cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 422 results. Next

A357642 Number of even-length integer compositions of 2n whose half-alternating sum is 0.

Original entry on oeis.org

1, 0, 1, 4, 13, 48, 186, 712, 2717, 10432, 40222, 155384, 601426, 2332640, 9063380, 35269392, 137438685, 536257280, 2094786870, 8191506136, 32063203590, 125613386912, 492516592620, 1932569186288, 7588478653938, 29816630378368, 117226929901676, 461151757861552
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			The a(0) = 1 through a(4) = 13 compositions:
  ()  .  (1111)  (1212)  (1313)
                 (1221)  (1322)
                 (2112)  (1331)
                 (2121)  (2213)
                         (2222)
                         (2231)
                         (3113)
                         (3122)
                         (3131)
                         (111311)
                         (112211)
                         (113111)
                         (11111111)
		

Crossrefs

The skew-alternating version appears to be A000984.
For original alternating sum we have A001700/A088218.
The version for partitions of any length is A357639, ranked by A357631.
For length multiple of 4 we have A110145.
These compositions of any length are ranked by A357625, reverse A357626.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357621 = half-alternating sum of standard compositions, reverse A357622.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[2n],EvenQ[Length[#]]&&halfats[#]==0&]],{n,0,9}]
  • PARI
    a(n) = {my(v, res); if(n < 3, return(1 - bitand(n,1))); res = 0; v = vector(2*n, i, binomial(n-1,i-1)); forstep(i = 4, 2*n, 2, lp = i\4 * 2; rp = i - lp; res += v[lp] * v[rp]; ); res } \\ David A. Corneth, Oct 13 2022

Extensions

More terms from Alois P. Heinz, Oct 12 2022

A003645 a(n) = 2^n * C(n+1), where C(n) = A000108(n) Catalan numbers.

Original entry on oeis.org

1, 4, 20, 112, 672, 4224, 27456, 183040, 1244672, 8599552, 60196864, 426008576, 3042918400, 21909012480, 158840340480, 1158600130560, 8496400957440, 62605059686400, 463277441679360, 3441489566760960, 25654740406763520, 191852841302753280, 1438896309770649600
Offset: 0

Views

Author

Keywords

Comments

Number of nonisomorphic unrooted unicursal planar maps with n+2 edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency). - Valery A. Liskovets, Apr 07 2002
Total number of vertices in rooted Eulerian planar maps with n+1 edges.
Half the number of ways to dog-ear every page of an (n+1)-page book. - R. H. Hardin, Jun 21 2002
Convolution of A052701(n+1) with itself.
Number of Motzkin lattice paths with weights: 1 for up step, 4 for level step and 4 for down step. - Wenjin Woan, Oct 24 2004
The number of rooted bipartite n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005
Also the number of paths of length 2n+1 in a binary tree between two vertices that are one step away from each other. - David Koslicki (koslicki(AT)math.psu.edu), Nov 02 2010
2*a(n) for n > 1 is the number of increasing strict binary trees with 2n-1 nodes that simultaneously avoid 213 and 231 in the classical sense. For more information about increasing strict binary trees with an associated permutation, see A245894. - Manda Riehl, Aug 22 2014

References

  • L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Third row of array A102539.
Column of array A073165.

Programs

  • Magma
    [2^n*Binomial(2*n+3, n+1)/(2*n+3) : n in [0..30]]; // Wesley Ivan Hurt, Aug 23 2014
  • Maple
    A003645:=n->2^n*binomial(2*n+3, n+1)/(2*n+3): seq(A003645(n), n=0..30); # Wesley Ivan Hurt, Aug 23 2014
  • Mathematica
    Table[2^n CatalanNumber[n+1],{n,0,20}] (* Harvey P. Dale, May 07 2013 *)
  • PARI
    a(n)=if(n<0,0,2^n*(2*n+2)!/(n+1)!/(n+2)!)
    

