cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 85 results. Next

A075676 Sequences A001644 and A000073 interleaved.

Original entry on oeis.org

3, 1, 3, 2, 11, 7, 39, 24, 131, 81, 443, 274, 1499, 927, 5071, 3136, 17155, 10609, 58035, 35890, 196331, 121415, 664183, 410744, 2246915, 1389537, 7601259, 4700770, 25714875, 15902591, 86992799, 53798080, 294294531, 181997601
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 24 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3+x- 6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(3+x-6x^2-x^3-x^4)/(1-3x^2-x^4-x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,3,0,1,0,1},{3,1,3,2,11,7},40] (* Harvey P. Dale, May 01 2014 *)
  • PARI
    my(x='x+O('x^40)); Vec((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((3+x-6*x^2-x^3-x^4)/(1-3*x^2-x^4-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = A000073(n) if n odd, a(n) = A001644(n) if n even.
a(n) = ((1-(-1)^n)*T(n) + (1+(-1)^n)*S(n))/2, where T(n) = A000073(n), S(n) = A001644(n).
a(n) = 3*a(n-2) + a(n-4) + a(n-6), a(0)=3, a(1)=1, a(2)=3, a(3)=2, a(4)=11, a(5)=7.
O.g.f.: (3 + x - 6*x^2 - x^3 - x^4)/(1 - 3*x^2 - x^4 - x^6).
a(n) = T(n) + (1+(-1)^n)*(T(n-1) + (3/2)*T(n-2)).

A104857 Positive integers that cannot be represented as the sum of distinct Lucas 3-step numbers (A001644).

Original entry on oeis.org

2, 5, 6, 9, 13, 16, 17, 20, 23, 26, 27, 30, 34, 37, 38, 41, 44, 45, 48, 52, 55, 56, 59, 62, 65, 66, 69, 73, 76, 77, 80, 84, 87, 88, 91, 94, 97, 98, 101, 105, 108, 109, 112, 115, 116, 119, 123, 126, 127, 130, 133, 136, 137, 140, 144, 147, 148, 151, 154
Offset: 1

Views

Author

Jonathan Vos Post, Apr 24 2005

Keywords

Comments

Similar to A054770 "Numbers that are not the sum of distinct Lucas numbers (A000204)" but with Lucas 3-step numbers (A001644). Wanted: equivalent of David W. Wilson conjecture (A054770) as proved by Ian Agol. Note that all positive integers can be presented as the sum of distinct Fibonacci numbers in A000119 way. Catalani called Lucas 3-step numbers "generalized Lucas numbers" but that is quite ambiguous. These are also called tribonacci-Lucas numbers.

Examples

			In "base Lucas 3-step numbers" we can represent 1 as "1", but cannot represent 2 because there is no next Lucas 3-step number until 3 and we can't have two instances of 1 summed here. We can represent 3 as "10" (one 3 and no 1's), 4 as "11" (one 3 and one 1). Then we cannot represent 5 or 6 because there is no next Lucas 3-step number until 7 and we can't sum two 3s or six 1's. 7 becomes "100" (one 7, no 3s and no 1's), 8 becomes "101" and so forth.
		

Crossrefs

Extensions

More terms from T. D. Noe, Apr 26 2005

A105949 Powers of 3-Step Lucas numbers (A001644).

Original entry on oeis.org

1, 3, 9, 11, 21, 27, 39, 49, 71, 81, 121, 131, 241, 243, 343, 441, 443, 729, 815, 1331, 1499, 1521, 2187, 2401, 2757, 5041, 5071, 6561, 9261, 9327, 14641, 16807, 17155, 17161, 19683, 31553, 58035, 58081, 59049, 59319, 106743, 117649, 161051, 177147
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2005

Keywords

Comments

A001644 3-Step Lucas numbers. A000032 Lucas numbers. A001254 Squares of Lucas numbers. A075155 Cubes of Lucas numbers. A099923 Fourth powers of Lucas numbers. A103325 Fifth powers of Lucas numbers. A103324 Square array T(n,k) read by antidiagonals: powers of Lucas numbers. A105317 Powers of Fibonacci numbers.

