cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 587 results. Next

A383357 Integers m such that R(Sum_{k=1..m} (10^k+k)) is prime, where R is the digit reversal function A004086.

Original entry on oeis.org

1, 2, 4, 20, 34, 35, 77, 158, 181, 401, 973, 3517, 6818
Offset: 1

Views

Author

Claude H. R. Dequatre, Apr 24 2025

Keywords

Comments

The primes referred to in the above definition consist, after the rightmost few digits >= 1, of only 1's and their size increases quickly with m as shown below.
m Primes Number of digits of primes
---------------------------------------------------------------
1 11 2
2 311 3
4 2111 4
20 23111..1 21
. . .
. . .
401 11719111..1 402
973 169485111..1 974
3517 3157927111..1 3518
6818 18075343111..1 6819
.
.
If it exists a(14), >= 10^4.

Examples

			1 is a term because 10^1+1 = 11 and its digit reversal is 11, which is prime.
2 is a term because 10^1+1 + 10^2+2 = 113 and its digit reversal is 311, a prime.
3 is not a term because 10^1+1 + 10^2+2 + 10^3+3 = 1116 and R(1116) = 6111, not prime.
		

Crossrefs

Programs

  • PARI
    for(n=1,400,my(s=fromdigits(Vecrev(digits(sum(k=1,n,10^k+k)))));if(ispseudoprime(s),print1(n", ")));

A002113 Palindromes in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494, 505, 515
Offset: 1

Views

Author

Keywords

Comments

n is a palindrome (i.e., a(k) = n for some k) if and only if n = A004086(n). - Reinhard Zumkeller, Mar 10 2002
It seems that if n*reversal(n) is in the sequence then n = 3 or all digits of n are less than 3. - Farideh Firoozbakht, Nov 02 2014
The position of a palindrome within the sequence can be determined almost without calculation: If the palindrome has an even number of digits, prepend a 1 to the front half of the palindrome's digits. If the number of digits is odd, prepend the value of front digit + 1 to the digits from position 2 ... central digit. Examples: 98766789 = a(19876), 515 = a(61), 8206028 = a(9206), 9230329 = a(10230). - Hugo Pfoertner, Aug 14 2015
This sequence is an additive basis of order at most 49, see Banks link. - Charles R Greathouse IV, Aug 23 2015
The order has been reduced from 49 to 3; see the Cilleruelo-Luca and Cilleruelo-Luca-Baxter links. - Jonathan Sondow, Nov 27 2017
See A262038 for the "next palindrome" and A261423 for the "preceding palindrome" functions. - M. F. Hasler, Sep 09 2015
The number of palindromes with d digits is 10 if d = 1, and otherwise it is 9 * 10^(floor((d - 1)/2)). - N. J. A. Sloane, Dec 06 2015
Sequence A033665 tells how many iterations of the Reverse-then-add function A056964 are needed to reach a palindrome; numbers for which this will never happen are Lychrel numbers (A088753) or rather Kin numbers (A023108). - M. F. Hasler, Apr 13 2019
This sequence is an additive basis of order 3, see Cilleruelo, Luca, & Baxter and Sigg. - Charles R Greathouse IV, Apr 08 2025

References

  • Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 50-52.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 120.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A061917 and A221221.
A110745 is a subsequence.
Union of A056524 and A056525.
Palindromes in bases 2 through 11: A006995 and A057148, A014190 and A118594, A014192 and A118595, A029952 and A118596, A029953 and A118597, A029954 and A118598, A029803 and A118599, A029955 and A118600, this sequence, A029956. Also A262065 (base 60), A262069 (subsequence).
Palindromic primes: A002385. Palindromic nonprimes: A032350.
Palindromic-pi: A136687.
Cf. A029742 (complement), A086862 (first differences).
Palindromic floor function: A261423, also A261424. Palindromic ceiling: A262038.
Cf. A004086 (read n backwards), A064834, A118031, A136522 (characteristic function), A178788.
Ways to write n as a sum of three palindromes: A261132, A261422.
Minimal number of palindromes that add to n using greedy algorithm: A088601.
Minimal number of palindromes that add to n: A261675.