Formula

a(n) = A052701(n+2)/2.
2*a(n) matches the odd-indexed terms of A090375.
a(n) = 2^n * binomial(2n+3, n+1) / (2n+3). - Len Smiley, Feb 24 2006
G.f.: (1-4x-sqrt(1-8x))/(8x^2) = C(2x)^2, where C(x) is the g.f. for Catalan numbers, A000108.
From Gary W. Adamson, Jul 12 2011: (Start)
Let M = the following production matrix:
2, 2, 0, 0, 0, ...
2, 2, 2, 0, 0, ...
2, 2, 2, 2, 0, ...
2, 2, 2, 2, 2, ...
...
a(n) = sum of top row terms in M^n. Example: top row of M^3 = (40, 40, 24, 8, 0, 0, 0, ...), sum = 112 = a(3). (End)
D-finite with recurrence (n+2)*a(n) - 4*(2n+1)*a(n-1) = 0. - R. J. Mathar, Apr 01 2012
E.g.f.: a(n) = n!* [x^n] exp(4*x)*BesselI(1, 4*x)/(2*x). - Peter Luschny, Aug 25 2012
Expansion of square of continued fraction 1/(1 - 2*x/(1 - 2*x/(1 - 2*x/(1 - ...)))). - Ilya Gutkovskiy, Apr 19 2017
From Amiram Eldar, Mar 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 38/49 + 192*arcsin(sqrt(1/8))/(49*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 14/27 + 32*log(2)/81. (End)
a(n) = Product_{1 <= i <= j <= n} (i + j + 2)/(i + j - 1). Cf. A001700. - Peter Bala, Feb 22 2023

A035324 A convolution triangle of numbers, generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 35, 29, 9, 1, 126, 130, 57, 12, 1, 462, 562, 312, 94, 15, 1, 1716, 2380, 1578, 608, 140, 18, 1, 6435, 9949, 7599, 3525, 1045, 195, 21, 1, 24310, 41226, 35401, 19044, 6835, 1650, 259, 24, 1, 92378, 169766, 161052, 97954, 40963, 12021, 2450
Offset: 1

Views

Author

Keywords

Comments

Replacing each '2' in the recurrence by '1' produces Pascal's triangle A007318(n-1,m-1). The columns appear as A001700, A008549, A045720, A045894, A035330, ...
Triangle T(n,k), 1 <= k <= n, given by (0, 3/1, 1/3, 5/3, 3/5, 7/5, 5/7, 9/7, 7/9, 11/9, 9/11, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 28 2012
Riordan array (1, c(x)/sqrt(1-4x)) where c(x) = g.f. for Catalan numbers A000108, first column (k = 0) omitted. - Philippe Deléham, Jan 28 2012

Examples

			Triangle begins:
    1;
    3,   1;
   10,   6,   1;
   35,  29,   9,   1;
  126, 130,  57,  12,   1;
  462, 562, 312,  94,  15,   1;
Triangle (0, 3, 1/3, 5/3, 3/5, ...) DELTA (1,0,0,0,0,0, ...) has an additional first column (1,0,0,...).
		

Crossrefs

Row sums: A049027(n), n >= 1.
Alternating row sums give A000108 (Catalan numbers).
If offset 0 (n >= m >= 0): convolution triangle based on A001700 (central binomial coeffs. of odd order).

Programs

  • Haskell
    a035324 n k = a035324_tabl !! (n-1) !! (k-1)
    a035324_row n = a035324_tabl !! (n-1)
    a035324_tabl = map snd $ iterate f (1, [1]) where
       f (i, xs)  = (i + 1, map (`div` (i + 1)) $
          zipWith (+) ((map (* 2) $ zipWith (*) [2 * i + 1 ..] xs) ++ [0])
                      ([0] ++ zipWith (*) [2 ..] xs))
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Mathematica
    a[n_, m_] /; n >= m >= 1 := a[n, m] = 2*(2*(n-1) + m)*(a[n-1, m]/n) + m*(a[n-1, m-1]/n); a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[1, 1] = 1; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 1, n}]] (* Jean-François Alcover, Feb 21 2012, from first formula *)
  • Sage
    @cached_function
    def T(n, k):
        if n == 0: return n^k
        return sum(binomial(2*i-1, i)*T(n-1, k-i) for i in (1..k-n+1))
    A035324 = lambda n,k: T(k, n)
    for n in (1..8): print([A035324(n, k) for k in (1..n)]) # Peter Luschny, Aug 16 2016

Formula

a(n+1, m) = 2*(2*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n
G.f. for column m: ((x*c(x)/sqrt(1-4*x))^m)/x, where c(x) = g.f. for Catalan numbers A000108.
a(n, m) =: s2(3; n, m).
With offset 0 (0 <= k <= n), T(n,k) = Sum_{j>=0} A039598(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n+1,n) = 3*n = A008585(n).
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + Sum_{i>=0} T(n-1,k+1+i)*(-1)^i. - Philippe Deléham, Feb 23 2012
T(n,m) = Sum_{k=m..n} k*binomial(k-1,k-m)*2^(k-m)*binomial(2*n-k-1,n-k)/n. - Vladimir Kruchinin, Aug 07 2013

A038231 Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).