Crossrefs

Formula

{A001644(n)} U {A001644(n)^2} U {A001644(n)^3}...

A371805 Composite numbers k that divide A001644(k) - 1.

Original entry on oeis.org

182, 25201, 54289, 63618, 194390, 750890, 804055, 1889041, 2487941, 3542533, 3761251, 6829689, 12032021, 12649337, 18002881
Offset: 1

Views

Author

Robert FERREOL, Apr 06 2024

Keywords

Comments

If k is prime, k divides A001644(k) - 1; and since A001644(k) satisfies a tribonacci recurrence, these numbers could be called tribonacci pseudoprimes.

Examples

			(A001644(182)-1)/182 = 8056145960961609628091266244940745410646318417.
		

Crossrefs

Cf. A001644.
Cf. A005845 (composite k that divide Lucas(k) - 1).
Cf. A013998 (composite k that divide Perrin(k) - 1).

Programs

  • Maple
    A001644:=proc(n) option remember: if n=0 then 3 elif n=1 then 1 elif n=2 then 3 else A001644(n-1)+A001644(n-2)+A001644(n-3) fi end:
    test:=n->A001644(n) mod n = 1:select(test and not isprime, [seq(n, n=1..100000)]);
  • Mathematica
    seq[kmax_] := Module[{x = 1, y = 3, z = 7, s = {}, t}, Do[t = x + y + z; If[Mod[t, k] == 1 && CompositeQ[k], AppendTo[s, k]]; x = y; y = z; z = t, {k, 4, kmax}]; s]; seq[200000] (* Amiram Eldar, Apr 06 2024 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        t0, t1, t2 = 3, 1, 3
        for k in count(1):
            t0, t1, t2 = t1, t2, t0+t1+t2
            if k > 1 and not isprime(k) and (t0-1)%k == 0:
                yield k
    print(list(islice(agen(), 5))) # Michael S. Branicky, Apr 07 2024

Extensions

a(13)-a(15) from Amiram Eldar, Apr 07 2024

A000073 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) for n >= 3 with a(0) = a(1) = 0 and a(2) = 1.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, 121415, 223317, 410744, 755476, 1389537, 2555757, 4700770, 8646064, 15902591, 29249425, 53798080, 98950096, 181997601, 334745777, 615693474, 1132436852
Offset: 0

