci(6*n+3)/2, n=0..30); # Robert Israel, Sep 10 2014
  • Mathematica
    LinearRecurrence[{18, -1}, {1, 17}, 50] (* Sture Sjöstedt, Nov 29 2011 *)
    Table[Fibonacci[6n+3]/2, {n, 0, 20}] (* Harvey P. Dale, Dec 17 2011 *)
    CoefficientList[Series[(1-x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    a(n)=fibonacci(6*n+3)/2 \\ Edward Jiang, Sep 09 2014
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017
    

Formula

G.f.: (1-x)/(1-18*x+x^2).
a(n) = 18*a(n-1) - a(n-2), n > 1, a(0)=1, a(1)=17.
a(n) = A134495(n)/2 = A001076(2n+1).
a(n+1) = 9*a(n) + 4*sqrt(5*a(n)^2-1). - Richard Choulet, Aug 30 2007, Dec 28 2007
a(n) = ((2+sqrt(5))^(2*n+1) - (2-sqrt(5))^(2*n+1))/(2*sqrt(5)). - Dean Hickerson, Dec 09 2002
a(n) ~ (1/10)*sqrt(5)*(sqrt(5) + 2)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->infinity} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = q(n, 16). - Benoit Cloitre, Dec 06 2002
a(n) = 19*a(n-1)- 19*a(n-2) + a(n-3); f(x) = (sqrt(5)/10)*((2+sqrt(5))*(9+4*sqrt(5))^(x-1) - (2-sqrt(5))*(9-4*sqrt(5))^(x-1)). - Antonio Alberto Olivares, May 15 2008
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). - Antonio Alberto Olivares, Jun 19 2008
a(n) = b(n+1) - b(n), n >= 0, with b(n) := F(6*n)/F(6) = A049660(n). First differences. See the o.g.f.s. - Wolfdieter Lang, 2012
a(n) = S(n,18) - S(n-1,18) with the Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jun 20 2013
Sum_{n >= 1} 1/( a(n) - 1/a(n) ) = 1/4^2. Compare with A001519 and A097843. - Peter Bala, Nov 29 2013
a(n) = 9*a(n-1) + 8*A049629(n-1), n >= 1, a(0) = 1. This is just the rewritten Chebyshev S(n, 18) recurrence. - Wolfdieter Lang, Aug 26 2014
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Fibonacci(6*n + 6 - 2*k) - Fibonacci(6*n + 2*k) )/( Fibonacci(6 - 2*k) - Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(6*n + 6 - 2*k - 1) + Fibonacci(6*n + 2*k + 1) )/( Fibonacci(6 - 2*k - 1) + Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n)) n>=1 = [1, 0, 17, 0, 305, 0, 5473, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -20, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
a(n) = sqrt(2 + (9-4*sqrt(5))^(1+2*n) + (9+4*sqrt(5))^(1+2*n))/(2*sqrt(5)). - Gerry Martens, Jun 04 2015

Extensions

Better description and more terms from Michael Somos

A157103 Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 5, 12, 10, 4, 1, 1, 8, 29, 33, 17, 5, 1, 1, 13, 70, 109, 72, 26, 6, 1, 1, 21, 169, 360, 305, 135, 37, 7, 1, 1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1, 1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 22 2009

Keywords

Comments

From Michael A. Allen, Mar 30 2023: (Start)
Column k is the k-metallonacci sequence for k > 0.
T(n,k) is, for n > 0 and k > 0, the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are k kinds of squares available. (End)

Examples

			Array begins:
  1,  1,   1,    1,     1,     1,      1,      1, ... (A000012);
  1,  1,   2,    3,     4,     5,      6,      7, ... (A000027);
  1,  2,   5,   10,    17,    26,     37,     50, ... (A002522);
  1,  3,  12,   33,    72,   135,    228,    357, ...;
  1,  5,  29,  109,   305,   701,   1405,   2549, ...;
  1,  8,  70,  360,  1292,  3640,   8658,  18200, ...;
  1, 13, 169, 1189,  5473, 18901,  53353, 129949, ...;
  1, 21, 408, 3927, 23184, 98145, 328776, 927843, ...;
  ...
First few rows of the triangle:
  1;
  1,   1;
  1,   1,    1;
  1,   2,    2,     1;
  1,   3,    5,     3,     1;
  1,   5,   12,    10,     4,     1;
  1,   8,   29,    33,    17,     5,     1;
  1,  13,   70,   109,    72,    26,     6,     1;
  1,  21,  169,   360,   305,   135,    37,     7,    1;
  1,  34,  408,  1189,  1292,   701,   228,    50,    8,   1;
  1,  55,  985,  3927,  5473,  3640,  1405,   357,   65,   9,   1;
  1,  89, 2378, 12970, 23184, 18901,  8658,  2549,  528,  82,  10,  1;
  1, 144, 5741, 42837, 98209, 98145, 53353, 18200, 4289, 747, 101, 11, 1;
  ...
Example: Column 3 = (1, 3, 10, 33, 109, 360, ...) = A006190.
		

