A294175
a(n) = 2^(n-1) + ((1+(-1)^n)/4)*binomial(n, n/2) - binomial(n, floor(n/2)).
Original entry on oeis.org
0, 0, 1, 1, 5, 6, 22, 29, 93, 130, 386, 562, 1586, 2380, 6476, 9949, 26333, 41226, 106762, 169766, 431910, 695860, 1744436, 2842226, 7036530, 11576916, 28354132, 47050564, 114159428, 190876696, 459312152, 773201629, 1846943453, 3128164186, 7423131482
Offset: 0
For example, for n=5, a(5)=6 and the 6 subsets are {2}, {4}, {2,4}, {1,2,4}, {2,3,4}, {2,4,5}.
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, Pinnacle sets of signed permutations, arXiv:2301.02628 [math.CO] (2023).
The following relate to compositions of n + 1 with alternating sum k < 0.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A345197 counts compositions by length and alternating sum.
Cf.
A000070,
A001700,
A007318,
A025047,
A032443,
A034871,
A106356,
A114121,
A126869,
A163493,
A344743,
A345908,
A289871,
A359066,
A359067.
-
f:= gfun:-rectoproc({(8+8*n)*a(n)+(4*n+16)*a(1+n)+(-20-6*n)*a(n+2)+(-5-n)*a(n+3)+(5+n)*a(n+4), a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Feb 12 2018
-
f[n_] := 2^(n - 1) + ((1 + (-1)^n)/4) Binomial[n, n/2] - Binomial[n, Floor[n/2]]; Array[f, 38, 0] (* Robert G. Wilson v, Feb 10 2018 *)
Table[Length[Select[Tuples[{0,1},{n+1}],First[#]==1&&Count[#,0]>Count[#,1]&]],{n,0,10}] (* Gus Wiseman, Jul 22 2021 *)
A057977
GCD of consecutive central binomial coefficients: a(n) = gcd(A001405(n+1), A001405(n)).
Original entry on oeis.org
1, 1, 1, 3, 2, 10, 5, 35, 14, 126, 42, 462, 132, 1716, 429, 6435, 1430, 24310, 4862, 92378, 16796, 352716, 58786, 1352078, 208012, 5200300, 742900, 20058300, 2674440, 77558760, 9694845, 300540195, 35357670, 1166803110, 129644790, 4537567650
Offset: 0
This GCD equals A001405(n) for the smaller odd number gcd(C(12,6), C(11,5)) = gcd(924,462) = 462 = C(11,5).
-
A057977_ogf := proc(z) b := z -> (z-1)/(2*z^2);
(2 + b(z))/sqrt(1-4*z^2) - b(z) end:
seq(coeff(series(A057977_ogf(z),z,n+3),z,n), n = 0..35);
A057977_rec := n -> `if`(n=0, 1, A057977_rec(n-1)*n^modp(n,2)
*(4/(n+2))^modp(n+1,2));
A057977_int := proc(n) int((x^(2*n-1)*((4-x)^2/x)^cos(Pi*n))^(1/4),x=0..4)/(2*Pi); round(evalf(%)) end:
A057977 := n -> (n!/iquo(n,2)!^2) / (iquo(n,2)+1):
seq(A057977(n), n=0..35); # Peter Luschny, Apr 30 2011
b := proc(p, q) option remember; local S;
if p = 0 and q = 0 then return 1 fi;
if p < 0 or p > q then return 0 fi;
S := b(p-2, q) + b(p, q-2);
if type(q, odd) then S := S + b(p-1, q-1) fi;
S end:
seq(b(n, n), n=0..35); # Peter Luschny, Feb 23 2019
-
a[n_] := n! / (Quotient[n, 2]!^2 * (Quotient[n, 2]+1)); Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 03 2012, after Peter Luschny *)
-
a(n)=if(n<0,0,(n+n%2)!/(n\2+1)!/(n\2+n%2)!/(1+n%2))
a(n)=n!/(n\2)!^2/(n\2+1) \\ Charles R Greathouse IV, May 02 2011
-
def A057977():
x, n = 1, 1
while True:
yield x
m = n if is_odd(n) else 4/(n+2)
x *= m
n += 1
a = A057977(); [next(a) for i in range(36)] # Peter Luschny, Oct 21 2013
A349156
Number of integer partitions of n whose mean is not an integer.
