cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 650 results. Next

A008542 Sextuple factorial numbers: Product_{k=0..n-1} (6*k+1).

Original entry on oeis.org

1, 1, 7, 91, 1729, 43225, 1339975, 49579075, 2131900225, 104463111025, 5745471106375, 350473737488875, 23481740411754625, 1714167050058087625, 135419196954588922375, 11510631741140058401875, 1047467488443745314570625, 101604346379043295513350625
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n), n>=1, enumerates increasing heptic (7-ary) trees with n vertices. - Wolfdieter Lang, Sep 14 2007; see a D. Callan comment on A007559 (number of increasing quarterny trees).

Crossrefs

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> (6*k+1) )); # G. C. Greubel, Aug 17 2019
  • Magma
    [1] cat [(&*[(6*k+1): k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 17 2019
    
  • Maple
    a := n -> mul(6*k+1, k=0..n-1);
    G(x):=(1-6*x)^(-1/6): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..15); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    Table[Product[(6*k+1), {k,0,n-1}], {n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008, modified by G. C. Greubel, Aug 17 2019 *)
    FoldList[Times, 1, 6Range[0, 20] + 1] (* Vincenzo Librandi, Jun 10 2013 *)
    Table[6^n*Pochhammer[1/6, n], {n,0,20}] (* G. C. Greubel, Aug 17 2019 *)
  • PARI
    a(n)=prod(k=1,n-1,6*k+1) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Sage
    [product((6*k+1) for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 17 2019
    

Formula

E.g.f.: (1-6*x)^(-1/6).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(1/6)^-1*n^(-1/3)*6^n*e^-n*n^n*{1 + 1/72*n^-1 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
a(n) = Sum_{k=0..n} (-6)^(n-k)*A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1+x/(1-7x/(1-6x/(1-13x/(1-12x/(1-19x/(1-18x/(1-25x/(1-24x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (6/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0) where Q(k) = 1 - x*(6*k+1)/(1 - x*(6*k+6)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
a(n) = A085158(6*n-5). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-6*n+5)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/6^5)^(1/6)*(Gamma(1/6) - Gamma(1/6, 1/6)). - Amiram Eldar, Dec 18 2022

A046521 Array T(i,j) = binomial(-1/2-i,j)*(-4)^j, i,j >= 0 read by antidiagonals going down.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 20, 30, 10, 1, 70, 140, 70, 14, 1, 252, 630, 420, 126, 18, 1, 924, 2772, 2310, 924, 198, 22, 1, 3432, 12012, 12012, 6006, 1716, 286, 26, 1, 12870, 51480, 60060, 36036, 12870, 2860, 390, 30, 1, 48620, 218790, 291720, 204204, 87516, 24310
Offset: 0

Views

Author

Keywords

Comments

Or, a triangle related to A000984 (central binomial) and A000302 (powers of 4).
This is an example of a Riordan matrix. See the Shapiro et al. reference quoted under A053121 and Notes 1 and 2 of the Wolfdieter Lang reference, p. 306.
As a number triangle, this is the Riordan array (1/sqrt(1-4x),x/(1-4x)). - Paul Barry, May 30 2005
The A- and Z- sequences for this Riordan matrix are (see the Wolfdieter Lang link under A006232 for the D. G. Rogers, D. Merlini et al. and R. Sprugnoli references on Riordan A- and Z-sequences with a summary): A-sequence [1,4,0,0,0,...] and Z-sequence 4+2*A000108(n)*(-1)^(n+1)=[2, 2, -4, 10, -28, 84, -264, 858, -2860, 9724, -33592, 117572, -416024, 1485800, -5348880, 19389690, -70715340, 259289580, -955277400, 3534526380], n >= 0. The o.g.f. for the Z-sequence is 4-2*c(-x) with the Catalan number o.g.f. c(x). - Wolfdieter Lang, Jun 01 2007
As a triangle, T(2n,n) is A001448. Row sums are A046748. Diagonal sums are A176280. - Paul Barry, Apr 14 2010
From Wolfdieter Lang, Aug 10 2017: (Start)
The row polynomials R(n, x) of Riordan triangles R = (G(x), F(x)), with F(x)= x*Fhat(x), belong to the class of Boas-Buck polynomials (see the reference). Hence they satisfy the Boas-Buck identity (we use the notation of Rainville, Theorem 50, p. 141):
(E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} (alpha(k)*1 + beta(k)*E_x)*R(n-1.k, x), for n >= 0, where E_x = x*d/dx (Euler operator). The Boas-Buck sequences are given by alpha(k) := [x^k] ((d/dx)log(G(x))) and beta(k) := [x^k] (d/dx)log(Fhat(x)).
This entails a recurrence for the sequence of column m of the Riordan triangle T, n > m >= 0: T(n, m) = (1/(n-m))*Sum_{k=m..n-1} (alpha(n-1-k) + m*beta(n-1-k))*T(k, m), with input T(m,m).
For the present case the Boas-Buck identity for the row polynomials is (E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} 2^(2*k+1)*(1 + 2*E_x)*R(n-1-k, x), for n >= 0. For the ensuing recurrence for the columns m of the triangle T see the formula and example section. (End)
From Peter Bala, Mar 04 2018: (Start)
The following two remarks are particular cases of more general results for Riordan arrays of the form (f(x), x/(1 - k*x)).
1) Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,4*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(4*x)/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(x) * the e.g.f. for the polynomial R(n,4*x). For example, when n = 3 we have exp(x)*(20 + 30*(4*x) + 10*(4*x)^2/2! + (4*x)^3/3!) = 20 + 140*x + 420*x^2/2! + 924*x^3/3! + 1716*x^4/4! + ....
2) Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. P(n,x) is the n-th degree Taylor polynomial of (1 + 4*x)^(n-1/2) about 0. For example, for n = 4 we have (1 + 4*x)^(7/2) = 70*x^4 + 140*x^3 + 70*x^2 + 14*x + 1 + O(x^5).
Let C(x) = (1 - sqrt(1 - 4*x))/(2*x) denote the o.g.f. of the Catalan numbers A000108. The derivatives of C(x) are determined by the identity (-1)^n * x^n/n! * (d/dx)^n(C(x)) = 1/(2*x)*( 1 - P(n,-x)/(1 - 4*x)^(n-1/2) ), n = 0,1,2,.... See Lang 2002. Cf. A283150 and A283151. (End)