Programs

  • GAP
    Filtered([0..550],n->ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
    
  • Haskell
    a002113 n = a002113_list !! (n-1)
      a002113_list = filter ((== 1) . a136522) [1..] -- Reinhard Zumkeller, Oct 09 2011
    
  • Haskell
    import Data.List.Ordered (union)
      a002113_list = union a056524_list a056525_list -- Reinhard Zumkeller, Jul 29 2015, Dec 28 2011
    
  • Magma
    [n: n in [0..600] | Intseq(n, 10) eq Reverse(Intseq(n, 10))]; // Vincenzo Librandi, Nov 03 2014
    
  • Maple
    read transforms; t0:=[]; for n from 0 to 2000 do if digrev(n) = n then t0:=[op(t0),n]; fi; od: t0;
    # Alternatively, to get all palindromes with <= N digits in the list "Res":
    N:=5;
    Res:= $0..9:
    for d from 2 to N do
      if d::even then
        m:= d/2;
        Res:= Res, seq(n*10^m + digrev(n),n=10^(m-1)..10^m-1);
      else
        m:= (d-1)/2;
        Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n),y=0..9),n=10^(m-1)..10^m-1);
      fi
    od: Res:=[Res]: # Robert Israel, Aug 10 2014
    # A variant: Gets all base-10 palindromes with exactly d digits, in the list "Res"
    d:=4:
    if d=1 then Res:= [$0..9]:
    elif d::even then
        m:= d/2:
        Res:= [seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1)]:
    else
        m:= (d-1)/2:
        Res:= [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]:
    fi:
    Res; # N. J. A. Sloane, Oct 18 2015
    isA002113 := proc(n)
        simplify(digrev(n) = n) ;
    end proc: # R. J. Mathar, Sep 09 2015
  • Mathematica
    palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; (* then to generate any base-b sequence for 1 < b < 37, replace the 10 in the following instruction with b: *) Select[Range[0, 1000], palQ[#, 10] &]
    base10Pals = {0}; r = 2; Do[Do[AppendTo[base10Pals, n * 10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}]; Do[AppendTo[base10Pals, n * 10^IntegerLength[n] + FromDigits@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}], {e, r}]; base10Pals (* Arkadiusz Wesolowski, May 04 2012 *)
    nthPalindromeBase[n_, b_] := Block[{q = n + 1 - b^Floor[Log[b, n + 1 - b^Floor[Log[b, n/b]]]], c = Sum[Floor[Floor[n/((b + 1) b^(k - 1) - 1)]/(Floor[n/((b + 1) b^(k - 1) - 1)] - 1/b)] - Floor[Floor[n/(2 b^k - 1)]/(Floor[n/(2 b^k - 1)] - 1/ b)], {k, Floor[Log[b, n]]}]}, Mod[q, b] (b + 1)^c * b^Floor[Log[b, q]] + Sum[Floor[Mod[q, b^(k + 1)]/b^k] b^(Floor[Log[b, q]] - k) (b^(2 k + c) + 1), {k, Floor[Log[b, q]]}]] (* after the work of Eric A. Schmidt, works for all integer bases b > 2 *)
    Array[nthPalindromeBase[#, 10] &, 61, 0] (* please note that Schmidt uses a different, a more natural and intuitive offset, that of a(1) = 1. - Robert G. Wilson v, Sep 22 2014 and modified Nov 28 2014 *)
    Select[Range[10^3], PalindromeQ] (* Michael De Vlieger, Nov 27 2017 *)
    nLP[cn_Integer]:=Module[{s,len,half,left,pal,fdpal},s=IntegerDigits[cn]; len=Length[s]; half=Ceiling[len/2]; left=Take[s,half]; pal=Join[left,Reverse[ Take[left,Floor[len/2]]]]; fdpal=FromDigits[pal]; Which[cn==9,11,fdpal>cn,fdpal,True,left=IntegerDigits[ FromDigits[left]+1]; pal=Join[left,Reverse[Take[left,Floor[len/2]]]]; FromDigits[pal]]]; NestList[nLP,0,100] (* Harvey P. Dale, Dec 10 2024 *)
  • PARI
    is_A002113(n)=Vecrev(n=digits(n))==n \\ M. F. Hasler, Nov 17 2008, updated Apr 26 2014, Jun 19 2018
    