Original entry on oeis.org

1, 4, 1, 16, 8, 1, 64, 48, 12, 1, 256, 256, 96, 16, 1, 1024, 1280, 640, 160, 20, 1, 4096, 6144, 3840, 1280, 240, 24, 1, 16384, 28672, 21504, 8960, 2240, 336, 28, 1, 65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1, 262144, 589824, 589824, 344064, 129024, 32256, 5376, 576, 36, 1
Offset: 0

Keywords

Comments

Triangle of coefficients in expansion of (4+x)^n. - N-E. Fahssi, Apr 13 2008

Examples

			Triangle begins:
      1;
      4,      1;
     16,      8,      1;
     64,     48,     12,     1;
    256,    256,     96,    16,     1;
   1024,   1280,    640,   160,    20,    1;
   4096,   6144,   3840,  1280,   240,   24,   1;
  16384,  28672,  21504,  8960,  2240,  336,  28,  1;
  65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1;
		

Crossrefs

Cf. A000302, A013611 (row-reversed), A000351 (row sums).

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 4^(n-k)*Binomial(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^(n-k)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    for i from 0 to 10 do seq(binomial(i, j)*4^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 4^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[4^(n-k)*Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    T(n,k) = 4^(n-k)*binomial(n, k); \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [[4^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

G.f. for j-th column is (x^j)/(1-4*x)^(j+1).
Convolution triangle of A000302 (powers of 4).
Sum_{k=0..n} T(n,k)*(-1)^k*A000108(k) = A001700(n). - Philippe Deléham, Nov 27 2009
See A038207 and A027465 and replace 2 and 3 in analogous formulas with 4. - Tom Copeland, Oct 26 2012

A055151 Triangular array of Motzkin polynomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 6, 2, 1, 10, 10, 1, 15, 30, 5, 1, 21, 70, 35, 1, 28, 140, 140, 14, 1, 36, 252, 420, 126, 1, 45, 420, 1050, 630, 42, 1, 55, 660, 2310, 2310, 462, 1, 66, 990, 4620, 6930, 2772, 132, 1, 78, 1430, 8580, 18018, 12012, 1716, 1, 91, 2002, 15015, 42042
Offset: 0

Author

Michael Somos, Jun 14 2000

Keywords

Comments

T(n,k) = number of Motzkin paths of length n with k up steps. T(n,k)=number of 0-1-2 trees with n edges and k+1 leaves, n>0. (A 0-1-2 tree is an ordered tree in which every vertex has at most two children.) E.g., T(4,1)=6 because we have UDHH, UHDH, UHHD, HHUD, HUHD, HUDH, where U=(1,1), D(1,-1), H(1,0). - Emeric Deutsch, Nov 30 2003
Coefficients in series reversion of x/(1+H*x+U*D*x^2) corresponding to Motzkin paths with H colors for H(1,0), U colors for U(1,1) and D colors for D(1,-1). - Paul Barry, May 16 2005
Eigenvector equals A119020, so that A119020(n) = Sum_{k=0..[n/2]} T(n,k)*A119020(k). - Paul D. Hanna, May 09 2006
Row reverse of A107131. - Peter Bala, May 07 2012
Also equals the number of 231-avoiding permutations of n+1 for which descents(w) = peaks(w) = k, where descents(w) is the number of positions i such that w[i]>w[i+1], and peaks(w) is the number of positions i such that w[i-1]w[i+1]. For example, T(4,1) = 6 because 13245, 12435, 14235, 12354, 12534, 15234 are the only 231-avoiding permutations of 5 elements with descents(w) = peaks(w) = 1. - Kyle Petersen, Aug 02 2013
Apparently, a refined irregular triangle related to this triangle (and A097610) is given in the Alexeev et al. link on p. 12. This entry's triangle is also related through Barry's comment to A125181 and A134264. The diagonals of this entry are the rows of A088617. - Tom Copeland, Jun 17 2015
The row length sequence of this irregular triangle is A008619(n) = 1 + floor(n/2). - Wolfdieter Lang, Aug 24 2015

Examples

			The irregular triangle T(n,k) begins:
n\k 0  1   2    3   4  5 ...
0:  1
1:  1
2:  1  1
3:  1  3
4:  1  6   2
5:  1 10  10
6:  1 15  30    5
7:  1 21  70   35
8:  1 28 140  140  14
9:  1 36 252  420 126
10: 1 45 420 1050 630 42
... reformatted. - _Wolfdieter Lang_, Aug 24 2015
		

References

  • Miklos Bona, Handbook of Enumerative Combinatorics, CRC Press (2015), page 617, Corollary 10.8.2
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 4.3.