Examples

			Array begins:
  1,  2,   6,  20,   70, ...
  1,  6,  30, 140,  630, ...
  1, 10,  70, 420, 2310, ...
  1, 14, 126, 924, 6006, ...
Recurrence from A-sequence: 140 = a(4,1) = 20 + 4*30.
Recurrence from Z-sequence: 252 = a(5,0) = 2*70 + 2*140 - 4*70 + 10*14 - 28*1.
From _Paul Barry_, Apr 14 2010: (Start)
As a number triangle, T(n, m) begins:
n\k       0      1       2       3      4      5     6    7   8  9 10 ...
0:        1
1:        2      1
2:        6      6       1
3:       20     30      10       1
4:       70    140      70      14      1
5:      252    630     420     126     18      1
6:      924   2772    2310     924    198     22     1
7:     3432  12012   12012    6006   1716    286    26    1
8:    12870  51480   60060   36036  12870   2860   390   30   1
9:    48620 218790  291720  204204  87516  24310  4420  510  34  1
10:  184756 923780 1385670 1108536 554268 184756 41990 6460 646 38  1
... [Reformatted and extended by _Wolfdieter Lang_, Aug 10 2017]
Production matrix begins
      2, 1,
      2, 4, 1,
     -4, 0, 4, 1,
     10, 0, 0, 4, 1,
    -28, 0, 0, 0, 4, 1,
     84, 0, 0, 0, 0, 4, 1,
   -264, 0, 0, 0, 0, 0, 4, 1,
    858, 0, 0, 0, 0, 0, 0, 4, 1,
  -2860, 0, 0, 0, 0, 0, 0, 0, 4, 1 (End)
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (2*(2*2+1)/2) * Sum_{k=2..3} 4^(3-k)*T(k, 2) = 5*(4*1 + 1*10) = 70. - _Wolfdieter Lang_, Aug 10 2017
From _Peter Bala_, Feb 15 2018: (Start)
With C(x) = (1 - sqrt( 1 - 4*x))/(2*x),
-x^3/3! * (d/dx)^3(C(x)) = 1/(2*x)*( 1 - (1 - 10*x + 30*x^2 - 20*x^3)/(1 - 4*x)^(5/2) ).
x^4/4! * (d/dx)^4(C(x)) = 1/(2*x)*( 1 - (1 - 14*x + 70*x^2 - 140*x^3 + 70*x^4 )/(1 - 4*x)^(7/2) ). (End)
		

References

  • Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Crossrefs

Columns include: A000984 (m=0), A002457 (m=1), A002802 (m=2), A020918 (m=3), A020920 (m=4), A020922 (m=5), A020924 (m=6), A020926 (m=7), A020928 (m=8), A020930 (m=9), A020932 (m=10).
Row sums: A046748.

Programs

  • GAP
    Flat(List([0..9],n->List([0..n],m->Binomial(2*n,n)*Binomial(n,m)/Binomial(2*m,m)))); # Muniru A Asiru, Jul 19 2018
    
  • Magma
    [Binomial(n+1,k+1)*Catalan(n)/Catalan(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    t[i_, j_] := If[i < 0 || j < 0, 0, (2*i + 2*j)!*i!/(2*i)!/(i + j)!/j!]; Flatten[Reverse /@ Table[t[n, k - n] , {k, 0, 9}, {n, k, 0, -1}]][[1 ;; 51]] (* Jean-François Alcover, Jun 01 2011, after PARI prog. *)
  • PARI
    T(i,j)=if(i<0 || j<0,0,(2*i+2*j)!*i!/(2*i)!/(i+j)!/j!)
    
  • SageMath
    def A046521(n,k): return binomial(n+1, k+1)*catalan_number(n)/catalan_number(k)
    flatten([[A046521(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 28 2024