  • PARI
    is(n)=n=digits(n);for(i=1,#n\2,if(n[i]!=n[#n+1-i],return(0))); 1 \\ Charles R Greathouse IV, Jan 04 2013
    
  • PARI
    a(n)={my(d,i,r);r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11));n=n-10^(#digits(n\11));d=digits(n);for(i=1,#d,r[i]=d[i];r[#r+1-i]=d[i]);sum(i=1,#r,10^(#r-i)*r[i])} \\ David A. Corneth, Jun 06 2014
    
  • PARI
    \\ recursive--feed an element a(n) and it gives a(n+1)
    nxt(n)=my(d=digits(n));i=(#d+1)\2;while(i&&d[i]==9,d[i]=0;d[#d+1-i]=0;i--);if(i,d[i]++;d[#d+1-i]=d[i],d=vector(#d+1);d[1]=d[#d]=1);sum(i=1,#d,10^(#d-i)*d[i]) \\ David A. Corneth, Jun 06 2014
    
  • PARI
    \\ feed a(n), returns n.
    inv(n)={my(d=digits(n));q=ceil(#d/2);sum(i=1,q,10^(q-i)*d[i])+10^floor(#d/2)} \\ David A. Corneth, Jun 18 2014
    
  • PARI
    inv_A002113(P)={P\(P=10^(logint(P+!P,10)\/2))+P} \\ index n of palindrome P = a(n), much faster than above: no sum is needed. - M. F. Hasler, Sep 09 2018
    
  • PARI
    A002113(n,L=logint(n,10))=(n-=L=10^max(L-(n<11*10^(L-1)),0))*L+fromdigits(Vecrev(digits(if(nM. F. Hasler, Sep 11 2018
    
  • Python
    # edited by M. F. Hasler, Jun 19 2018
    def A002113_list(nMax):
      mlist=[]
      for n in range(nMax+1):
         mstr=str(n)
         if mstr==mstr[::-1]:
            mlist.append(n)
      return mlist # Bill McEachen, Dec 17 2010
    
  • Python
    from itertools import chain
    A002113 = sorted(chain(map(lambda x:int(str(x)+str(x)[::-1]),range(1,10**3)),map(lambda x:int(str(x)+str(x)[-2::-1]), range(10**3)))) # Chai Wah Wu, Aug 09 2014
    
  • Python
    from itertools import chain, count
    A002113 = chain(k for k in count(0) if str(k) == str(k)[::-1])
    print([next(A002113) for k in range(60)]) # Jan P. Hartkopf, Apr 10 2021
    
  • Python
    is_A002113 = lambda n: (s:=str(n))[::-1]==s # M. F. Hasler, May 23 2024
    
  • Python
    from math import log10, floor
    def A002113(n):
      if n < 2: return 0
      P = 10**floor(log10(n//2)); M = 11*P
      s = str(n - (P if n < M else M-P))
      return int(s + s[-2 if n < M else -1::-1]) # M. F. Hasler, Jun 06 2024
    
  • SageMath
    [n for n in (0..515) if Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
    
  • Scala
    def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0
    (0 to 999).filter(palQ()) // _Alonso del Arte, Nov 10 2019

Formula

A136522(a(n)) = 1.
A178788(a(n)) = 0 for n > 9. - Reinhard Zumkeller, Jun 30 2010
A064834(a(n)) = 0. - Reinhard Zumkeller, Sep 18 2013
a(n+1) = A262038(a(n)+1). - M. F. Hasler, Sep 09 2015
Sum_{n>=2} 1/a(n) = A118031. - Amiram Eldar, Oct 17 2020
a(n) = (floor(d(n)/(c(n)*9 + 1)))*10^A055642(d(n)) + A004086(d(n)) where b(n, k) = ceiling(log((n + 1)/k)/log(10)), c(n) = b(n, 2) - b(n, 11) and d(n) = (n - A086573(b(n*(2 - c(n)), 2) - 1)/2 - 1). - Alan Michael Gómez Calderón, Mar 11 2025

A006567 Emirps (primes whose reversal is a different prime).