Crossrefs

A107131 (row reversed), A080159 (with trailing zeros), A001006 = row sums, A000108(n) = T(2n, n), A001700(n) = T(2n+1, n), A119020 (eigenvector), A001263 (Narayana numbers), A089627 (gamma vectors of type B associahedra), A101280 (gamma vectors of type A permutohedra).
Cf. A014531.

Programs

  • Maple
    b:= proc(x, y) option remember;
          `if`(y>x or y<0, 0, `if`(x=0, 1, expand(
           b(x-1, y) +b(x-1, y+1) +b(x-1, y-1)*t)))
        end:
    T:= n-> (p-> seq(coeff(p, t, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Feb 05 2014
  • Mathematica
    m=(1-x-(1-2x+x^2-4x^2y)^(1/2))/(2x^2 y); Map[Select[#,#>0&]&, CoefficientList[ Series[m,{x,0,15}],{x,y}]]//Grid (* Geoffrey Critzer, Feb 05 2014 *)
    p[n_] := Hypergeometric2F1[(1-n)/2, -n/2, 2, 4 x]; Table[CoefficientList[p[n], x], {n, 0, 13}] // Flatten (* Peter Luschny, Jan 23 2018 *)
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, n! / ((n-2*k)! * k! * (k+1)!))}
    
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt((1 - x)^2 - 4*y*x^2 + x * O(x^n))), n), k))} /* Michael Somos, Feb 14 2006 */
    
  • PARI
    {T(n, k) = n++; if( k<0 || 2*k>n, 0, polcoeff( polcoeff( serreverse( x / (1 + x + y*x^2) + x * O(x^n)), n), k))} /* Michael Somos, Feb 14 2006 */

Formula

T(n,k) = n!/((n-2k)! k! (k+1)!) = A007318(n, 2k)*A000108(k). - Henry Bottomley, Jan 31 2003
E.g.f. row polynomials R(n,y): exp(x)*BesselI(1, 2*x*sqrt(y))/(x*sqrt(y)). - Vladeta Jovovic, Aug 20 2003
G.f. row polynomials R(n,y): 2 / (1 - x + sqrt((1 - x)^2 - 4 *y * x^2)).
From Peter Bala, Oct 28 2008: (Start)
The rows of this triangle are the gamma vectors of the n-dimensional (type A) associahedra (Postnikov et al., p. 38). Cf. A089627 and A101280.
The row polynomials R(n,x) = Sum_{k = 0..n} T(n,k)*x^k begin R(0,x) = 1, R(1,x) = 1, R(2,x) = 1 + x, R(3,x) = 1 + 3*x. They are related to the Narayana polynomials N(n,x) := Sum_{k = 1..n} (1/n)*C(n,k)*C(n,k-1)*x^k through x*(1 + x)^n*R(n, x/(1 + x)^2) = N(n+1,x). For example, for n = 3, x*(1 + x)^3*(1 + 3*x/(1 + x)^2) = x + 6*x^2 + 6*x^3 + x^4, the 4th Narayana polynomial.
Recursion relation: (n + 2)*R(n,x) = (2*n + 1)*R(n-1,x) - (n - 1)*(1 - 4*x)*R(n-2,x), R(0,x) = 1, R(1,x) = 1. (End)
G.f.: M(x,y) satisfies: M(x,y)= 1 + x M(x,y) + y*x^2*M(x,y)^2. - Geoffrey Critzer, Feb 05 2014
T(n,k) = A161642(n,k)*A258820(n,k) = (binomial(n,k)/A003989(n+1, k+1))* A258820(n,k). - Tom Copeland, Jun 18 2015
Let T(n,k;q) = n!*(1+k)/((n-2*k)!*(1+k)!^2)*hypergeom([k,2*k-n],[k+2],q) then T(n,k;0) = A055151(n,k), T(n,k;1) = A008315(n,k) and T(n,k;-1) = A091156(n,k). - Peter Luschny, Oct 16 2015
From Tom Copeland, Jan 21 2016: (Start)
Reversed rows of A107131 are rows of this entry, and the diagonals of A107131 are the columns of this entry. The diagonals of this entry are the rows of A088617. The antidiagonals (bottom to top) of A088617 are the rows of this entry.
O.g.f.: [1-x-sqrt[(1-x)^2-4tx^2]]/(2tx^2), from the relation to A107131.
Re-indexed and signed, this triangle gives the row polynomials of the compositional inverse of the shifted o.g.f. for the Fibonacci polynomials of A011973, x / [1-x-tx^2] = x + x^2 + (1+t) x^3 + (1+2t) x^4 + ... . (End)
Row polynomials are P(n,x) = (1 + b.y)^n = Sum{k=0 to n} binomial(n,k) b(k) y^k = y^n M(n,1/y), where b(k) = A126120(k), y = sqrt(x), and M(n,y) are the Motzkin polynomials of A097610. - Tom Copeland, Jan 29 2016
Coefficients of the polynomials p(n,x) = hypergeom([(1-n)/2, -n/2], [2], 4x). - Peter Luschny, Jan 23 2018
Sum_{k=1..floor(n/2)} k * T(n,k) = A014531(n-1) for n>1. - Alois P. Heinz, Mar 29 2020