Formula

T(n, m) = binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0.
G.f. for column m: ((x/(1-4*x))^m)/sqrt(1-4*x).
Recurrence from the A-sequence given above: a(n,m) = a(n-1,m-1) + 4*a(n-1,m), for n >= m >= 1.
Recurrence from the Z-sequence given above: a(n,0) = Sum_{j=0..n-1} Z(j)*a(n-1,j), n >= 1; a(0,0)=1.
As a number triangle, T(n,k) = C(2*n,n)*C(n,k)/C(2*k,k) = C(n-1/2,n-k)*4^(n-k). - Paul Barry, Apr 14 2010
From Peter Bala, Apr 11 2012: (Start):
One of three infinite families of integral factorial ratio sequences of height 1 (see Bober, Theorem 1.2). The other two are A007318 and A068555.
The triangular array equals exp(S), where the infinitesimal generator S has [2,6,10,14,18,...] on the main subdiagonal and zeros elsewhere.
Recurrence equation for the square array: T(n+1,k) = (k+1)/(4*n+2)*T(n,k+1). (End)
T(n,k) = 4^(n-k)*A006882(2*n - 1)/(A006882(2*n - 2*k)*A006882(2*k - 1)) = 4^(n-k)*(2*n - 1)!!/((2*n - 2*k)!*(2*k - 1)!!). - Peter Bala, Nov 07 2016
Boas-Buck recurrence for column m, m > n >= 0: T(n, m) = (2*(2*m+1)/(n-m))*Sum_{k=m..n-1} 4^(n-1-k)*T(k, m), with input T(n, n) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
From Peter Bala, Aug 13 2021: (Start)
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} (-1)^(n-k)*T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 4*b, c = 1 and d = 1/2.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = 1/sqrt(1 - 4*b*x) * F(x/(1 - 4*b*x)) iff F(x) = 1/sqrt(1 + 4*b*x) * G(x/(1 + 4*b*x)).
The m-th power of this array has entries m^(n-k)*T(n,k). (End)

A009445 a(n) = (2*n+1)!.

Original entry on oeis.org

1, 6, 120, 5040, 362880, 39916800, 6227020800, 1307674368000, 355687428096000, 121645100408832000, 51090942171709440000, 25852016738884976640000, 15511210043330985984000000, 10888869450418352160768000000, 8841761993739701954543616000000, 8222838654177922817725562880000000
Offset: 0

Views

Author

R. H. Hardin, Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Denominators in the expansion of sin(x):
sin(x) = x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - ...
Denominators in the expansion of sinc(x) = sin(x)/x:
sinc x = sin(x)/x = 1 - x^2/3! + x^4/5! - x^6/7! + x^8/9! - ... - Daniel Forgues, Oct 20 2011
The terms of this sequence are the denominators of sinh(x) = (e^x-e^(-x))/2 = x + x^3/3! + x^5/5! + x^7/7! + .... - Mohammad K. Azarian, Jan 19 2012

Examples

			G.f. = 1 + 6*x + 120*x^2 + 5040*x^3 + 362880*x^4 + 39916800*x^5 + ...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 111.
  • H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
  • Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:2 at page 301.

Crossrefs

Programs

Formula

a(n) = A014481(n) * A001147(n). - Reinhard Zumkeller, Dec 03 2011
Sum_{n>=0} a(n) * x^n / (n!)^2 = 1 / (1 - 4*x)^(3/2). - Ilya Gutkovskiy, Jul 11 2021

A045754 7-fold factorials: a(n) = Product_{k=0..n-1} (7*k+1).

Original entry on oeis.org

1, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 337767408000, 21617114112000, 1534815101952000, 119715577952256000, 10175824125941760000, 936175819586641920000, 92681406139077550080000, 9824229050742220308480000, 1110137882733870894858240000
Offset: 0

Views

Author

Keywords

Crossrefs

See also A113134.
Unsigned row sums of triangle A051186 (scaled Stirling1).
First column of triangle A132056 (S2(8)).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 7*k+1) ); # G. C. Greubel, Aug 21 2019
  • Magma
    [1] cat [&*[7*j+1: j in [0..n-1]]: n in [1..20]]; // G. C. Greubel, Aug 21 2019
    
  • Maple
    f := n->product( (7*k+1), k=0..(n-1));
    G(x):=(1-7*x)^(-1/7): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    FoldList[Times, 1, 7Range[0, 20] + 1] (* Harvey P. Dale, Jan 21 2013 *)
  • PARI
    a(n)=prod(k=0,n-1,7*k+1)
    
  • Sage
    [7^n*rising_factorial(1/7, n) for n in (0..20)] # G. C. Greubel, Aug 21 2019
    

Formula

a(n) = Sum_{k=0..n} (-7)^(n-k)*A048994(n, k), where A048994 = Stirling-1 numbers.
E.g.f.: (1-7*x)^(-1/7).
G.f.: 1/(1-x/(1-7*x/(1-8*x/(1-14*x/(1-15*x/(1-21*x/(1-22*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-6)^n*Sum_{k=0..n} (7/6)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/G(0), where G(k)= 1 - x*(7*k+1)/(1 - x*(7*k+7)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k+1)/(x*(7*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 7^n * Gamma(n + 1/7) / Gamma(1/7). - Artur Jasinski, Aug 23 2016
a(n) = A114799(7n-6). - M. F. Hasler, Feb 23 2018
D-finite with recurrence: a(n) +(-7*n+6)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/7^6)^(1/7)*(Gamma(1/7) - Gamma(1/7, 1/7)). - Amiram Eldar, Dec 19 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 16 2008 at the suggestion of M. F. Hasler, Oct 14 2008
Corrected by Zerinvary Lajos, Apr 03 2009

A039755 Triangle of B-analogs of Stirling numbers of the second kind.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 40, 58, 16, 1, 1, 121, 330, 170, 25, 1, 1, 364, 1771, 1520, 395, 36, 1, 1, 1093, 9219, 12411, 5075, 791, 49, 1, 1, 3280, 47188, 96096, 58086, 13776, 1428, 64, 1, 1, 9841, 239220, 719860, 618870, 209622, 32340, 2388, 81, 1, 1
Offset: 0

Views

Author

Ruedi Suter (suter(AT)math.ethz.ch)