Original entry on oeis.org
1, 0, 0, 1, 1, 5, 3, 13, 11, 21, 28, 54, 31, 99, 111, 125, 165, 295, 259, 488, 425, 648, 933, 1253, 943, 1764, 2320, 2629, 2962, 4563, 3897, 6840, 6932, 9187, 11994, 12840, 12682, 21635, 25504, 28892, 28187, 44581, 42896, 63259, 66766, 74463, 104278, 124752
Offset: 0
The a(3) = 1 through a(8) = 11 partitions:
(21) (211) (32) (2211) (43) (332)
(41) (3111) (52) (422)
(221) (21111) (61) (431)
(311) (322) (521)
(2111) (331) (611)
(421) (22211)
(511) (32111)
(2221) (41111)
(3211) (221111)
(4111) (311111)
(22111) (2111111)
(31111)
(211111)
Below, "!" means either enumerative or set theoretical complement.
The version for nonempty subsets is !
A051293.
The version for distinct prime factors is
A176587, complement
A078174.
The multiplicative version (factorizations) is !
A326622, geometric !
A326028.
The conjugate is ranked by !
A326836.
The conjugate strict version is !
A326850.
These partitions are ranked by
A348551.
A327472 counts partitions not containing their mean, complement of
A237984.
Cf.
A001700,
A074761,
A098743,
A143773,
A175397,
A175761,
A298423,
A326027,
A326641,
A326842,
A326849,
A327778.
-
Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}]
A048645
Integers with one or two 1-bits in their binary expansion.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032
Offset: 1
From _Omar E. Pol_, Feb 18 2015: (Start)
Also, written as a triangle T(j,k), k >= 1, in which row lengths are the terms of A028310:
1;
2;
3, 4;
5, 6, 8;
9, 10, 12, 16;
17, 18, 20, 24, 32;
33, 34, 36, 40, 48, 64;
65, 66, 68, 72, 80, 96, 128;
...
It appears that column 1 is A094373.
It appears that the right border gives A000079.
It appears that the first differences in every row that contains at least two terms give the first h-1 powers of 2, where h is the length of the row.
(End)
- Reinhard Zumkeller, Rows n = 1..100 of triangle, flattened
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Łukaszyk, Assembly Theory - Formalizing Assembly Spaces and Discovering Patterns and Bounds, Preprints.org (2025).
- Michael P. Connolly, Probabilistic rounding error analysis for numerical linear algebra, Ph. D. Thesis, Univ. Manchester (UK, 2022). See p. 55.
- USA Mathematical Olympiad, Problem 4, 2008.
- Eric Weisstein's World of Mathematics, Automatic Set.
- Eric Weisstein's World of Mathematics, Binomial Coefficient.
- Index entries for sequences related to cellular automata.
- Index to sequences related to Olympiads and other Mathematical competitions.
Cf.
A018900,
A048623,
A046097,
A169707,
A147562,
A162795,
A003056,
A002262,
A094373,
A028310,
A179951.
-
import Data.List (insert)
a048645 n k = a048645_tabl !! (n-1) !! (k-1)
a048645_row n = a048645_tabl !! (n-1)
a048645_tabl = iterate (\xs -> insert (2 * head xs + 1) $ map ((* 2)) xs) [1]
a048645_list = concat a048645_tabl
-- Reinhard Zumkeller, Dec 19 2012
-
lincom:=proc(a,b,n) local i,j,s,m; s:={}; for i from 0 to n do for j from 0 to n do m:=a^i+b^j; if m<=n then s:={op(s),m} fi od; od; lprint(sort([op(s)])); end: lincom(2,2,1000); # Zerinvary Lajos, Feb 24 2007
-
Select[Range[2000], 1 <= DigitCount[#, 2, 1] <= 2&] (* Jean-François Alcover, Mar 06 2016 *)
-
isok(n) = my(hw = hammingweight(n)); (hw == 1) || (hw == 2); \\ Michel Marcus, Mar 06 2016
-
a(n) = if(n <= 2, return(n), n-=2); my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)) \\ David A. Corneth, Jan 02 2019
-
nxt(n) = msb = 1 << logint(n, 2); if(n == msb, n + 1, t = n - msb; n + t) \\ David A. Corneth, Jan 02 2019
-
def ok(n): return 1 <= bin(n)[2:].count('1') <= 2
print([k for k in range(1033) if ok(k)]) # Michael S. Branicky, Jan 22 2022
-
from itertools import count, islice
def agen(): # generator of terms
for d in count(0):
msb = 2**d
yield msb
for lsb in range(d):
yield msb + 2**lsb
print(list(islice(agen(), 60))) # Michael S. Branicky, Jan 22 2022
-
from math import isqrt, comb
def A048645(n): return (1<<(m:=isqrt(n-1<<3)+1>>1)-1)+(1<<(n-2-comb(m,2))) if n>1 else 1 # Chai Wah Wu, Oct 30 2024
A005789
3-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 5, 42, 462, 6006, 87516, 1385670, 23371634, 414315330, 7646001090, 145862174640, 2861142656400, 57468093927120, 1178095925505960, 24584089974896430, 521086299271824330, 11198784501894470250, 243661974372798631650, 5360563436201569896300
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Snover, Stephen L.; and Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.