A294746 Number A(n,k) of compositions (ordered partitions) of 1 into exactly k*n+1 powers of 1/(k+1); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 10, 13, 1, 1, 1, 35, 217, 75, 1, 1, 1, 126, 4245, 8317, 525, 1, 1, 1, 462, 90376, 1239823, 487630, 4347, 1, 1, 1, 1716, 2019836, 216456376, 709097481, 40647178, 41245, 1, 1, 1, 6435, 46570140, 41175714454, 1303699790001, 701954099115, 4561368175, 441675, 1
Offset: 0

Author

Alois P. Heinz, Nov 07 2017

Keywords

Comments

Row r >= 2, is asymptotic to r^(r*n + 3/2) / (2*Pi*n)^((r-1)/2). - Vaclav Kotesovec, Sep 20 2019

Examples

			A(3,1) = 13: [1/4,1/4,1/4,1/4], [1/2,1/4,1/8,1/8], [1/2,1/8,1/4,1/8], [1/2,1/8,1/8,1/4], [1/4,1/2,1/8,1/8], [1/4,1/8,1/2,1/8], [1/4,1/8,1/8,1/2], [1/8,1/2,1/4,1/8], [1/8,1/2,1/8,1/4], [1/8,1/4,1/2,1/8], [1/8,1/4,1/8,1/2], [1/8,1/8,1/2,1/4], [1/8,1/8,1/4,1/2].
Square array A(n,k) begins:
  1,   1,      1,         1,             1,                1, ...
  1,   1,      1,         1,             1,                1, ...
  1,   3,     10,        35,           126,              462, ...
  1,  13,    217,      4245,         90376,          2019836, ...
  1,  75,   8317,   1239823,     216456376,      41175714454, ...
  1, 525, 487630, 709097481, 1303699790001, 2713420774885145, ...
		

Crossrefs

Main diagonal gives: A294747.
Cf. A294775.

Programs

  • Maple
    b:= proc(n, r, p, k) option remember;
          `if`(n `if`(k=0, 1, b(k*n+1, 1, 0, k+1)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]];
    A[n_, k_] := If[k == 0, 1, b[k*n + 1, 1, 0, k + 1]];
    Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

A(n,k) = [x^((k+1)^n)] (Sum_{j=0..k*n+1} x^((k+1)^j))^(k*n+1) for k>0, A(n,0) = 1.

A000894 a(n) = (2*n)!*(2*n+1)! /((n+1)! *n!^3).

Original entry on oeis.org

1, 6, 60, 700, 8820, 116424, 1585584, 22084920, 312869700, 4491418360, 65166397296, 953799087696, 14062422446800, 208618354980000, 3111393751416000, 46619049708716400, 701342468412012900
Offset: 0

Keywords

Comments

This sequence is one half of the odd part of the bisection of A241530. The even part is given in A002894. - Wolfdieter Lang, Sep 06 2016

Examples

			G.f. = 1 + 6*x + 60*x^2 + 700*x^3 + 8820*x^4 + 116424*x^5 + ...
		

References

  • E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 96.

Crossrefs

Programs

  • Haskell
    a000894 n = a132813 (2 * n) n  -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    [Factorial(2*n)*Factorial(2*n+1) /(Factorial(n+1)* Factorial(n)^3): n in [0..20]]; // Vincenzo Librandi, Oct 25 2011
    
  • Magma
    A000894:= func< n | Binomial(2*n+2,2)*Catalan(n)^2 >;
    [A000894(n): n in [0..40]]; // G. C. Greubel, Mar 12 2025
    