Keywords

Comments

Let M be an infinite lower triangular bidiagonal matrix with (1,3,5,7,...) in the main diagonal and (1,1,1,...) in the subdiagonal. n-th row = M^n * [1,0,0,0,...]. - Gary W. Adamson, Apr 13 2009
From Peter Bala, Aug 08 2011: (Start)
A type B_n set partition is a partition P of the set {1, 2, ..., n, -1, -2, ..., -n} such that for any block B of P, -B is also a block of P, and there is at most one block, called a zero-block, satisfying B = -B. We call (B, -B) a block pair of P if B is not a zero-block. Then T(n,k) is the number of type B_n set partitions with k block pairs. See [Wang].
For example, T(2,1) = 4 since the B_2 set partitions with 1 block pair are {1,2}{-1,-2}, {1,-2}{-1,2}, {1,-1}{2}{-2} and {2,-2}{1}{-1} (the last two partitions contain a zero block).
(End)
Exponential Riordan array [exp(x), (1/2)*(exp(2*x) - 1)]. Triangle of connection constants for expressing the monomial polynomials x^n as a linear combination of the basis polynomials (x-1)*(x-3)*...*(x-(2*k-1)) of A039757. An example is given below. Inverse array is A039757. Equals matrix product A008277 * A122848. - Peter Bala, Jun 23 2014
T(n, k) also gives the (dimensionless) volume of the multichoose(k+1, n-k) = binomial(n, k) polytopes of dimension n-k with side lengths from the set {1, 3, ..., 1+2*k}. See the column g.f.s and the complete homogeneous symmetric function formula for T(n, k) below. - Wolfdieter Lang, May 26 2017
T(n, k) is the number of k-dimensional subspaces (i.e., sets of fixed points like rotation axes and symmetry planes) of the n-cube. See "Sets of fixed points..." in LINKS section. - Tilman Piesk, Oct 26 2019

Examples

			Triangle T(n,k) begins:
  n\k 0     1       2        3       4       5      6     7    8   9 10 ...
  0:  1
  1:  1     1
  2:  1     4       1
  3:  1    13       9        1
  4:  1    40      58       16       1
  5:  1   121     330      170      25       1
  6:  1   364    1771     1520     395      36      1
  7:  1  1093    9219    12411    5075     791     49     1
  8:  1  3280   47188    96096   58086   13776   1428    64    1
  9:  1  9841  239220   719860  618870  209622  32340  2388   81   1
 10:  1 29524 1205941  5278240 6289690 2924712 630042 68160 3765 100  1
 ... reformatted and extended by _Wolfdieter Lang_, May 26 2017
The sequence of row polynomials of A214406 begins [1, 1+x, 1+8*x+3*x^2, ...]. The o.g.f.'s for the diagonals of this triangle thus begin
1/(1-x) = 1 + x + x^2 + x^3 + ...
(1+x)/(1-x)^3 = 1 + 4*x + 9*x^2 + 16*x^3 + ...
(1+8*x+3*x^2)/(1-x)^5 = 1 + 13*x + 58*x^2 + 170*x^3 + ... . - _Peter Bala_, Jul 20 2012
Connection constants: x^3 = 1 + 13*(x-1) + 9*(x-1)*(x-3) + (x-1)*(x-3)*(x-5). Hence row 3 = [1,13,9,1]. - _Peter Bala_, Jun 23 2014
Complete homogeneous symmetric functions: T(3, 1) = h^{(2)}_2 = 1^2 + 3^2 + 1^1*3^1 = 13. The three 2D polytopes are two squares and a rectangle. T(3, 2) = h^{(3)}_1 = 1^1 + 3^1 + 5^1 = 9. The 1D polytopes are three lines. - _Wolfdieter Lang_, May 26 2017
T(4, 3) = 16 is the number of 3-dimensional subspaces (mirror hyperplanes) of the 4-cube. (These are 4 cubes and 12 cuboids.) See "Sets of fixed points..." in LINKS section. - _Tilman Piesk_, Oct 26 2019
		

Crossrefs

Programs

  • Magma
    [[(&+[(-1)^(k-j)*(2*j+1)^n*Binomial(k, j): j in [0..k]])/( 2^k*Factorial(k)): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 14 2019
    
  • Maple
    A039755 := proc(n,k) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1,k-1)+(2*k+1)*procname(n-1,k) ; end if; end proc:
    seq(seq(A039755(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Oct 30 2009
  • Mathematica
    t[n_, k_] = Sum[(-1)^(k-j)*(2j+1)^n*Binomial[k, j], {j, 0, k}]/(2^k*k!); Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[1 ;; 56]]
    (* Jean-François Alcover, Jun 09 2011, after Peter Bala *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,n!*polcoeff(polcoeff(exp(x+y/2*(exp(2*x+x*O(x^n))-1)),n),k))
    
  • Sage
    [[sum((-1)^(k-j)*(2*j+1)^n*binomial(k, j) for j in (0..k))/( 2^k*factorial(k)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Feb 14 2019