Views

Author

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Also (for n > 1) number of ordered trees with n+1 edges and having all leaves at level three. Example: a(4)=2 because we have two ordered trees with 5 edges and having all leaves at level three: (i) one edge emanating from the root, at the end of which two paths of length two are hanging and (ii) one path of length two emanating from the root, at the end of which three edges are hanging. - Emeric Deutsch, Jan 03 2004
a(n) is the number of compositions of n-2 with no part greater than 3. Example: a(5)=4 because we have 1+1+1 = 1+2 = 2+1 = 3. - Emeric Deutsch, Mar 10 2004
Let A denote the 3 X 3 matrix [0,0,1;1,1,1;0,1,0]. a(n) corresponds to both the (1,2) and (3,1) entries in A^n. - Paul Barry, Oct 15 2004
Number of permutations satisfying -k <= p(i)-i <= r, i=1..n-2, with k=1, r=2. - Vladimir Baltic, Jan 17 2005
Number of binary sequences of length n-3 that have no three consecutive 0's. Example: a(7)=13 because among the 16 binary sequences of length 4 only 0000, 0001 and 1000 have 3 consecutive 0's. - Emeric Deutsch, Apr 27 2006
Therefore, the complementary sequence to A050231 (n coin tosses with a run of three heads). a(n) = 2^(n-3) - A050231(n-3) - Toby Gottfried, Nov 21 2010
Convolved with the Padovan sequence = row sums of triangle A153462. - Gary W. Adamson, Dec 27 2008
For n > 1: row sums of the triangle in A157897. - Reinhard Zumkeller, Jun 25 2009
a(n+2) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 0, 0, 1; 1, 0, 0] or [1, 1, 0; 1, 0, 1; 1, 0, 0] or [1, 1, 1; 1, 0, 0; 0, 1, 0] or [1, 0, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
a(n-1) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 0, 1; 1, 1, 1; 0, 1, 0], [0, 1, 0; 0, 1, 1; 1, 1, 0], [0, 0, 1; 1, 0, 1; 0, 1, 1] or [0, 1, 0; 0, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
Also row sums of A082601 and of A082870. - Reinhard Zumkeller, Apr 13 2014
Least significant bits are given in A021913 (a(n) mod 2 = A021913(n)). - Andres Cicuttin, Apr 04 2016
The nonnegative powers of the tribonacci constant t = A058265 are t^n = a(n)*t^2 + (a(n-1) + a(n-2))*t + a(n-1)*1, for n >= 0, with a(-1) = 1 and a(-2) = -1. This follows from the recurrences derived from t^3 = t^2 + t + 1. See the example in A058265 for the first nonnegative powers. For the negative powers see A319200. - Wolfdieter Lang, Oct 23 2018
The term "tribonacci number" was coined by Mark Feinberg (1963), a 14-year-old student in the 9th grade of the Susquehanna Township Junior High School in Pennsylvania. He died in 1967 in a motorcycle accident. - Amiram Eldar, Apr 16 2021
Andrews, Just, and Simay (2021, 2022) remark that it has been suggested that this sequence is mentioned in Charles Darwin's Origin of Species as bearing the same relation to elephant populations as the Fibonacci numbers do to rabbit populations. - N. J. A. Sloane, Jul 12 2022

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + 24*x^8 + 44*x^9 + 81*x^10 + ...
		

References

  • M. Agronomof, Sur une suite récurrente, Mathesis (Series 4), Vol. 4 (1914), pp. 125-126.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000045, A000078, A000213, A000931, A001590 (first differences, also a(n)+a(n+1)), A001644, A008288 (tribonacci triangle), A008937 (partial sums), A021913, A027024, A027083, A027084, A046738 (Pisano periods), A050231, A054668, A062544, A063401, A077902, A081172, A089068, A118390, A145027, A153462, A230216.
A057597 is this sequence run backwards: A057597(n) = a(1-n).
Row 3 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).
Partitions: A240844 and A117546.
Cf. also A092836 (subsequence of primes), A299399 = A092835 + 1 (indices of primes).

Programs

  • GAP
    a:=[0,0,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Oct 24 2018
  • Haskell
    a000073 n = a000073_list !! n
    a000073_list = 0 : 0 : 1 : zipWith (+) a000073_list (tail
                              (zipWith (+) a000073_list $ tail a000073_list))
    -- Reinhard Zumkeller, Dec 12 2011
    
  • Magma
    [n le 3 select Floor(n/3) else Self(n-1)+Self(n-2)+Self(n-3): n in [1..70]]; // Vincenzo Librandi, Jan 29 2016
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1,3]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 19 2016
    # second Maple program:
    A000073:=proc(n) option remember; if n <= 1 then 0 elif n=2 then 1 else procname(n-1)+procname(n-2)+procname(n-3); fi; end; # N. J. A. Sloane, Aug 06 2018
  • Mathematica
    CoefficientList[Series[x^2/(1 - x - x^2 - x^3), {x, 0, 50}], x]
    a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Array[a, 36, 0] (* Robert G. Wilson v, Nov 07 2010 *)
    LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 24 2011 *)
    a[n_] := SeriesCoefficient[If[ n < 0, x/(1 + x + x^2 - x^3), x^2/(1 - x - x^2 - x^3)], {x, 0, Abs @ n}] (* Michael Somos, Jun 01 2013 *)
    Table[-RootSum[-1 - # - #^2 + #^3 &, -#^n - 9 #^(n + 1) + 4 #^(n + 2) &]/22, {n, 0, 20}] (* Eric W. Weisstein, Nov 09 2017 *)
  • Maxima
    A000073[0]:0$
    A000073[1]:0$
    A000073[2]:1$
    A000073[n]:=A000073[n-1]+A000073[n-2]+A000073[n-3]$
      makelist(A000073[n], n, 0, 40);  /* Emanuele Munarini, Mar 01 2011 */
    