  • Maple
    seq(binomial(2*n+1,n)*binomial(2*n,n), n=0..16); # Zerinvary Lajos, Jan 23 2007
  • Mathematica
    a[ n_] := Binomial[2 n + 1, n] Binomial[2 n, n]; (* Michael Somos, May 28 2014 *)
    a[ n_] := SeriesCoefficient[ (EllipticK[ 16 x] - EllipticE[ 16 x]) / (4 x Pi), {x, 0, n}]; (* Michael Somos, May 28 2014 *)
    Table[(2 n)!*(2 n + 1)!/((n + 1)!*n!^3), {n, 0, 16}] (* Michael De Vlieger, Sep 06 2016 *)
  • PARI
    {a(n) =  binomial( 2*n + 1, n) * binomial( 2*n, n)}; /* Michael Somos, May 28 2014 */
    
  • SageMath
    def A000894(n): return binomial(2*n+2,2)*catalan_number(n)^2
    print([A000894(n) for n in range(41)]) # G. C. Greubel, Mar 12 2025

Formula

From Zerinvary Lajos, Jan 23 2007: (Start)
a(n) = C(2*n+1,n)*C(2*n,n) = A001700(n)*A000984(n).
a(n) = A000984(n)*A000984(n+1)/2, n>=0. (End)
G.f.: (EllipticK(4*sqrt(x)) - EllipticE(4*sqrt(x)))/(4*Pi*x). - Mark van Hoeij, Oct 24 2011
n*(n+1)*a(n) = 4*(2*n-1)*(2*n+1)*a(n-1). - R. J. Mathar, Sep 08 2013
a(n) = A103371(2*n,n) = A132813(2*n,n). - Reinhard Zumkeller, Apr 04 2014
0 = a(n)*(+65536*a(n+2) - 23040*a(n+3) + 1400*a(n+4)) + a(n+1)*(-1536*a(n+2) + 1184*a(n+3) - 90*a(n+4)) + a(n+2)*(-24*a(n+2) - 6*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, May 28 2014
0 = a(n+1)^3 * (+256*a(n) - 6*a(n+1) + a(n+2)) + a(n) * a(n+1) * a(n+
2) * (-768*a(n) - 20*a(n+1) - 3*a(n+2)) + 90*a(n)^2*a(n+2)^2 for all n in Z. - Michael Somos, Sep 17 2014
a(n) = (n+1) * A000891(n) = A248045(n+1) / A000142(n). - Reinhard Zumkeller, Sep 30 2014
a(n) = A241530(2n+1)/2, n >= 0. - Wolfdieter Lang, Sep 06 2016
a(n) ~ 2^(4*n+1)/(Pi*n). - Ilya Gutkovskiy, Sep 06 2016
a(n) = A000217(n+1)*A000108(n)*A000108(n+1) = A000217(2*n+1)*A000108(n)^2. - G. C. Greubel, Mar 12 2025

A002458 a(n) = binomial(4*n+1, 2*n).

Original entry on oeis.org

1, 10, 126, 1716, 24310, 352716, 5200300, 77558760, 1166803110, 17672631900, 269128937220, 4116715363800, 63205303218876, 973469712824056, 15033633249770520, 232714176627630544, 3609714217008132870, 56093138908331422716, 873065282167813104916
Offset: 0

Keywords

Examples

			1 + 10*x + 126*x^2 + 1716*x^3 + 24310*x^4 + 352716*x^5 + 5200300*x^6 + ...
		

References

  • The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1982, (3.109), page 35.

Crossrefs

Programs

  • Maple
    A002458:=n->binomial(4*n+1,2*n): seq(A002458(n), n=0..30); # Wesley Ivan Hurt, Jan 17 2017
  • Mathematica
    Table[Binomial[4n+1,2n],{n,0,30}] (* Harvey P. Dale, Apr 04 2011 *)
    4^Range[0, 22] Simplify[ CoefficientList[ Series[ Sqrt[2]/(((Sqrt[1 - 4 x] + 1)^(1/2))*Sqrt[1 - 4 x]), {x, 0, 22}], x]] (* Robert G. Wilson v, Aug 08 2011 *)
  • PARI
    a(n) = binomial( 4*n + 1, 2*n)