Formula

E.g.f. row polynomials: exp(x + y/2 * (exp(2*x) - 1)).
T(n,k) = T(n-1,k-1) + (2*k+1)*T(n-1,k) with T(0,k) = 1 if k=0 and 0 otherwise. Sum_{k=0..n} T(n,k) = A007405(n). - R. J. Mathar, Oct 30 2009; corrected by Joshua Swanson, Feb 14 2019
T(n,k) = (1/(2^k*k!)) * Sum_{j=0..k} (-1)^(k-j)*C(k,j)*(2*j+1)^n.
T(n,k) = (1/(2^k*k!)) * A145901(n,k). - Peter Bala
The row polynomials R(n,x) satisfy the Dobinski-type identity:
R(n,x) = exp(-x/2)*Sum_{k >= 0} (2*k+1)^n*(x/2)^k/k!, as well as the recurrence equation R(n+1,x) = (1+x)*R(n,x)+2*x*R'(n,x). The polynomial R(n,x) has all real zeros (apply [Liu et al., Theorem 1.1] with f(x) = R(n,x) and g(x) = R'(n,x)). The polynomials R(n,2*x) are the row polynomials of A154537. - Peter Bala, Oct 28 2011
Let f(x) = exp((1/2)*exp(2*x)+x). Then the row polynomials R(n,x) are given by R(n,exp(2*x)) = (1/f(x))*(d/dx)^n(f(x)). Similar formulas hold for A008277, A105794, A111577, A143494 and A154537. - Peter Bala, Mar 01 2012
From Peter Bala, Jul 20 2012: (Start)
The o.g.f. for the n-th diagonal (with interpolated zeros) is the rational function D^n(x), where D is the operator x/(1-x^2)*d/dx. For example, D^3(x) = x*(1+8*x^2+3*x^4)/(1-x^2)^5 = x + 13*x^3 + 58*x^5 + 170*x^7 + ... . See A214406 for further details.
An alternative formula for the o.g.f. of the n-th diagonal is exp(-x/2)*(Sum_{k >= 0} (2*k+1)^(k+n-1)*(x/2*exp(-x))^k/k!).
(End)
From Tom Copeland, Dec 31 2015: (Start)
T(n,m) = Sum_{i=0..n-m} 2^(n-m-i)*binomial(n,i)*St2(n-i,m), where St2(n,k) are the Stirling numbers of the second kind, A048993 (also A008277). See p. 755 of Dolgachev and Lunts.
The relation of this entry's e.g.f. above to that of the Bell polynomials, Bell_n(y), of A048993 establishes this formula from a binomial transform of the normalized Bell polynomials, NB_n(y) = 2^n Bell_n(y/2); that is, e^x exp[(y/2)(e^(2x)-1)] = e^x exp[x*2*Bell.(y/2)] = exp[x(1+NB.(y))] = exp(x*P.(y)), so the row polynomials of this entry are given by P_n(y) = [1+NB.(y)]^n = Sum_{k=0..n} C(n,k) NB_k(y) = Sum_{k=0..n} 2^k C(n,k) Bell_k(y/2).
The umbral compositional inverses of the Bell polynomials are the falling factorials Fct_n(y) = y! / (y-n)!; i.e., Bell_n(Fct.(y)) = y^n = Fct_n(Bell.(y)). Since P_n(y) = [1+2Bell.(y/2)]^n, the umbral inverses are determined by [1 + 2 Bell.[ 2 Fct.[(y-1)/2] / 2 ] ]^n = [1 + 2 Bell.[ Fct.[(y-1)/2] ] ]^n = [1+y-1]^n = y^n. Therefore, the umbral inverse sequence of this entry's row polynomials is the sequence IP_n( y) = 2^n Fct_n[(y-1)/2] = (y-1)(y-3) .. (y-2n+1) with IP_0(y) = 1 and, from the binomial theorem, with e.g.f. exp[x IP.(y)]= exp[ x 2Fct.[(y-1)/2] ] = (1+2x)^[(y-1)/2] = exp[ [(y-1)/2] log(1+2x) ].
(End)
Let B(n,k) = T(n,k)*((2*k)!)/(2^k*k!) and P(n,x) = Sum_{k=0..n} B(n,k)*x^(2*k+1). Then (1) P(n+1,x) = (x+x^3)*P'(n,x) for n >= 0, and (2) Sum_{n>=0} B(n,k)/(n!)*t^n = binomial(2*k,k)*exp(t)*(exp(2*t)-1)^k/4^k for k >= 0, and (3) Sum_{n>=0} t^n* P(n,x)/(n!) = x*exp(t)/sqrt(1+x^2-x^2*exp(2*t)). - Werner Schulte, Dec 12 2016
From Wolfdieter Lang, May 26 2017: (Start)
G.f. column k: x^k/Product_{j=0..k} (1 - (1+2*j)*x), k >= 0.
T(n, k) = h^{(k+1)}_{n-k}, the complete homogeneous symmetric function of degree n-k of the k+1 symbols a_j = 1 + 2*j, j = 0, 1, ..., k. (End)
With p(n, x) = Sum_{k=0..n} A001147(k) * T(n, k) * x^k for n >= 0 holds:
(1) Sum_{i=0..n} p(i, x)*p(n-i, x) = 2^n*(Sum_{k=0..n} A028246(n+1, k+1)*x^k);
(2) p(n, -1/2) = (n!) * ([t^n] sqrt(2 / (1 + exp(-2*t)))). - Werner Schulte, Feb 16 2024

A054142 Triangular array binomial(2*n-k, k), k=0..n, n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 15, 10, 1, 1, 9, 28, 35, 15, 1, 1, 11, 45, 84, 70, 21, 1, 1, 13, 66, 165, 210, 126, 28, 1, 1, 15, 91, 286, 495, 462, 210, 36, 1, 1, 17, 120, 455, 1001, 1287, 924, 330, 45, 1, 1, 19, 153, 680, 1820, 3003, 3003, 1716, 495, 55, 1
Offset: 0