- Alois P. Heinz, Table of n, a(n) for n = 0..700
- Joerg Arndt, The a(3)=42 Young tableaux of shape [3,3,3].
- Nicolas Borie, Three-dimensional Catalan numbers and product-coproduct prographs, arXiv:1704.00212 [math.CO], 2017.
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- Paul Drube, Maxwell Krueger, Ashley Skalsky, and Meghan Wren, Set-Valued Young Tableaux and Product-Coproduct Prographs, arXiv:1710.02709 [math.CO], 2017.
- Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - _N. J. A. Sloane_, Jul 07 2012
- Katarzyna Górska and Karol A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013.
- Martin Griffiths and Nick Lord, The hook-length formula and generalised Catalan numbers, The Mathematical Gazette Vol. 95, No. 532 (March 2011), pp. 23-30
- Richard Kenyon, Jason Miller, Scott Sheffield, and David B. Wilson, Bipolar orientations on planar maps and SLE_12, arXiv preprint arXiv:1511.04068 [math.PR], 2015. Also The Annals of Probability (2019) Vol. 47, No. 3, 1240-1269.
- Joel Brewster Lewis, Pattern avoidance and RSK-like algorithms for alternating permutations and Young tableaux, arXiv:0909.4966 [math.CO], 2009-2011. [From _Joel B. Lewis_, Oct 04 2009]
- Joel Brewster Lewis, Pattern Avoidance for Alternating Permutations and Reading Words of Tableaux, Ph. D. Dissertation, Department of Mathematics, MIT, 2012. - From _N. J. A. Sloane_, Oct 12 2012
- Andrew Lohr, Several Topics in Experimental Mathematics, arXiv:1805.00076 [math.CO], 2018.
- Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
- Dimana Miroslavova Pramatarova, Investigating the Periodicity of Weighted Catalan Numbers and Generalizing Them to Higher Dimensions, MIT Res. Sci. Instit. (2025). See p. 13.
- Maya Sankar, Further Bijections to Pattern-Avoiding Valid Hook Configurations, arXiv:1910.08895 [math.CO], 2019.
- Stephen Snover, Letter to N. J. A. Sloane, May 1991
- Robert A. Sulanke, Three-dimensional Narayana and Schröder numbers, Theoretical Computer Science, Volume 346, Issues 2-3, 28 November 2005, Pages 455-468.
- Robert A. Sulanke, Generalizing Narayana and Schroeder Numbers to Higher Dimensions, Electron. J. Combin. 11 (2004), Research Paper 54, 20 pp. (see page 16)
- Stephanie F. Troyer and Stephen L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)
- Wolfgang Unger, Combinatorics of Lattice QCD at Strong Coupling, arXiv:1411.4493 [hep-lat], 2014.
- Manuel Wettstein, Trapezoidal Diagrams, Upward Triangulations, and Prime Catalan Numbers, arXiv:1602.07235 [cs.CG], 2016 and Discr. Comp. Geom. 58 (2017) 505-525.
- Sherry H. F. Yan, On Wilf equivalence for alternating permutations, Elect. J. Combinat.; 20 (2013), #P58.
-
[2*Factorial(3*n)/(Factorial(n)*Factorial(n+1)*Factorial(n+2)): n in [0..20]]; // Vincenzo Librandi, Oct 14 2017
-
a:= n-> (3*n)! *mul(i!/(n+i)!, i=0..2):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 23 2012
-
Needs["Combinatorica`"]
Table[ NumberOfTableaux@ {n, n, n}, {n, 0, 17}] (* Robert G. Wilson v, Nov 15 2006 *)
Table[2*(3*n)!/(n!*(n+1)!*(n+2)!),{n,0,20}] (* Vaclav Kotesovec, Nov 13 2014 *)
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* Manuel Kauers, Nov 18 2008 *)
-
a(n) = 2*(3*n)!/(n!*(n+1)!*(n+2)!); \\ Altug Alkan, Mar 14 2018
A030662
Number of combinations of n things from 1 to n at a time, with repeats allowed.