Formula

a(n) = Sum_{k=0..n} 4^k * binomial( n + k, n) * binomial( 2*n - 2*k, n - k). - Michael Somos, Feb 25 2012
a(n) = A001700(2*n) = (n+1)*A000108(2*n+1).
G.f.: (4 - (1+4*y)*c(y) - (1-4*y)*c(-y))/(2*(1 - (4*y)^2)) with y^2 = x, c(y) = g.f. for A000108 (Catalan). - Wolfdieter Lang, Dec 13 2001
a(n) ~ 2^(1/2)*Pi^(-1/2)*n^(-1/2)*2^(4*n)*{1 - 5/16*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
a(n) = A024492(n)*(n+1). - R. J. Mathar, Aug 10 2015
G.f.: 2F1(3/4,5/4; 3/2; 16*x). - R. J. Mathar, Aug 10 2015
D-finite with recurrence n*(2*n + 1)*a(n) - 2*(4*n - 1)*(4*n + 1)*a(n-1) = 0. - R. J. Mathar, Aug 10 2015
From Peter Bala, Nov 04 2015: (Start)
a(n) = 4^n*binomial(2*n + 1/2, n).
O.g.f.: sqrt(c(4*x)/(1 - 16*x)) = sqrt(2/(1 - 16*x)/(1 + sqrt(1 - 16*x))), where
c(y) = g.f. for A000108 (Catalan). In general, c(x)^k/sqrt(1 - 4*x) is the o.g.f. for the sequence binomial(2*n + k, n). (End) [Edited by Petros Hadjicostas, May 25 2020]
From Ilya Gutkovskiy, Jan 17 2017: (Start)
E.g.f.: 2F2(3/4,5/4; 1,3/2; 16*x).
Sum_{n>=0} 1/a(n) = 3F2(1,1,3/2; 3/4,5/4; 1/16) = 1.108563435104316693... (End)
From Peter Bala, Mar 16 2018: (Start)
The right-hand side of the binomial coefficient identity Sum_{k = 0..n} 4^(n-k) * C(2*n+1, 2*k) * C(2*k, k) = a(n).
a(n) = 4^n*hypergeom([-n, -n-1/2], [1], 1). (End)
From Peter Bala, Mar 20 2023: (Start)
a(n) = Sum_{k = 0..n} binomial(2*n+1,k)^2.
a(n) = (1/2)*hypergeom([-1 - 2*n, -1 - 2*n], [1], 1). (End)

A010763 a(n) = binomial(2n+1, n+1) - 1.

Original entry on oeis.org

0, 2, 9, 34, 125, 461, 1715, 6434, 24309, 92377, 352715, 1352077, 5200299, 20058299, 77558759, 300540194, 1166803109, 4537567649, 17672631899, 68923264409, 269128937219, 1052049481859, 4116715363799, 16123801841549, 63205303218875, 247959266474051
Offset: 0

Keywords

Comments

(With a different offset:) p divides a(p) for prime p. p^2 divides a(p) for prime p > 2. p^3 divides a(p) for prime p > 3 (implied by Wolstenholme's theorem). Wolstenholme's quotients are listed in A034602(n) = a(prime(n))/prime(n)^3 = {1, 5, 265, 2367, 237493, 2576561, 338350897, ...} = a(p)/p^3 for prime p > 3. p^3 divides a(p^k) for prime p > 3 and integer k > 0. Primes in a(n) are listed in A112862(n) = {2, 461, 92377, 269128937219, ...} Primes of the form (2*n)!/(2*(n!)^2) - 1. Numbers n such that a(n) is prime are listed in A112861(n) = {2, 6, 10, 21, 45, 63, 306, 404, 437, 471, 646, ...}. - Alexander Adamchuk, Jan 05 2007
a(n-1) is the number of weak compositions of n into n parts in which at least one part is zero. a(3)=34 since 4 can be written as 4+0+0+0 (4 such compositions); 3+1+0+0 (12 such compositions); 2+2+0+0 (6 such compositions); 2+1+1+0 (12 such compositions). All these weak compositions contain at least one zero. - Enrique Navarrete, Jan 09 2022

Crossrefs

Programs

  • Magma
    [Binomial(2*n-1,n-1)-1: n in [1..30]]; // Vincenzo Librandi, Mar 21 2013
    
  • Maple
    A010763:=n->binomial(2*n+1, n+1) - 1: seq(A010763(n), n=0..30); # Wesley Ivan Hurt, Sep 05 2015
  • Mathematica
    Table[Binomial[2n - 1, n - 1] - 1, {n, 20}] (* Alonso del Arte, Dec 13 2012 *)
    CoefficientList[Series[Exp[2*x]*(BesselI[0,2*x] + BesselI[1,2*x]) - Exp[x], {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Dec 02 2018 *)
  • PARI
    a(n) = binomial(2*n+1, n+1) - 1;
    vector(30, n, a(n-1)) \\ Michel Marcus, Sep 05 2015
    
  • PARI
    first(n) = x='x+O('x^n); Vec((1 - sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)) - 1/(1 - x), -n) \\ Iain Fox, Dec 19 2017 (corrected by Iain Fox, Oct 24 2018)