Views

Author

Keywords

Comments

Row sums are odd-indexed Fibonacci numbers.
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k double rises. Mirror image of A085478. - Emeric Deutsch, May 31 2004
Diagonal sums are A052535. - Paul Barry, Jan 21 2005
Matrix inverse is the triangle of Salie numbers A098435. - Paul Barry, Jan 21 2005
Coefficients of Morgan-Voyce polynomial b(n,x); e.g., b(3,x)=x^3+5x^2+6x+1. See A172431 for coefficients of Morgan-Voyce polynomial B(n,x). - Clark Kimberling, Feb 13 2010
T(n,k) is the number of stack polyominoes of perimeter 2n+4 with k+1 columns. - Emanuele Munarini, Apr 07 2011
Roots of signed n-th polynomials are chaotic with respect to the operation (-2, x^2), with cycle lengths A003558(n). Example: starting with a root to x^3 - 5x^2 + 6x - 1 = 0; (2 + 2*cos(2*Pi/N) = 3.24697... = A116415; we obtain the trajectory (3.24697...-> 1.55495...-> 0.198062...; the 3 roots to the polynomial with cycle length 3 matching A003558(3) = 3. The operation (-2, x^2) is the reversal of the well known chaotic operation (x^2 - 2) [Kappraff, Adamson, 2004] starting with seed 2*cos(2*Pi/N). Check: given 2*cos(2*Pi/7) = 1.24697..., we obtain the 3-cycle using (x^2 - 2): (1.24697...-> -0.445041...-> 1.801937...; where the terms in either set are intermediate terms in the other, irrespective of sign. - Gary W. Adamson, Sep 22 2011
A054142 is jointly generated with A172431 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=x*u(n-1,x)+v(n-1,x) and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section of A172431. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 01 2012
The o.g.f. for row n of the array A(n, k) = binomial(2*n-k,k), k >= 0, n >= 0 is G(n,x) = Sum_{k=0..n} T(n, k)*x^k + (-x)^(2*n+1) * c(-x)^(2*n+1) / sqrt(1-4*(-x)), for n >= 0. Here c(x) is the o.g.f. of A000108 (Catalan). For powers of c(x) see the W. Lang link in A115139. For the alternating sign case replace x by -x. - Wolfdieter Lang, Sep 12 2016
Multiplying the n-th diagonal by A001147(n) generates A001497. - Tom Copeland, Oct 04 2016

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  6,   1;
  1,  7, 15,  10,   1;
  1,  9, 28,  35,  15,   1;
  1, 11, 45,  84,  70,  21,   1;
  1, 13, 66, 165, 210, 126,  28,  1;
  1, 15, 91, 286, 495, 462, 210, 36, 1; ...
...
(0, 1, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 3,  1;
  0, 1, 5,  6,  1;
  0, 1, 7, 15, 10,  1;
  0, 1, 9, 28, 35, 15, 1. _Philippe Deléham_, Apr 01 2012
		

Crossrefs

These are the even-indexed rows of A011973, the odd-indexed rows form A053123.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n-k,k) ))); # G. C. Greubel, Aug 01 2019
  • Magma
    [Binomial(2*n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T:=(n,k)->binomial(2*n-k,k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    Flatten[Table[Binomial[2n - k, k], {n, 0, 11}, {k, 0, n}]] (* Emanuele Munarini, Apr 07 2011 *)
  • Maxima
    create_list(binomial(2*n-k,k),n,0,10,k,0,n); /* Emanuele Munarini, Apr 07 2011 */
    
  • PARI
    T(n,k)=if(n<0,0,polcoeff(charpoly(matrix(n,n,i,j,-min(i,j))),k))
    
  • Sage
    [[binomial(2*n-k,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: (1-t*z)/((1-t*z)^2-z). - Emeric Deutsch, May 31 2004
Column k has g.f.: (Sum_{j=0..k+1} binomial(k+1, 2j)*x^j)*x^k/(1-x)^(k+1). - Paul Barry, Jun 22 2005
Recurrence: T(n+2,k+2) = T(n+1,k+2) + 2*T(n+1,k+1) - T(n,k). - Emanuele Munarini, Apr 07 2011
T(n, k) = binomial(2*n-k, k) = A085478(n, n-k), for n >= 0, k = 0..n. - Wolfdieter Lang, Mar 25 2020

A060818 a(n) = 2^(n - HammingWeight(n)) = 2^(n - BitCount(n)) = 2^(n - A000120(n)).

Original entry on oeis.org

1, 1, 2, 2, 8, 8, 16, 16, 128, 128, 256, 256, 1024, 1024, 2048, 2048, 32768, 32768, 65536, 65536, 262144, 262144, 524288, 524288, 4194304, 4194304, 8388608, 8388608, 33554432, 33554432, 67108864, 67108864, 2147483648, 2147483648, 4294967296
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001

Keywords

Comments

a(n) is the size of the Sylow 2-subgroup of the symmetric group S_n.
Also largest power of 2 which is a factor of n! and (apart from a(3)) the largest perfect power which is a factor of n!.
Denominator of e(n,n) (see Maple line).
Denominator of the coefficient of x^n in n-th Legendre polynomial; numerators are in A001790. - Benoit Cloitre, Nov 29 2002

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 8*x^4 + 8*x^5 + 16*x^6 + 16*x^7 + 128*x^8 + ...
e(n,n) sequence begins 1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ... .
		

Crossrefs

a(n) = A046161([n/2]).
Row sums of triangle A100258.