Crossrefs

Essentially the transpose of A073133, A172236, A352361.

Programs

  • Magma
    A157103:= func< n,k | k eq 0 or k eq n select 1 else Evaluate(DicksonSecond(n, -1), k) >;
    [A157103(n-k, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 11 2022
    
  • Maple
    A157103 := proc(n,k)
        if k = 0 then
            1;
        else
            mul(k-2*I*cos(l*Pi/(n+1)),l=1..n) ;
            combine(%,trig) ;
            round(%) ;
        end if;
    end proc:
    seq( seq(A157103(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Feb 27 2023
  • Mathematica
    (* First program *)
    T[, 0]=1; T[n, n_]=1; T[, ]=0;
    T[n_, k_] /; 0 <= k <= n := k T[n-1, k] + T[n-2, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Aug 07 2018 *)
    (* Second program *)
    T[n_, k_]:= If[k==0 || k==n, 1, Fibonacci[n-k+1, k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A157103(n,k): return 1 if (k==0 or k==n) else lucas_number1(n+1, k, -1)
    flatten([[A157103(n-k, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 11 2022

Formula

A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1 (array).
A(n, 1) = A000045(n+1).
T(n, k) = k*T(n-1, k) + T(n-2, k) with T(n, 0) = T(n, n) = 1 (triangle).
From G. C. Greubel, Jan 11 2022: (Start)
T(n, k) = Fibonacci(n-k+1, k), with T(n, 0) = T(n, n) = 1.
T(2*n, n) = A084845(n) for n >= 1, with T(0, 0) = 1.
T(2*n+1, n+1) = A084844(n). (End)

Extensions

Edited by G. C. Greubel, Jan 11 2022

A168561 Riordan array (1/(1-x^2), x/(1-x^2)). Unsigned version of A049310.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 6, 0, 5, 0, 1, 0, 4, 0, 10, 0, 6, 0, 1, 1, 0, 10, 0, 15, 0, 7, 0, 1, 0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 1, 0, 15, 0, 35, 0, 28, 0, 9, 0, 1, 0, 6, 0, 35, 0, 56, 0, 36, 0, 10, 0, 1, 1, 0, 21, 0, 70, 0, 84, 0, 45, 0, 11, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 29 2009

Keywords

Comments

Row sums: A000045(n+1), Fibonacci numbers.
A168561*A007318 = A037027, as lower triangular matrices. Diagonal sums : A077957. - Philippe Deléham, Dec 02 2009
T(n,k) is the number of compositions of n+1 into k+1 odd parts. Example: T(4,2)=3 because we have 5 = 1+1+3 = 1+3+1 = 3+1+1.
Coefficients of monic Fibonacci polynomials (rising powers of x). Ftilde(n, x) = x*Ftilde(n-1, x) + Ftilde(n-2, x), n >=0, Ftilde(-1,x) = 0, Ftilde(0, x) = 1. G.f.: 1/(1 - x*z - z^2). Compare with Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jul 29 2014

Examples

			The triangle T(n,k) begins:
n\k 0  1   2   3   4    5    6    7    8    9  10  11  12  13 14 15 ...
0:  1
1:  0  1
2:  1  0   1
3:  0  2   0   1
4:  1  0   3   0   1
5:  0  3   0   4   0    1
6:  1  0   6   0   5    0    1
7:  0  4   0  10   0    6    0    1
8:  1  0  10   0  15    0    7    0    1
9:  0  5   0  20   0   21    0    8    0    1
10: 1  0  15   0  35    0   28    0    9    0   1
11: 0  6   0  35   0   56    0   36    0   10   0   1
12: 1  0  21   0  70    0   84    0   45    0  11   0   1
13: 0  7   0  56   0  126    0  120    0   55   0  12   0   1
14: 1  0  28   0 126    0  210    0  165    0  66   0  13   0  1
15: 0  8   0  84   0  252    0  330    0  220   0  78   0  14  0  1
... reformatted by _Wolfdieter Lang_, Jul 29 2014.
------------------------------------------------------------------------
		

Crossrefs

Cf. A162515 (rows reversed), A112552, A102426 (deflated).