Original entry on oeis.org
1, 5, 19, 69, 251, 923, 3431, 12869, 48619, 184755, 705431, 2704155, 10400599, 40116599, 155117519, 601080389, 2333606219, 9075135299, 35345263799, 137846528819, 538257874439, 2104098963719, 8233430727599, 32247603683099, 126410606437751, 495918532948103
Offset: 1
Donald Mintz (djmintz(AT)home.com)
G.f. = x + 5*x^2 + 19*x^3 + 69*x^4 + 251*x^5 + 923*x^6 + 3431*x^7 + ...
- T. D. Noe, Table of n, a(n) for n = 1..500
- Narcisse G. Bell Bogmis, Guy R. Biyogmam, Hesam Safa, and Calvin Tcheka, Upper bounds on the dimension of the Schur Lie-multiplier of Lie-nilpotent Leibniz n-algebras, arXiv:2403.14884 [math.RA], 2024. See p. 7.
- Joseph D. Horton and Andrew Kurn, Counting sequences with complete increasing subsequences, Congress Numerantium, 33 (1981), 75-80. MR 681905
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
- Jianqiang Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras, arXiv preprint arXiv:1412.8044 [math.NT], 2014.
Central column of triangle
A014473.
Right-hand column 2 of triangle
A102541.
-
[(n+1)*Catalan(n)-1: n in [1..40]]; // G. C. Greubel, Apr 07 2024
-
seq(sum((binomial(n,m))^2,m=1..n),n=1..23); # Zerinvary Lajos, Jun 19 2008
f:=n->add( add( binomial(i+j,i), i=0..n),j=0..n); [seq(f(n),n=0..12)]; # N. J. A. Sloane, Jan 31 2009
-
Table[Sum[Sum[(2n-i-j)!/(n-i)!/(n-j)!,{i,1,n}],{j,1,n}],{n,1,20}] (* Alexander Adamchuk, Jul 04 2006 *)
a[n_] := 2*(2*n-1)!/(n*(n-1)!^2)-1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 11 2012, from first formula *)
-
a(n)=binomial(2*n,n)-1 \\ Charles R Greathouse IV, Jun 26 2013
-
from math import comb
def a(n): return comb(2*n, n) - 1
print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Jul 11 2023
-
def a(n) : return binomial(2*n,n) - 1
[a(n) for n in (1..26)] # Peter Luschny, Apr 21 2012
A034602
Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).
Original entry on oeis.org
1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3
Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
- R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.
- Robert Israel, Table of n, a(n) for n = 3..263
- R. R. Aidagulov and M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0 arXiv:1602.02632
- R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica 71:4 (1995), 381-389.
- Romeo Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Jonathan Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.
-
[(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
-
f:= proc(n) local p;
p:= ithprime(n);
(binomial(2*p-1,p)-1)/p^3
end proc:
map(f, [$3..30]); # Robert Israel, Dec 19 2018
-
Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)
A111418
Right-hand side of odd-numbered rows of Pascal's triangle.
Original entry on oeis.org
1, 3, 1, 10, 5, 1, 35, 21, 7, 1, 126, 84, 36, 9, 1, 462, 330, 165, 55, 11, 1, 1716, 1287, 715, 286, 78, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 92378, 75582, 50388
Offset: 0
From _Wolfdieter Lang_, Aug 05 2014: (Start)
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 3 1
2: 10 5 1
3: 35 21 7 1
4: 126 84 36 9 1
5: 462 330 165 55 11 1
6: 1716 1287 715 286 78 13 1
7: 6435 5005 3003 1365 455 105 15 1
8: 24310 19448 12376 6188 2380 680 136 17 1
9: 92378 75582 50388 27132 11628 3876 969 171 19 1
10: 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1
...
Expansion examples (for the Todd polynomials see A084930 and a comment above):
(4*x)^2 = 10*Todd(n, 0) + 5*Todd(n, 1) + 1*Todd(n, 2) = 10*1 + 5*(-3 + 4*x) + 1*(5 - 20*x + 16*x^2).