  • PARI
    {a(n) = polcoeff( if( n<0, x / ( 1 + x + x^2 - x^3), x^2 / ( 1 - x - x^2 - x^3) ) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Sep 03 2007 */
    
  • PARI
    my(x='x+O('x^99)); concat([0, 0], Vec(x^2/(1-x-x^2-x^3))) \\ Altug Alkan, Apr 04 2016
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,1,1]^n)[1,3] \\ Charles R Greathouse IV, Apr 18 2016, simplified by M. F. Hasler, Apr 18 2018
    
  • Python
    def a(n, adict={0:0, 1:0, 2:1}):
        if n in adict:
            return adict[n]
        adict[n]=a(n-1)+a(n-2)+a(n-3)
        return adict[n] # David Nacin, Mar 07 2012
    from functools import cache
    @cache
    def A000073(n: int) -> int:
        if n <= 1: return 0
        if n == 2: return 1
        return A000073(n-1) + A000073(n-2) + A000073(n-3) # Peter Luschny, Nov 21 2022
    

Formula

G.f.: x^2/(1 - x - x^2 - x^3).
G.f.: x^2 / (1 - x / (1 - x / (1 + x^2 / (1 + x)))). - Michael Somos, May 12 2012
G.f.: Sum_{n >= 0} x^(n+2) *[ Product_{k = 1..n} (k + k*x + x^2)/(1 + k*x + k*x^2) ] = x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + ... may be proved by the method of telescoping sums. - Peter Bala, Jan 04 2015
a(n+1)/a(n) -> A058265. a(n-1)/a(n) -> A192918.
a(n) = central term in M^n * [1 0 0] where M = the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 1 1]. (M^n * [1 0 0] = [a(n-1) a(n) a(n+1)].) a(n)/a(n-1) tends to the tribonacci constant, 1.839286755... = A058265, an eigenvalue of M and a root of x^3 - x^2 - x - 1 = 0. - Gary W. Adamson, Dec 17 2004
a(n+2) = Sum_{k=0..n} T(n-k, k), where T(n, k) = trinomial coefficients (A027907). - Paul Barry, Feb 15 2005
A001590(n) = a(n+1) - a(n); A001590(n) = a(n-1) + a(n-2) for n > 1; a(n) = (A000213(n+1) - A000213(n))/2; A000213(n-1) = a(n+2) - a(n) for n > 0. - Reinhard Zumkeller, May 22 2006
Let C = the tribonacci constant, 1.83928675...; then C^n = a(n)*(1/C) + a(n+1)*(1/C + 1/C^2) + a(n+2)*(1/C + 1/C^2 + 1/C^3). Example: C^4 = 11.444...= 2*(1/C) + 4*(1/C + 1/C^2) + 7*(1/C + 1/C^2 + 1/C^3). - Gary W. Adamson, Nov 05 2006
a(n) = j*C^n + k*r1^n + L*r2^n where C is the tribonacci constant (C = 1.8392867552...), real root of x^3-x^2-x-1=0, and r1 and r2 are the two other roots (which are complex), r1 = m+p*i and r2 = m-p*i, where i = sqrt(-1), m = (1-C)/2 (m = -0.4196433776...) and p = ((3*C-5)*(C+1)/4)^(1/2) = 0.6062907292..., and where j = 1/((C-m)^2 + p^2) = 0.1828035330..., k = a+b*i, and L = a-b*i, where a = -j/2 = -0.0914017665... and b = (C-m)/(2*p*((C-m)^2 + p^2)) = 0.3405465308... . - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) = 3*c*((1/3)*(a+b+1))^n/(c^2-2*c+4) where a=(19+3*sqrt(33))^(1/3), b=(19-3*sqrt(33))^(1/3), c=(586+102*sqrt(33))^(1/3). Round to the nearest integer. - Al Hakanson (hawkuu(AT)gmail.com), Feb 02 2009