Programs

  • Maple
    A168561:=proc(n,k) if n-k mod 2 = 0 then binomial((n+k)/2,k) else 0 fi end proc:
    seq(seq(A168561(n,k),k=0..n),n=0..12) ; # yields sequence in triangular form
  • Mathematica
    Table[If[EvenQ[n + k], Binomial[(n + k)/2, k], 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    T(n,k) = if ((n+k) % 2, 0, binomial((n+k)/2,k));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Oct 09 2016

Formula

Sum_{k=0..n} T(n,k)*x^k = A059841(n), A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 respectively. - Philippe Deléham, Dec 02 2009
T(2n,2k) = A085478(n,k). T(2n+1,2k+1) = A078812(n,k). Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000045(n+1), A006131(n), A015445(n), A168579(n), A122999(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Dec 02 2009
T(n,k) = binomial((n+k)/2,k) if (n+k) is even; otherwise T(n,k)=0.
G.f.: (1-z^2)/(1-t*z-z^2) if offset is 1.
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = 1, T(0,1) = 0. - Philippe Deléham, Feb 09 2012
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 09 2012
From R. J. Mathar, Feb 04 2022: (Start)
Sum_{k=0..n} T(n,k)*k = A001629(n+1).
Sum_{k=0..n} T(n,k)*k^2 = 0,1,4,11,... = 2*A055243(n)-A099920(n+1).
Sum_{k=0..n} T(n,k)*k^3 = 0,1,8,29,88,236,... = 12*A055243(n) -6*A001629(n+2) +A001629(n+1)-6*(A001872(n)-2*A001872(n-1)). (End)

Extensions

Typo in name corrected (1(1-x^2) changed to 1/(1-x^2)) by Wolfdieter Lang, Nov 20 2010

A057088 Scaled Chebyshev U-polynomials evaluated at i*sqrt(5)/2. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 5, 30, 175, 1025, 6000, 35125, 205625, 1203750, 7046875, 41253125, 241500000, 1413765625, 8276328125, 48450468750, 283633984375, 1660422265625, 9720281250000, 56903517578125, 333118994140625, 1950112558593750, 11416157763671875, 66831351611328125, 391237546875000000
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

a(n) gives the length of the word obtained after n steps with the substitution rule 0->11111, 1->111110, starting from 0. The number of 1's and 0's of this word is 5*a(n-1) and 5*a(n-2), resp.
a(n) / a(n-1) converges to (5 + (3 * sqrt(5))) / 2 as n approaches infinity. (5 + (3 * sqrt(5))) / 2 can also be written as phi^2 + (2 * phi), phi^3 + phi, phi + sqrt(5) + 2, (3 * phi) + 1, (3 * phi^2) - 2, phi^4 - 1 and (5 + (3 * (L(n) / F(n)))) / 2, where L(n) is the n-th Lucas number and F(n) is the n-th Fibonacci number as n approaches infinity. - Ross La Haye, Aug 18 2003, on another version
Pisano period lengths: 1, 3, 3, 6, 1, 3, 24, 12, 9, 3, 10, 6, 56, 24, 3, 24,288, 9, 18, 6, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1) + 5*Self(n-2): n in [0..30]]; // G. C. Greubel, Jan 16 2018
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+5*a[n-2]od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
  • Mathematica
    LinearRecurrence[{5,5}, {1,5}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/(1 - 5*x - 5*x^2)) \\ G. C. Greubel, Jan 16 2018
    