Programs

  • Magma
    [1] cat [Denominator(Catalan(n)/2^n): n in [0..50]]; // Vincenzo Librandi, Sep 01 2014
    (Python 3.10+)
    def A060818(n): return 1<Chai Wah Wu, Jul 11 2022
  • Maple
    e := proc(l,m) local k; add(2^(k-2*m) * binomial(2*m-2*k,m-k) * binomial(m+k,m) * binomial(k,l), k=l..m); end;
    A060818 := proc(n) option remember; `if`(n=0,1,2^(padic[ordp](n,2))*A060818(n-1)) end: seq(A060818(i), i=0..34); # Peter Luschny, Nov 16 2012
    HammingWeight := n -> add(convert(n, base, 2)):
    seq(2^(n - HammingWeight(n)), n = 0..34); # Peter Luschny, Mar 23 2024
  • Mathematica
    Table[GCD[w!, 2^w], {w, 100}]
    (* Second program, more efficient *)
    Array[2^(# - DigitCount[#, 2, 1]) &, 35, 0] (* Michael De Vlieger, Mar 23 2024 *)
  • PARI
    {a(n) = denominator( polcoeff( pollegendre(n), n))};
    
  • PARI
    {a(n) = if( n<0, 0, 2^sum(k=1, n, n\2^k))};
    
  • PARI
    { for (n=0, 200, s=0; d=2; while (n>=d, s+=n\d; d*=2); write("b060818.txt", n, " ", 2^s); ) } \\ Harry J. Smith, Jul 12 2009
    
  • Sage
    def A060818(n):
        A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
        return 2^A005187(n//2)
    [A060818(i) for i in (0..34)]  # Peter Luschny, Nov 16 2012
    

Formula

a(n) = 2^(floor(n/2) + floor(n/4) + floor(n/8) + floor(n/16) + ...).
a(n) = 2^(A011371(n)).
a(n) = gcd(n!, 2^n). - Labos Elemer, Apr 22 2003
a(n) = denominator(L(n)) with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n!, with the double factorial (2*n-1)!! = A001147(n), n>=0.
a(n) = Product_{i=1..n} A006519(i). - Tom Edgar, Apr 30 2014
a(n) = (n! XOR floor(n!/2)) XOR (n!-1 XOR floor((n!-1)/2)). - Gary Detlefs, Jun 13 2014
a(n) = denominator(Catalan(n-1)/2^(n-1)) for n>0. - Vincenzo Librandi, Sep 01 2014
a(2*n) = a(2*n+1) = 2^n*a(n). - Robert Israel, Sep 01 2014
a(n) = n!*A063079(n+1)/A334907(n). - Petros Hadjicostas, May 16 2020

Extensions

Additional comments from Henry Bottomley, May 01 2001
New name from Peter Luschny, Mar 23 2024

A000806 Bessel polynomial y_n(-1).

Original entry on oeis.org

1, 0, 1, -5, 36, -329, 3655, -47844, 721315, -12310199, 234615096, -4939227215, 113836841041, -2850860253240, 77087063678521, -2238375706930349, 69466733978519340, -2294640596998068569, 80381887628910919255, -2976424482866702081004, 116160936719430292078411
Offset: 0

Views

Author

Keywords

Comments

a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (i,i+1) for all i in [1,2n-1] (all adjacent integers). The circular version of this constraint is A003436. - Olivier Gérard, Feb 08 2011
|a(n)| is the number of perfect matchings in the complement of P_{2n} where P_{2n} is the path graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
The unsigned version of these numbers now has its own entry: see A278990. - N. J. A. Sloane, Dec 07 2016

Examples

			For n=3, the a(3) = 5 solutions are (14) (25) (36), (14) (26) (35), (15) (24) (36), (16) (24) (35), (13) (25) (46) excluding 10 other possible pairings.
G.f. = 1 + x^2 - 5*x^3 + 36*x^4 - 329*x^5 + 3655*x^6 - 47844*x^7 + ...
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498. Cf. A003436.

Programs

  • Magma
    I:=[0,1]; [1] cat [n le 2 select I[n] else (1-2*n)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
  • Maple
    A000806 := proc(n) option remember; if n<=1 then 1-n else (1-2*n)*procname(n-1)+procname(n-2); fi; end proc;
    a := n -> hypergeom([n+1,-n],[],1/2): seq(simplify(a(n)),n=0..20); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := a[n] = (-2n+1)*a[n-1] + a[n-2]; a[0] = 1; a[1] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 29 2011, after T. D. Noe *)
    Table[Sum[Binomial[n, i]*(2*n-i)!/2^(n-i)*(-1)^(n-i)/n!, {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2013 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, (-1)^m (2 m - 1)!! Hypergeometric1F1[ -m, -2 m, -2] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, Sum[ (-1)^(m - i) (2 m - i)! / (2^(m - i) i! (m - i)!), {i, 0, m}] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, If[ m<1, 1, (-1)^m Numerator @ FromContinuedFraction[ Table[ (-1)^Quotient[k, 2] If[ OddQ[k], k, 1], {k, 2 m}] ] ] ]; (* Michael Somos, Jan 27 2014 *)
    Table[(-1)^n (2 n - 1)!! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
  • PARI
    {a(n) = if( n<0, n = -n-1); sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) )}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); A = sqrt(1 + 2*x + x * O(x^n)); n! * polcoeff( exp(A-1) / A, n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); n+=2; -(-1)^n * n! * polcoeff( serreverse( sum(k=1, n, k^(k-2)* x^k / k!, x * O(x^n))), n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = if( n<0, n=-n-1); contfracpnqn( vector( 2*n, k, (-1)^(k\2) * if( k%2, k, 1))) [1,1] }; /* Michael Somos, Jan 27 2014 */
    