a(n) = round(3*((a+b+1)/3)^n/(a^2+b^2+4)) where a=(19+3*sqrt(33))^(1/3), b=(19-3*sqrt(33))^(1/3).. - Anton Nikonov
Another form of the g.f.: f(z) = (z^2-z^3)/(1-2*z+z^4). Then we obtain a(n) as a sum: a(n) = Sum_{i=0..floor((n-2)/4)} ((-1)^i*binomial(n-2-3*i,i)*2^(n-2-4*i)) - Sum_{i=0..floor((n-3)/4)} ((-1)^i*binomial(n-3-3*i,i)*2^(n-3-4*i)) with natural convention: Sum_{i=m..n} alpha(i) = 0 for m > n. - Richard Choulet, Feb 22 2010
a(n+2) = Sum_{k=0..n} Sum_{i=k..n, mod(4*k-i,3)=0} binomial(k,(4*k-i)/3)*(-1)^((i-k)/3)*binomial(n-i+k-1,k-1). - Vladimir Kruchinin, Aug 18 2010
a(n) = 2*a(n-2) + 2*a(n-3) + a(n-4). - Gary Detlefs, Sep 13 2010
Sum_{k=0..2*n} a(k+b)*A027907(n,k) = a(3*n+b), b >= 0 (see A099464, A074581).
a(n) = 2*a(n-1) - a(n-4), with a(0)=a(1)=0, a(2)=a(3)=1. - Vincenzo Librandi, Dec 20 2010
Starting (1, 2, 4, 7, ...) is the INVERT transform of (1, 1, 1, 0, 0, 0, ...). - Gary W. Adamson, May 13 2013
G.f.: Q(0)*x^2/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x + x^2)/( x*(4*k+3 + x + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013
a(n+2) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2*j,k)*binomial(j,k)*2^k. - Tony Foster III, Sep 08 2017
Sum_{k=0..n} (n-k)*a(k) = (a(n+2) + a(n+1) - n - 1)/2. See A062544. - Yichen Wang, Aug 20 2020
a(n) = A008937(n-1) - A008937(n-2) for n >= 2. - Peter Luschny, Aug 20 2020
From Yichen Wang, Aug 27 2020: (Start)
Sum_{k=0..n} a(k) = (a(n+2) + a(n) - 1)/2. See A008937.
Sum_{k=0..n} k*a(k) = ((n-1)*a(n+2) - a(n+1) + n*a(n) + 1)/2. See A337282. (End)
For n > 1, a(n) = b(n) where b(1) = 1 and then b(n) = Sum_{k=1..n-1} b(n-k)*A000931(k+2). - J. Conrad, Nov 24 2022
Conjecture: the congruence a(n*p^(k+1)) + a(n*p^k) + a(n*p^(k-1)) == 0 (mod p^k) holds for positive integers k and n and for all the primes p listed in A106282. - Peter Bala, Dec 28 2022
Sum_{k=0..n} k^2*a(k) = ((n^2-4*n+6)*a(n+1) - (2*n^2-2*n+5)*a(n) + (n^2-2*n+3)*a(n-1) - 3)/2. - Prabha Sivaramannair, Feb 10 2024
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(3*r^2-2*r-1). - Fabian Pereyra, Nov 23 2024

Extensions

Minor edits by M. F. Hasler, Apr 18 2018
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A214727 a(n) = a(n-1) + a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 2.