  • Sage
    [lucas_number1(n,5,-5) for n in range(1, 22)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*sqrt(5))*(-i*sqrt(5))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1 - 5*x - 5*x^2).
a(n) = (1/3)*Sum_{k=0..n} binomial(n, k)*Fibonacci(k)*3^k. - Benoit Cloitre, Oct 25 2003
a(n) = ((5 + 3*sqrt(5))/2)^n(1/2 + sqrt(5)/6) + (1/2 - sqrt(5)/6)((5 - 3*sqrt(5))/2)^n. - Paul Barry, Sep 22 2004
(a(n)) appears to be given by the floretion - 0.75'i - 0.5'j + 'k - 0.75i' + 0.5j' + 0.5k' + 1.75'ii' - 1.25'jj' + 1.75'kk' - 'ij' - 0.5'ji' - 0.75'jk' - 0.75'kj' - 1.25e ("jes"). - Creighton Dement, Nov 28 2004
a(n) = Sum_{k=0..n} 4^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
G.f.: G(0)/(2-5*x), where G(k)= 1 + 1/(1 - x*(9*k-5)/(x*(9*k+4) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
From Ehren Metcalfe, Nov 18 2017: (Start)
With F(n) = A000045(n), L(n) = A000032(n), beta = (1-sqrt(5))/2:
a(2*n-1) = 5^n*F(4*n)/3 = (5^(n-1/2)*L(4*n) - 2*5^(n-1/2)*beta^(4*n))/3.
a(2*n) = 5^n*L(4*n+2)/3 = (5^(n+1/2)*F(4*n+2) + 2*5^n*beta^(4*n+2))/3.
a(n) = round 5^((n+1)/2)*F(2*(n+1))/3.
a(n) = round 5^(n/2)*L(2*(n+1))/3. (End)

A040002 Continued fraction for sqrt(5).

Original entry on oeis.org

2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of 11/45. - Natan Arie Consigli, Jan 19 2016

Examples

			2.236067977499789696409173668... = 2 + 1/(4 + 1/(4 + 1/(4 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A002163 (decimal expansion), A001077/A001076 (convergents), A248235 (Egyptian fraction).
Cf. Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).
Essentially the same as A010709.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[5],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    PadRight[{2},120,{4}] (* Harvey P. Dale, Jul 06 2019 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 26000); x=contfrac(sqrt(5)); for (n=0, 20000, write("b040002.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

a(0) = 2, a(n) = 4 n>0. - Natan Arie Consigli, Jan 19 2016
From Elmo R. Oliveira, Feb 16 2024: (Start)
G.f.: 2*(1+x)/(1-x).
E.g.f.: 4*exp(x) - 2.
a(n) = 2*A040000(n). (End)

A041025 Denominators of continued fraction convergents to sqrt(17).

Original entry on oeis.org

1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, 151693352, 1232221121, 10009462320, 81307919681, 660472819768, 5365090477825, 43581196642368, 354014663616769, 2875698505576520, 23359602708228929, 189752520171407952, 1541379764079492545
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A041024(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = +1, a(2*n) with b(2*n) := A041024(2*n), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = -1 (cf. Emerson reference).
Bisection: a(2*n) = T(2*n+1,sqrt(17))/sqrt(17) = A078988(n), n >= 0 and a(2*n+1) = 8*S(n-1,66), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003
Sqrt(17) = 8/2 + 8/65 + 8/(65*4289) + 8/(4289*283009) + ... . - Gary W. Adamson, Dec 26 2007
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 8's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
De Moivre's formula: a(n) = (r^n - s^n)/(r-s), for r > s, gives sequences with integers if r and s are conjugates. With r=4+sqrt(17) and s=4-sqrt(17), a(n+1)/a(n) converges to r=4+sqrt(17). - Sture Sjöstedt, Nov 11 2011
a(n) equals the number of words of length n on alphabet {0,1,...,8} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 21 2023: (Start)
Also called the 8-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 8 kinds of squares available. (End)

Crossrefs

Programs

Formula

G.f.: 1/(1 - 8*x - x^2).
a(n) = ((-i)^n)*S(n, 8*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind and i^2 = -1. See A049310.
a(n) = F(n, 8), the n-th Fibonacci polynomial evaluated at x=8. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = ((4 + sqrt(17))^n - (4 - sqrt(17))^n)/(2*sqrt(17));
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*8^(n-1-2i). (End)
Let T be the 2 X 2 matrix [0, 1; 1, 8]. Then T^n * [1, 0] = [a(n-2), a(n-1)]. - Gary W. Adamson, Dec 26 2007
a(n) = 8*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=8. - Philippe Deléham, Nov 20 2008
a(p-1) == 68^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009 [Corrected by Jason Yuen, Apr 05 2025. See A087475 for more info about this congruence.]
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = sqrt(17) - 4. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 8*x - x^2) = Sum_{n >= 0} x^n *( Product_{k = 1..n} (m*k + 8 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

A026671 Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).