Original entry on oeis.org

13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991, 1009, 1021, 1031, 1033, 1061, 1069, 1091, 1097, 1103, 1109, 1151, 1153, 1181, 1193, 1201
Offset: 1

Views

Author

Keywords

Comments

A palindrome is a word that when written in reverse results in the same word. for example, "racecar" reversed is still "racecar". Related to palindromes are semordnilaps. These are words that when written in reverse result in a distinct valid word. For example, "stressed" written in reverse is "desserts". Not all words are palindromes or semordnilaps. While certainly not all numbers are palindromes, all non-palindromic numbers when written in reverse will form semordnilaps. Narrowing to primes brings back the same trichotomy as with words: some numbers are emirps, some numbers are palindromic primes, but some words are neither.
The term "emirp" was coined by the American mathematician Jeremiah Farrell (1937-2022). - Amiram Eldar, Jun 11 2021

References

  • Martin Gardner, The Magic Numbers of Dr Matrix. Prometheus, Buffalo, NY, 1985, p. 230.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003684, A007628 (subsequence), A046732, A048051, A048052, A048053, A048054, A048895, A004086 (read n backwards).
A007500 is the union of A002385 and this sequence.

Programs

  • Haskell
    a006567 n = a006567_list !! (n-1)
    a006567_list = filter f a000040_list where
       f p = a010051' q == 1 && q /= p  where q = a004086 p
    -- Reinhard Zumkeller, Jul 16 2014
    
  • Magma
    [ n : n in [1..1194] | n ne rev and IsPrime(n) and IsPrime(rev) where rev is Seqint(Reverse(Intseq(n))) ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    read("transforms") ; isA006567 := proc(n) local R ; if isprime(n) then R := digrev(n) ; isprime(R) and R <> n ; else false; end if; end proc:
    A006567 := proc(n) option remember ; local a; if n = 1 then 13; else a := nextprime(procname(n-1)) ; while not isA006567(a) do a := nextprime(a) ; end do; return a; end if; end proc:
    seq(A006567(n),n=1..120) ; # R. J. Mathar, May 24 2010
  • Mathematica
    fQ[n_] := Block[{idn = IntegerReverse@ n}, PrimeQ@ idn && n != idn]; Select[Prime@ Range@ 200, fQ] (* Santi Spadaro, Oct 14 2001 and modified by Robert G. Wilson v, Nov 08 2015 *)
    Select[Prime[Range[5,200]],PrimeQ[IntegerReverse[#]]&&!PalindromeQ[#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2021 *)
  • PARI
    is(n)=my(r=eval(concat(Vecrev(Str(n)))));isprime(r)&&r!=n&&isprime(n) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    select( {is_A006567(n,r=fromdigits(Vecrev(digits(n))))=isprime(r)&&r!=n&&isprime(n)}, primes(200)) \\ M. F. Hasler, Jan 31 2020
    
  • Python
    from sympy import prime, isprime
    A006567 = [p for p in (prime(n) for n in range(1,10**6)) if str(p) != str(p)[::-1] and isprime(int(str(p)[::-1]))] # Chai Wah Wu, Aug 14 2014
    
  • Python
    from sympy import isprime, nextprime
    def emirps(start=1, end=float('inf')): # generator for emirps in start..end
        p = nextprime(start-1)
        while p <= end:
            s = str(p)
            if s[0] in "24568":
                p = nextprime((int(s[0])+1)*10**(len(s)-1)); continue
            revp = int(s[::-1])
            if p != revp and isprime(revp): yield p
            p = nextprime(p)
    print(list(emirps(end=1201))) # Michael S. Branicky, Jan 24 2021, updated Jul 28 2022

Extensions

More terms from James Sellers, Jan 22 2000

A030101 a(n) is the number produced when n is converted to binary digits, the binary digits are reversed and then converted back into a decimal number.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31, 1, 33, 17, 49, 9, 41, 25, 57, 5, 37, 21, 53, 13, 45, 29, 61, 3, 35, 19, 51, 11, 43, 27, 59, 7, 39, 23, 55, 15, 47, 31, 63, 1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57
Offset: 0