Original entry on oeis.org

1, 2, 2, 5, 9, 16, 30, 55, 101, 186, 342, 629, 1157, 2128, 3914, 7199, 13241, 24354, 44794, 82389, 151537, 278720, 512646, 942903, 1734269, 3189818, 5866990, 10791077, 19847885, 36505952, 67144914, 123498751, 227149617, 417793282
Offset: 0

Views

Author

Abel Amene, Jul 27 2012

Keywords

Comments

Part of a group of sequences defined by a(0), a(1)=a(2), a(n) = a(n-1) + a(n-2) + a(n-3) which is a subgroup of sequences with linear recurrences and constant coefficients listed in the index.
Note: A000073 (with offset=1), 1 followed by A000073, A000213, A141523, A214727, A214825 to A214831 completely define possible sequences with a(0)=0,1,2...9 and a(1)=a(2)=0,1,2...9 excluding any multiples of these sequences and the trivial case of a(0)=a(1)=a(2)=0.
Note: allowing a(0)=0 and a(1)=a(2)=1,2,3....9 leads to A000073 (with offset=1) and its multiples.
Note: allowing a(0)=1,2,3....9 a(1)=a(2)=0 leads to 1 followed by A000073 and its multiples.
With offset of 6 this sequence is the 8th row of tribonacci array A136175.

Examples

			G.f. = 1 + 2*x + 2*x^2 + 5 x^3 + 9*x^4 + 16*x^5 + 30*x^6 + 55*x^7 + ...
		

Crossrefs

Programs

  • GAP
    a:=[1,2,2];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Haskell
    a214727 n = a214727_list !! n
    a214727_list = 1 : 2 : 2 : zipWith3 (\x y z -> x + y + z)
       a214727_list (tail a214727_list) (drop 2 a214727_list)
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,2,2},40] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[1;2;2])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    my(x='x+O('x^40)); Vec((1+x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • SageMath
    ((1+x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (1+x-x^2)/(1-x-x^2-x^3).
a(n) = K(n) -2*T(n+1) + 3*T(n), where K(n) = A001644(n), T(n) = A000073(n+1). - G. C. Greubel, Apr 23 2019
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+2*r+1). - Fabian Pereyra, Nov 20 2024

A001610 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0 and a(1) = 2.

Original entry on oeis.org

0, 2, 3, 6, 10, 17, 28, 46, 75, 122, 198, 321, 520, 842, 1363, 2206, 3570, 5777, 9348, 15126, 24475, 39602, 64078, 103681, 167760, 271442, 439203, 710646, 1149850, 1860497, 3010348, 4870846, 7881195, 12752042, 20633238, 33385281, 54018520
Offset: 0

Views

Author

Keywords

Comments

For prime p, p divides a(p-1). - T. D. Noe, Apr 11 2009 [This result follows immediately from the fact that A032190(n) = (1/n)*Sum_{d|n} a(d-1)*phi(n/d). - Petros Hadjicostas, Sep 11 2017]
Generalization. If a(0,x)=0, a(1,x)=2 and, for n>=2, a(n,x)=a(n-1,x)+x*a(n-2,x)+1, then we obtain a sequence of polynomials Q_n(x)=a(n,x) of degree floor((n-1)/2), such that p is prime iff all coefficients of Q_(p-1)(x) are multiple of p (sf. A174625). Thus a(n) is the sum of coefficients of Q_(n-1)(x). - Vladimir Shevelev, Apr 23 2010
Odd composite numbers n such that n divides a(n-1) are in A005845. - Zak Seidov, May 04 2010; comment edited by N. J. A. Sloane, Aug 10 2010
a(n) is the number of ways to modify a circular arrangement of n objects by swapping one or more adjacent pairs. E.g., for 1234, new arrangements are 2134, 2143, 1324, 4321, 1243, 4231 (taking 4 and 1 to be adjacent) and a(4) = 6. - Toby Gottfried, Aug 21 2011
For n>2, a(n) equals the number of Markov equivalence classes with skeleton the cycle on n+1 nodes. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
From Gus Wiseman, Feb 12 2019: (Start)
For n > 0, also the number of nonempty subsets of {1, ..., n + 1} containing no two cyclically successive elements (cyclically successive means 1 succeeds n + 1). For example, the a(5) = 17 stable subsets are:
{1}, {2}, {3}, {4}, {5}, {6},
{1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {2,6}, {3,5}, {3,6}, {4,6},
{1,3,5}, {2,4,6}.
(End)
Also the rank of the n-Lucas cube graph. - Eric W. Weisstein, Aug 01 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..40], n-> Lucas(1,-1,n+1)[2] -1); # G. C. Greubel, Jul 12 2019
  • Haskell
    a001610 n = a001610_list !! n
    a001610_list =
       0 : 2 : map (+ 1) (zipWith (+) a001610_list (tail a001610_list))
    -- Reinhard Zumkeller, Aug 21 2011
    