Original entry on oeis.org

1, 3, 11, 43, 173, 707, 2917, 12111, 50503, 211263, 885831, 3720995, 15652239, 65913927, 277822147, 1171853635, 4945846997, 20884526283, 88224662549, 372827899079, 1576001732485, 6663706588179, 28181895551161, 119208323665543, 504329070986033, 2133944799315027
Offset: 0

Views

Author

Keywords

Comments

1, 1, 3, 11, 43, 173, ... is the unique sequence for which both the Hankel transform of the sequence itself and the Hankel transform of its left shift are the powers of 2 (A000079). For example, det[{{1, 1, 3}, {1, 3, 11}, {3, 11, 43}}] = det[{{1, 3, 11}, {3, 11, 43}, {11, 43, 173}}] = 4. - David Callan, Mar 30 2007
From Paul Barry, Jan 25 2009: (Start)
a(n) is the image of F(2n+2) under the Catalan matrix (1,xc(x)) where c(x) is the g.f. of A000108.
The sequence 1,1,3,... is the image of A001519 under (1,xc(x)). This sequence has g.f. given by 1/(1-x-2x^2/(1-3x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). (End)
Binomial transform of A111961. - Philippe Deléham, Feb 11 2009
From Paul Barry, Nov 03 2010: (Start)
The sequence 1,1,3,... has g.f. 1/(1-x/sqrt(1-4x)), INVERT transform of A000984.
It is an eigensequence of the sequence array for A000984. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

a(n) = T(2n-1, n-1), T given by A026736.
a(n) = T(2n, n), T given by A026670.
a(n) = T(2n+1, n+1), T given by A026725.
Row sums of triangle A054335.

Programs

  • GAP
    a:=[3,11,43];; for n in [4..30] do a[n]:=(2*(4*n-3)*a[n-1] - 3*(5*n-8)*a[n-2] - 2*(2*n-3)*a[n-3])/n; od; Concatenation([1], a); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x)-x) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-4*x]-x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    {a(n)= if(n<0, 0, polcoeff( 1/(sqrt(1 -4*x +x*O(x^n)) -x), n))} /* Michael Somos, Apr 20 2007 */
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(sqrt(1-4*x)-x) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    (1/(sqrt(1-4*x)-x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
    

Formula

From Wolfdieter Lang, Mar 21 2000: (Start)
G.f.: 1/(sqrt(1-4*x)-x).
a(n) = Sum_{i=1..n} a(i-1)*binomial(2*(n-i), n-i) + binomial(2*n, n), n >= 1, a(0)=1. (End)
G.f.: 1/(1 -x -2*x*c(x)) where c(x) = g.f. for Catalan numbers A000108. - Michael Somos, Apr 20 2007
From Paul Barry, Jan 25 2009: (Start)
G.f.: 1/(1 - 3xc(x) + x^2*c(x)^2);
G.f.: 1/(1-3x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..n} (k/(2n-k))*C(2n-k,n-k)*F(2k+2). (End)
a(n) = Sum_{k=0..n} A039599(n,k) * A000045(k+2). - Philippe Deléham, Feb 11 2009
From Paul Barry, Feb 08 2009: (Start)
G.f.: 1/(1-x/(1-2x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction);
G.f. of 1,1,3,... is 1/(1-x-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = the upper left term in M^n, M = the infinite square production matrix:
3, 2, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Vaclav Kotesovec, Oct 08 2012: (Start)
D-finite with recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/sqrt(5). (End)
a(n) = Sum_{k=0..n+1} 4^(n+1-k) * binomial(n-k/2,n+1-k). - Seiichi Manyama, Mar 30 2025
From Peter Luschny, Mar 30 2025: (Start)
a(n) = 4^n*(binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4) + hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4)/4) for n > 0.
a(n) = A001076(n) + A176280(n). (End)