Formula

a(n) = (n/(2n+2))*Sum_{k = 1..n+1} C(2n+2, k)/C(n+1, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{i = 1..n} C(n + i, n). - Benoit Cloitre, Oct 15 2002
a(n + 1) = C(2n - 1, n - 1) - 1. - Alonso del Arte, Dec 15 2012
From Ilya Gutkovskiy, Feb 07 2017: (Start)
O.g.f.: (1 - sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)) - 1/(1 - x).
E.g.f.: exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - exp(x). (End)
a(n) = Sum_{i = 0..n} binomial(n + i, n - 1). - Peter Bala, Sep 06 2025

A049027 G.f.: (1-2*x*c(x))/(1-3*x*c(x)) where c(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 4, 17, 74, 326, 1446, 6441, 28770, 128750, 576944, 2587850, 11615932, 52167688, 234383146, 1053386937, 4735393794, 21291593238, 95747347176, 430624242942, 1936925461644, 8712882517188, 39195738193836, 176335080590442, 793336332850164, 3569368545752076
Offset: 0

Keywords

Comments

Row sums of triangle A035324.
a(n+1) = {1, 4, 17, 74, 326, ...} is the binomial transform of A059738. - Philippe Deléham, Nov 26 2009
(1, 4, 17, 74, 326, ...) is the invert transform of the odd-indexed central binomial coefficients, A001700. - David Callan, Oct 14 2012
The sequence starting with index 1 is the INVERT transform of A001700: (1, 3, 10, 35, 126, ...) and the second INVERT transform of the Catalan numbers starting with index 1: (1, 2, 5, 14, 42, ...). - Gary W. Adamson, Jun 23 2015
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by taking the first column (k = 0) of the array equal to (1,1,3,9,27,...) - powers of 3 with 1 prepended - and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1. See my link in A001517.
1
1 1
3 4 4
9 13 17 17
27 40 57 74 74
81 121 178 252 326 326
...
(End)

Examples

			G.f. = 1 + x + 4*x^2 + 17*x^3 + 74*x^4 + 326*x^5 + 1446*x^6 + 6441*x^7 + ...
		

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    [1] cat [n eq 1 select 1 else (9*Self(n-1)-Catalan(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Jun 25 2015
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+3*n*(n-1)/2,
          (17/2-6/n)*a(n-1)-(18-27/n)*a(n-2))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 28 2020
  • Mathematica
    Table[SeriesCoefficient[2/(3-1/Sqrt[1-4*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    FunctionExpand@Table[3^(2n-1)/2^(n+1) + 2^n (2n-1)!! Hypergeometric2F1[1, n + 1/2, n + 2, 8/9]/(9 (n + 1)!) + 2 KroneckerDelta[n]/3, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 08 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x * (1 + 2*x) / (1 + 3*x)^2 + x * O(x^n) ), n))}; /* Michael Somos, Apr 08 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (3 - 1 / sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Apr 08 2007 */
    
  • Sage
    (2/(3-1/sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: x*c(x)/(1-3*x*c(x)), c(x)= g.f. of Catalan numbers A000108.
a(n+1) = Sum_{k=0..n} 2^k*comb(2n+1, n-k)*2*(k+1)/(n+k+2) - Paul Barry, Jun 22 2004
a(n) = (9*a(n-1) - Catalan(n-1))/2, n > 1. - Vladeta Jovovic, Aug 08 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*2^k. - Philippe Deléham, Mar 21 2007
G.f.: 2 / (3 - 1 / sqrt(1 - 4*x)). - Michael Somos, Apr 08 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A001045(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i <= j), and A[i,j]=0, otherwise. Then, for n >= 1, a(n+1) = (-1)^n*charpoly(A,-3). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
4, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 2*n*a(n) + (12-17*n)*a(n-1) + 18*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 3^(2*n-1)/2^(n+1). - Vaclav Kotesovec, Oct 08 2012
0 = a(n)*(1296*a(n+1) - 1098*a(n+2) + 180*a(n+3)) + a(n+1)*(-126*a(n+1) + 253*a(n+2) - 58*a(n+3)) + a(n+2)*(-10*a(n+2) + 4*a(n+3)) if n > 0. - Michael Somos, Jan 23 2014
O.g.f.: A(x) = 1/(1 - (1/2)*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = 3^(2*n-1)/2^(n+1) + 2^n * (2*n-1)!! * hypergeom([1,n+1], [n+2], 8/9)/(9*(n+1)!) + 0^n * 2/3. - Vladimir Reshetnikov, Oct 08 2016
Previous Showing 81-90 of 422 results. Next