  • Magma
    I:=[0,2]; [n le 2 select I[n] else Self(n-1)+Self(n-2)+1: n in [1..40]]; // Vincenzo Librandi, Mar 20 2015
    
  • Magma
    [Lucas(n+1) -1: n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    t = {0, 2}; Do[AppendTo[t, t[[-1]] + t[[-2]] + 1], {n, 2, 40}]; t
    RecurrenceTable[{a[n] == a[n - 1] +a[n - 2] +1, a[0] == 0, a[1] == 2}, a, {n, 0, 40}] (* Robert G. Wilson v, Apr 13 2013 *)
    CoefficientList[Series[x (2 - x)/((1 - x - x^2) (1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    Table[Fibonacci[n] + Fibonacci[n + 2] - 1, {n, 0, 40}] (* Eric W. Weisstein, Feb 13 2018 *)
    LinearRecurrence[{2, 0, -1}, {2, 3, 6}, 20] (* Eric W. Weisstein, Feb 13 2018 *)
    Table[LucasL[n] - 1, {n, 20}] (* Eric W. Weisstein, Aug 01 2023 *)
    LucasL[Range[20]] - 1 (* Eric W. Weisstein, Aug 01 2023 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,0,2]^n*[0;2;3])[1,1] \\ Charles R Greathouse IV, Sep 08 2016
    
  • PARI
    vector(40, n, f=fibonacci; f(n+1)+f(n-1)-1) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    [lucas_number2(n+1,1,-1) -1 for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = A000204(n)-1 = A000032(n+1)-1 = A000071(n+1) + A000045(n).
G.f.: x*(2-x)/((1-x-x^2)*(1-x)) = (2*x-x^2)/(1-2*x+x^3). [Simon Plouffe in his 1992 dissertation]
a(n) = F(n) + F(n+2) - 1 where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Jan 31 2008
a(n) = A014217(n+1) - A000035(n+1). - Paul Curtz, Sep 21 2008
a(n) = Sum_{i=1..floor((n+1)/2)} ((n+1)/i)*C(n-i,i-1). In more general case of polynomials Q_n(x)=a(n,x) (see our comment) we have Q_n(x) = Sum_{i=1..floor((n+1)/2)}((n+1)/i)*C(n-i,i-1)*x^(i-1). - Vladimir Shevelev, Apr 23 2010
a(n) = Sum_{k=0..n-1} Lucas(k), where Lucas(n) = A000032(n). - Gary Detlefs, Dec 07 2010
a(0)=0, a(1)=2, a(2)=3; for n>=3, a(n) = 2*a(n-1) - a(n-3). - George F. Johnson, Jan 28 2013
For n > 1, a(n) = A048162(n+1) + 3. - Toby Gottfried, Apr 13 2013
For n > 0, a(n) = A169985(n + 1) - 1. - Gus Wiseman, Feb 12 2019

A141523 Expansion of (3-2*x-3*x^2)/(1-x-x^2-x^3).