A028412 Rectangular array of numbers Fibonacci(m(n+1))/Fibonacci(m), m >= 1, n >= 0, read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 8, 3, 1, 7, 17, 21, 5, 1, 11, 48, 72, 55, 8, 1, 18, 122, 329, 305, 144, 13, 1, 29, 323, 1353, 2255, 1292, 377, 21, 1, 47, 842, 5796, 15005, 15456, 5473, 987, 34, 1, 76, 2208, 24447, 104005, 166408, 105937, 23184, 2584, 55, 1, 123, 5777
Offset: 0

Views

Author

Keywords

Comments

Every integer-valued quotient of two Fibonacci numbers is in this array. - Clark Kimberling, Aug 28 2008
Not only does 5 divide row 5, but 50 divides (-5 + row 5), as in A214984. - Clark Kimberling, Nov 02 2012

Examples

			   1   1    1      1       1        1
   1   3    4      7      11       18
   2   8   17     48     122      323
   3  21   72    329    1353     5796
   5  55  305   2255   15005   104005
   8 144 1292  15456  166408  1866294
  13 377 5473 105937 1845493 33489287
  ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 142.

Crossrefs

Rows include (essentially) A000032, A047946, A083564, A103226.
Main diagonal is A051294.
Transpose is A214978.

Programs

  • Mathematica
    max = 11; col[m_] := CoefficientList[ Series[ 1/(1 - LucasL[m]*x + (-1)^m*x^2), {x, 0, max}], x]; t = Transpose[ Table[ col[m], {m, 1, max}]] ; Flatten[ Table[ t[[n - m + 1, m]], {n, 1, max }, {m, n, 1, -1}]] (* Jean-François Alcover, Feb 21 2012, after Paul D. Hanna *)
    f[n_] := Fibonacci[n]; t[m_, n_] := f[m*n]/f[n]
    TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] (* array *)
    t = Flatten[Table[t[k, n + 1 - k], {n, 1, 120}, {k, 1, n}]] (* sequence *) (* Clark Kimberling, Nov 02 2012 *)
  • PARI
    {T(n,m)=polcoeff(1/(1 - Lucas(m)*x + (-1)^m*x^2 +x*O(x^n)),n)}

Formula

T(n, m) = Sum_{i_1>=0} Sum_{i_2>=0} ... Sum_{i_m>=0} C(n-i_m, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{m-1}, i_m).
G.f. for column m >= 1: 1/(1 - Lucas(m)*x + (-1)^m*x^2), where Lucas(m) = A000204(m). - Paul D. Hanna, Jan 28 2012

Extensions

More terms from Erich Friedman, Jun 03 2001
Edited by Ralf Stephan, Feb 03 2005
Better description from Clark Kimberling, Aug 28 2008

A041041 Denominators of continued fraction convergents to sqrt(26).

Original entry on oeis.org

1, 10, 101, 1020, 10301, 104030, 1050601, 10610040, 107151001, 1082120050, 10928351501, 110365635060, 1114584702101, 11256212656070, 113676711262801, 1148023325284080, 11593909964103601, 117087122966320090, 1182465139627304501, 11941738519239365100
Offset: 0