(4*x)^3 = 35*1 + 21*(-3 + 4*x) + 7*(5 - 20*x + 16*x^2) + (-7 + 56*x - 112*x^2 +64*x^3)*1. (End)
---------------------------------------------------------------------
Production matrix is
3, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 0, 1, 2, 1
- _Paul Barry_, Mar 08 2011
Application to odd powers of Fibonacci numbers F, row n=2:
F_l^5 = (10*(-1)^(2*(l+1))*F_l + 5*(-1)^(1*(l+1))*F_{3*l} + 1*F_{5*l})/5^2, l >= 0. - _Wolfdieter Lang_, Aug 24 2012
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012.
- A. Nkwanta, A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- Sun, Yidong; Ma, Luping Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
-
a111418 n k = a111418_tabl !! n !! k
a111418_row n = a111418_tabl !! n
a111418_tabl = map reverse a122366_tabl
-- Reinhard Zumkeller, Mar 14 2014
-
Table[Binomial[2*n+1, n-k], {n,0,10}, {k,0,n}] (* G. C. Greubel, May 22 2017 *)
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 3, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A262977
a(n) = binomial(4*n-1,n).
Original entry on oeis.org
1, 3, 21, 165, 1365, 11628, 100947, 888030, 7888725, 70607460, 635745396, 5752004349, 52251400851, 476260169700, 4353548972850, 39895566894540, 366395202809685, 3371363686069236, 31074067324187580, 286845713747883300, 2651487106659130740, 24539426037817994160
Offset: 0
-
[Binomial(4*n-1,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
-
Table[Binomial[4 n - 1, n], {n, 0, 40}] (* Vincenzo Librandi, Oct 06 2015 *)
-
B(x):=sum(binomial(4*n-1,n-1)*3/(4*n-1)*x^n,n,1,30);
taylor(x*diff(B(x),x,1)/B(x),x,0,20);
-
a(n) = binomial(4*n-1,n); \\ Michel Marcus, Oct 06 2015
A037952
a(n) = binomial(n, floor((n-1)/2)).
Original entry on oeis.org
0, 1, 1, 3, 4, 10, 15, 35, 56, 126, 210, 462, 792, 1716, 3003, 6435, 11440, 24310, 43758, 92378, 167960, 352716, 646646, 1352078, 2496144, 5200300, 9657700, 20058300, 37442160, 77558760, 145422675, 300540195, 565722720, 1166803110, 2203961430, 4537567650
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017.
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Dyck Paths with catastrophes modulo the positions of a given pattern, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
- Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 25.
- C. J. Colbourn, Table of CAN(2, k, 2)
- Emeric Deutsch, Ordered trees with prescribed root degrees, node degrees and branch lengths, Discrete Math., 282, 2004, 89-94.
- O. Guibert and T. Mansour, Restricted 132-involutions, Sem. Lotharingien de Combinatoire, 48, 2002, Article B48a (Corollary 4.2).
- M. Miyakawa, A. Nozaki, G. Pogosyan, and I. G. Rosenberg, A map from the lower-half of the n-Cube onto the (n-1)-Cube which preserves intersecting antichains, Discr. Appl. Math. 92 (2-3) (1999) 223-228.
- M. van de Vel, Determination of msd(L^n), J. Algebraic Combin., 9 (1999), 161-171.
- Eric Weisstein's World of Mathematics, Pinnacle Set.
- Eric Weisstein's World of Mathematics, Plummer-Toft Graph.
-
a037952 n = a037952_list !! n
a037952_list = zipWith (-) (tail a001405_list) a001405_list
-- Reinhard Zumkeller, Mar 04 2012
-
[Binomial(n, Floor((n-1)/2)): n in [0..40]]; // G. C. Greubel, Jun 21 2022
-
a:= n-> binomial(n, floor((n-1)/2)):
seq(a(n), n=0..35); # Alois P. Heinz, Sep 19 2017
-
Table[ Binomial[n, Floor[n/2]], {n, 0, 35}]//Differences (* Jean-François Alcover, Jun 10 2013 *)
f[n_] := Binomial[n, Floor[(n-1)/2]]; Array[f, 35, 0] (* Robert G. Wilson v, Nov 13 2014 *)
-
a(n) = binomial(n, (n-1)\2); \\ Altug Alkan, Oct 03 2018
-
[binomial(n, (n-1)//2) for n in (0..40)] # G. C. Greubel, Jun 21 2022
Comments