Original entry on oeis.org

3, 1, 1, 5, 7, 13, 25, 45, 83, 153, 281, 517, 951, 1749, 3217, 5917, 10883, 20017, 36817, 67717, 124551, 229085, 421353, 774989, 1425427, 2621769, 4822185, 8869381, 16313335, 30004901, 55187617, 101505853, 186698371, 343391841
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 11 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 1, 1]; [n le 3 select I[n] else Self(n-1)+Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012
    
  • Mathematica
    a[0]=3; a[1]=1; a[2]=1; a[n_]:= a[n]=a[n-1]+a[n-2]+a[n-3]; Table[a[n], {n, 0, 40}]
    LinearRecurrence[{1, 1, 1}, {3, 1, 1}, 40] (* Vincenzo Librandi, Oct 17 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[3;1;1])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    my(x='x+O('x^40)); Vec((3-2*x-3*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((3-2*x-3*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

a(0)=3; a(1)=1; a(2)=1; thereafter a(n) = a(n-1) + a(n-2) + a(n-3).
From R. J. Mathar, Aug 22 2008: (Start)
O.g.f.: (3-2*x-3*x^2)/(1-x-x^2-x^3).
a(n) = A001644(n) - 2*A000073(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 17 2012

A214899 a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=2, a(1)=1, a(2)=2.

Original entry on oeis.org

2, 1, 2, 5, 8, 15, 28, 51, 94, 173, 318, 585, 1076, 1979, 3640, 6695, 12314, 22649, 41658, 76621, 140928, 259207, 476756, 876891, 1612854, 2966501, 5456246, 10035601, 18458348, 33950195, 62444144, 114852687, 211247026, 388543857
Offset: 0

Views

Author

Abel Amene, Jul 29 2012

Keywords

Comments

With offset of 5 this sequence is the 4th row of the tribonacci array A136175.
For n>0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and trominoes, such that there must be exactly one "special" square (say, of a different color) in the first three cells. - Greg Dresden and Emma Li, Aug 17 2024
From Greg Dresden and Jiarui Zhou, Jun 30 2025: (Start)
For n >= 3, a(n) is the number of ways to tile this shape of length n-1 with squares, dominos, and trominos (of length 3):
._
|||_|||_|||
|_|
As an example, here is one of the a(9) = 173 ways to tile this shape of length 8:
._
|| |__|_|___|
|_|. (End)

Crossrefs

Programs

  • GAP
    a:=[2,1,2];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{2,1,2},34] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    a(n)=([0,1,0;0,0,1;1,1,1]^n*[2;1;2])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    my(x='x+O('x^40)); Vec((2-x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((2-x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (2-x-x^2)/(1-x-x^2-x^3).
a(n) = K(n) - T(n+1) + T(n), where K(n) = A001644(n), T(n) = A000073(n+1). - G. C. Greubel, Apr 23 2019

A214825 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 3.

Original entry on oeis.org

1, 3, 3, 7, 13, 23, 43, 79, 145, 267, 491, 903, 1661, 3055, 5619, 10335, 19009, 34963, 64307, 118279, 217549, 400135, 735963, 1353647, 2489745, 4579355, 8422747, 15491847, 28493949, 52408543, 96394339, 177296831, 326099713, 599790883, 1103187427
Offset: 0

Views

Author

Abel Amene, Jul 28 2012

Keywords

Comments

Part of a group of sequences defined by a(0), a(1)=a(2), a(n) = a(n-1) + a(n-2) + a(n-3) which is a subgroup of sequences with linear recurrences and constant coefficients listed in the index. See Comments in A214727.

Crossrefs

Programs

  • GAP
    a:=[1,3,3];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+2*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{1,1,1},{1,3,3},40] (* Harvey P. Dale, Oct 05 2013 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[1;3;3])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    my(x='x+O('x^40)); Vec((1+2*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • SageMath
    ((1+2*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

G.f.: (1+2*x-x^2)/(1-x-x^2-x^3).
a(n) = K(n) - 2*T(n+1) + 4*T(n), where K(n) = A001644(n), and T(n) = A000073(n+1). - G. C. Greubel, Apr 23 2019
Previous Showing 21-30 of 85 results. Next