Views

Author

Keywords

Comments

Generalized Fibonacci sequence.
Sqrt(26) = 10/2 + 10/101 + 10/(101*10301) + 10/(10301*1050601) + ... - Gary W. Adamson, Jun 13 2008
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 10's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0, 1, ..., 10} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Bruno Berselli, May 03 2018: (Start)
Numbers k for which m*k^2 + (-1)^k is a perfect square:
m = 2: 0, 1, 2, 5, 12, 29, 70, 169, ... (A000129);
m = 3: 0, 4, 56, 780, 10864, 151316, ... (4*A007655);
m = 5: 0, 1, 4, 17, 72, 305, 1292, ... (A001076);
m = 6: 0, 2, 20, 198, 1960, 19402, ... (A001078);
m = 7: 0, 48, 12192, 3096720, ... (2*A175672);
m = 8: 0, 6, 204, 6930, 235416, ... (A082405);
m = 10: 0, 1, 6, 37, 228, 1405, 8658, ... (A005668);
m = 11: 0, 60, 23880, 9504180, ... [°];
m = 12: 0, 2, 28, 390, 5432, 75658, ... (A011944);
m = 13: 0, 5, 180, 6485, 233640, ... (5*A041613);
m = 14: 0, 4, 120, 3596, 107760, ... (A068204);
m = 15: 0, 8, 496, 30744, 1905632, ... [°];
m = 17: 0, 1, 8, 65, 528, 4289, 34840, ... (A041025);
m = 18: 0, 4, 136, 4620, 156944, ... (A202299);
m = 19: 0, 13260, 1532829480, ... [°];
m = 20: 0, 2, 36, 646, 11592, 208010, ... (A207832);
m = 21: 0, 12, 1320, 145188, ... (A174745);
m = 22: 0, 42, 16548, 6519870, ... (A174766);
m = 23: 0, 240, 552480, 1271808720, ... [°];
m = 24: 0, 10, 980, 96030, 9409960, ... (A168520);
m = 26: 0, 1, 10, 101, 1020, 10301, ... (this sequence);
m = 27: 0, 260, 702520, 1898208780, ... [°];
m = 28: 0, 24, 6096, 1548360, ... (A175672);
m = 29: 0, 13, 1820, 254813, 35675640, ... [°];
m = 30: 0, 2, 44, 966, 21208, 465610, ... (2*A077421), etc.
[°] apparently without related sequences in the OEIS.
(End)
From Michael A. Allen, Mar 12 2023: (Start)
Also called the 10-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 10 kinds of squares available. (End)

Crossrefs

Programs

  • Magma
    I:=[1,10]; [n le 2 select I[n] else 10*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
  • Maple
    seq(combinat:-fibonacci(n+1, 10), n=0..19); # Peter Luschny, May 04 2018
  • Mathematica
    Denominator[Convergents[Sqrt[26], 30]] (* Vincenzo Librandi, Dec 10 2013 *)
    LinearRecurrence[{10,1}, {1,10}, 30] (* G. C. Greubel, Jan 24 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-10*x-x^2)) \\ G. C. Greubel, Jan 24 2018
    
  • Sage
    [lucas_number1(n,10,-1) for n in range(1, 19)] # Zerinvary Lajos, Apr 26 2009
    

Formula

G.f.: 1/(1 - 10*x - x^2).
a(n) = 10*a(n-1) + a(n-2), n>=1; a(-1):=0, a(0)=1.
a(n) = S(n, 10*i)*(-i)^n where i^2:=-1 and S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind. See A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = 5+sqrt(26), am = -1/ap = 5-sqrt(26).
a(n) = F(n+1, 10), the (n+1)-th Fibonacci polynomial evaluated at x=10. - T. D. Noe, Jan 19 2006
a(n) = Sum_{i=0..floor(n/2)} binomial(n-i,i)*10^(n-2*i). - Sergio Falcon, Sep 24 2007

Extensions

Extended by T. D. Noe, May 23 2011

A214992 Power ceiling-floor sequence of (golden ratio)^4.

Original entry on oeis.org

7, 47, 323, 2213, 15169, 103969, 712615, 4884335, 33477731, 229459781, 1572740737, 10779725377, 73885336903, 506417632943, 3471038093699, 23790849022949, 163064905066945, 1117663486445665, 7660579500052711
Offset: 0