Formula

E.g.f.: exp(sqrt(1 + 2*x) - 1) / sqrt(1 + 2*x). - Michael Somos, Feb 16 2002
D-finite with recurrence a(n) = (-2*n+1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>1} A000272(k) * x^k/k!, then y = x + Sum{k>1} a(k-2) * (-y)^k/k!. - Michael Somos, Sep 07 2005
a(-1-n) = a(n). - Michael Somos, Apr 02 2007
a(n) = Sum_{m=0..n} A001498(n,m)*(-1)^m, n>=0 (alternating row sums of Bessel triangle).
E.g.f. for unsigned version: -exp(sqrt(1-2*x)-1). - Karol A. Penson, Mar 20 2010 [gives -1, 1, 0, 1, 5, 36, 329, ... ]
E.g.f. for unsigned version: 1/(sqrt(1-2*x))*exp(sqrt(1-2*x)-1). - Sergei N. Gladkovskii, Jul 03 2012
G.f.: 1/G(0) where G(k) = 1 - x + x*(2*k+1)/(1 - x + 2*x*(k+1)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jul 10 2012
G.f.: 1+x/U(0) where U(k) = 1 - x + x*(k+1)/U(k+1) ; (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Oct 06 2012
a(n) = BesselK[n+1/2,-1]/BesselK[5/2,-1]. - Vaclav Kotesovec, Aug 07 2013
|a(n)| ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 07 2013
0 = a(n) * (a(n+2)) + a(n+1) * (-a(n+1) + 2*a(n+2) + a(n+3)) + a(n+2) * (-a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
a(n) = -i*(BesselK[3/2,1]*BesselI[n+3/2,-1] - BesselI[3/2,-1]*BesselK[n+3/2,1]), n>=0 for unsigned version - G. C. Greubel , Apr 19 2015
a(n) = hypergeom( [n+1, -n], [], 1/2). - Peter Luschny, Nov 10 2016
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * (-2)^n * hypergeometric1f1(-n; -2*n; -2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -2*t/(1-t)^2). (End)

A003436 Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.

Original entry on oeis.org

1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0

Views

Author

Keywords

Comments

Also called the relaxed ménage problem (cf. A000179).
a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (1,2n) and (i,i+1) for all i in [1,2n-1] (all adjacent integers modulo 2n). The linear version of this constraint is A000806. - Olivier Gérard, Feb 08 2011
Number of perfect matchings in the complement of C_{2n} where C_{2n} is the cycle graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
Also the number of 2-uniform set partitions of {1...2n} containing no two cyclically successive vertices in the same block. - Gus Wiseman, Feb 27 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003435, A129348. A003437 gives unlabeled case.
First differences of A000806.
Column k=2 of A324428.

Programs

  • Maple
    A003436 := proc(n) local k;
          if n = 0 then 1
        elif n = 1 then 0
        else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ;
        end if;
    end proc: # R. J. Mathar, Dec 11 2013
    A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
    seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
    twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#i+1&]]}];
    Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)

Formula

a(n) = A003435(n)/(n!*2^n).
a(n) = 2*n*a(n-1)-2*(n-3)*a(n-2)-a(n-3) for n>4. [Corrected by Vasu Tewari, Apr 11 2010, and by R. J. Mathar, Oct 02 2013]
G.f.: x + ((1-x)/(1+x)) * Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 13 2013
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2) for n >= 2. - Peter Luschny, Nov 10 2016

Extensions

a(0)=1 prepended by Gus Wiseman, Feb 27 2019

A045755 8-fold factorials: a(n) = Product_{k=0..n-1} (8*k+1).

Original entry on oeis.org

1, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625, 68586144251625, 5555477684381625, 494437513909964625, 47960438849266568625, 5035846079172989705625, 569050606946547836735625, 68855123440532288245010625, 8882310923828665183606370625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. k-fold factorials : A000142, A001147, A007559, A007696, A008548, A008542, A045754.

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 8*j+1) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [1] cat [(&*[8*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    a := n->product(8*k+1), k=0..(n-1));
  • Mathematica
    Table[8^n*Pochhammer[1/8, n], {n,0,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    a(n)=prod(k=0, n, 8*k+1);
    
  • Sage
    [product( (8*j+1) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n+1) = (8*n+1)(!^8).
a(n) = Sum_{k=0..n} (-8)^(n-k)*A048994(n, k); A048994 = Stirling-1 numbers.
E.g.f.: (1-8*x)^(-1/8).
G.f.: 1+x/(1-9x/(1-8x/(1-17x/(1-16x/(1-25x/(1-24x/(1-33x/(1-32x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (-7)^n*Sum_{k=0..n} (8/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. [Mircea Merca, May 03 2012]
G.f.: 1/Q(0) where Q(k) = 1 - x*(8*k+1)/(1 - x*(8*k+8)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+1)/(2*x*(8*k+1) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(8*k+1)/(x*(8*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 05 2013
a(n) = 8^n * Gamma(n + 1/8) / Gamma(1/8). - Artur Jasinski,Aug 23 2016
a(n) ~ sqrt(2*Pi) * 8^n * n^(n - 3/8)/(Gamma(1/8)*exp(n)). - Ilya Gutkovskiy, Sep 10 2016
D-finite with recurrence: a(n) +(-8*n+7)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
Sum_{n>=0} 1/a(n) = 1 + (e/8^7)^(1/8)*(Gamma(1/8) - Gamma(1/8, 1/8)). - Amiram Eldar, Dec 20 2022

Extensions

Additional comments from Philippe Deléham and Paul D. Hanna, Oct 29 2005
Edited by N. J. A. Sloane, Oct 14 2008 at the suggestion of Artur Jasinski.
Previous Showing 71-80 of 650 results. Next