Views

Author

Clark Kimberling, Nov 08 2012, Jan 24 2013

Keywords

Comments

Let f = floor and c = ceiling. For x > 1, define four sequences as functions of x, as follows:
p1(0) = f(x), p1(n) = f(x*p1(n-1));
p2(0) = f(x), p2(n) = c(x*p2(n-1)) if n is odd and p2(n) = f(x*p1(n-1)) if n is even;
p3(0) = c(x), p3(n) = f(x*p3(n-1)) if n is odd and p3(n) = c(x*p3(n-1)) if n is even;
p4(0) = c(x), p4(n) = c(x*p4(n-1)).
The present sequence is given by a(n) = p3(n).
Following the terminology at A214986, call the four sequences power floor, power floor-ceiling, power ceiling-floor, and power ceiling sequences. In the table below, a sequence is identified with an A-numbered sequence if they appear to agree except possibly for initial terms. Notation: S(t)=sqrt(t), r = (1+S(5))/2 = golden ratio, and Limit = limit of p3(n)/p2(n).
x ......p1..... p2..... p3..... p4.......Limit
r^2.....A001519 A001654 A061646 A001906..-1+S(5)
r^3.....A024551 A001076 A015448 A049652..-1+S(5)
r^4.....A049685 A157335 A214992 A004187..-19+9*S(5)
r^5.....A214993 A049666 A015457 A214994...(-9+5*S(5))/2
r^6.....A007805 A156085 A214995 A049660..-151+68*S(5)
2+S(2)..A007052 A214996 A214997 A007070..(1+S(2))/2
1+S(3)..A057960 A002605 A028859 A077846..(1+S(3))/2
2+S(3)..A001835 A109437 A214998 A001353..-4+3*S(3)
S(5)....A214999 A215091 A218982 A218983..1.26879683...
2+S(5)..A024551 A001076 A015448 A049652..-1+S(5)
2+S(6)..A218984 A090017 A123347 A218985..S(3/2)
2+S(7)..A218986 A015530 A126473 A218987..(1+S(7))/3
2+S(8)..A218988 A057087 A086347 A218989..(1+S(2))/2
3+S(8)..A001653 A084158 A218990 A001109..-13+10*S(2)
3+S(10).A218991 A005668 A015451 A218992..-2+S(10)
...
Properties of p1, p2, p3, p4:
(1) If x > 2, the terms of p2 and p3 interlace: p2(0) < p3(0) < p2(1) < p3(1) < p2(2) < p3(2)... Also, p1(n) <= p2(n) <= p3(n) <= p4(n) <= p1(n+1) for all x>0 and n>=0.
(2) If x > 2, the limits L(x) = limit(p/x^n) exist for the four functions p(x), and L1(x) <= L2(x) <= L3(x) <= L4 (x). See the Mathematica programs for plots of the four functions; one of them also occurs in the Odlyzko and Wilf article, along with a discussion of the special case x = 3/2.
(3) Suppose that x = u + sqrt(v) where v is a nonsquare positive integer. If u = f(x) or u = c(x), then p1, p2, p3, p4 are linear recurrence sequences. Is this true for sequences p1, p2, p3, p4 obtained from x = (u + sqrt(v))^q for every positive integer q?
(4) Suppose that x is a Pisot-Vijayaraghavan number. Must p1, p2, p3, p4 then be linearly recurrent? If x is also a quadratic irrational b + c*sqrt(d), must the four limits L(x) be in the field Q(sqrt(d))?
(5) The Odlyzko and Wilf article (page 239) raises three interesting questions about the power ceiling function; it appears that they remain open.

Examples

			a(0) = ceiling(r) = 7, where r = ((1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1.  A214992 and related sequences *)
    x = GoldenRatio^4; z = 30; (* z = # terms in sequences *)
    z1 = 100; (* z1 = # digits in approximations *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A049685 *)
    Table[p2[n], {n, 0, z}]  (* A157335 *)
    Table[p3[n], {n, 0, z}]  (* A214992 *)
    Table[p4[n], {n, 0, z}]  (* A004187 *)
    Table[p4[n] - p1[n], {n, 0, z}]  (* A004187 *)
    Table[p3[n] - p2[n], {n, 0, z}]  (* A098305 *)
    (* Program 2.  Plot of power floor and power ceiling functions, p1(x) and p4(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]];
    p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]];
    Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]
    (* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *)
    f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
    p2[x_, 0] := f[x]; p3[x_, 0] := c[x];
    p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]]
    p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]]
    Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]

Formula

a(n) = floor(r*a(n-1)) if n is odd and a(n) = ceiling(r*a(n-1)) if n is even, where a(0) = ceiling(r), r = (golden ratio)^4 = (7 + sqrt(5))/2.
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3).
G.f.: (7 + 5*x - x^2)/((1 + x)*(1 - 7*x + x^2)).
a(n) = (10*(-2)^n+(10+3*sqrt(5))*(7-3*sqrt(5))^(n+2)+(10-3*sqrt(5))*(7+3*sqrt(5))^(n+2))/(90*2^n). - Bruno Berselli, Nov 14 2012
a(n) = 7*A157335(n) + 5*A157335(n-1) - A157335(n-2). - R. J. Mathar, Feb 05 2020
E.g.f.: exp(-x)*(5 + 2*exp(9*x/2)*(155*cosh(3*sqrt(5)*x/2) + 69*sqrt(5)*sinh(3*sqrt(5)*x/2)))/45. - Stefano Spezia, Oct 28 2024
Previous Showing 21-30 of 115 results. Next