Views

Author

Keywords

Comments

As with decimal reversal, initial zeros are ignored; otherwise, the reverse of 1 would be 1000000... ad infinitum.
Numerators of the binary van der Corput sequence. - Eric Rowland, Feb 12 2008
It seems that in most cases A030101(x) = A000265(x) and that if A030101(x) <> A000265(x), the next time A030101(y) = A000265(x), A030101(x) = A000265(y). Also, it seems that if a pair of values exist at one index, they will exist at any index where one of them exist. It also seems like the greater of the pair always shows up on A000265 first. - Dylan Hamilton, Aug 04 2010
The number of occasions A030101(n) = A000265(n) before n = 2^k is A053599(k) + 1. For n = 0..2^19, the sequences match less than 1% of the time. - Andrew Woods, May 19 2012
For n > 0: a(a(n)) = n if and only if n is odd; a(A006995(n)) = A006995(n). - Juli Mallett, Nov 11 2010, corrected: Reinhard Zumkeller, Oct 21 2011
n is binary palindromic if and only if a(n) = n. - Reinhard Zumkeller, corrected: Jan 17 2012, thanks to Hieronymus Fischer, who pointed this out; Oct 21 2011
Given any n > 1, the set of numbers A030109(i) = (A030101(i) - 1)/2 for indexes i ranging from 2^n to 2^(n + 1) - 1 is a permutation of the set of consecutive integers {0, 1, 2, ..., 2^n - 1}. This is important in the standard FFT algorithms (starting or ending bit-reversal permutation). - Stanislav Sykora, Mar 15 2012
Row n of A030308 gives the binary digits of a(n), prepended with zero at even positions. - Reinhard Zumkeller, Jun 17 2012
The binary van der Corput sequence is the infinite sequence of fractions { A030101(n)/A062383(n), n = 0, 1, 2, 3, ... }, and begins 0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, 5/16, 13/16, 3/16, 11/16, 7/16, 15/16, 1/32, 17/32, 9/32, 25/32, 5/32, 21/32, 13/32, 29/32, 3/32, 19/32, 11/32, 27/32, 7/32, 23/32, 15/32, 31/32, 1/64, 33/64, 17/64, 49/64, ... - N. J. A. Sloane, Dec 01 2019
Record highs occur at n = A209492(m) (for n>=1) with values a(n) = A224195(m) (for n>=3). - Bill McEachen, Aug 02 2023

Examples

			a(100) = 19 because 100 (base 10) = 1100100 (base 2) and R(1100100 (base 2)) = 10011 (base 2) = 19 (base 10).
		

References

  • Hlawka E. The theory of uniform distribution. Academic Publishers, Berkhamsted, 1984. See pp. 93, 94 for the van der Corput sequence. - N. J. A. Sloane, Dec 01 2019

Crossrefs

Cf. A055944 (reverse and add), A178225, A273258.
Cf. A056539, A057889 (bijective variants), A224195, A209492.

Programs

  • Haskell
    a030101 = f 0 where
       f y 0 = y
       f y x = f (2 * y + b) x'  where (x', b) = divMod x 2
    -- Reinhard Zumkeller, Mar 18 2014, Oct 21 2011
    
  • J
    ([: #. [: |. #:)"0 NB. Stephen Makdisi, May 07 2018
    
  • Magma
    A030101:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    A030101 := proc(n)
        convert(n,base,2) ;
        ListTools[Reverse](%) ;
        add(op(i,%)*2^(i-1),i=1..nops(%)) ;
    end proc: # R. J. Mathar, Mar 10 2015
    # second Maple program:
    a:= proc(n) local m, r; m:=n; r:=0;
          while m>0 do r:=r*2+irem(m, 2, 'm') od; r
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Nov 17 2015
  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[i, 2]], 2], {i, 0, 80}]
    bitRev[n_] := Switch[Mod[n, 4], 0, bitRev[n/2], 1, 2 bitRev[(n + 1)/2] - bitRev[(n - 1)/4], 2, bitRev[n/2], 3, 3 bitRev[(n - 1)/2] - 2 bitRev[(n - 3)/4]]; bitRev[0] = 0; bitRev[1] = 1; bitRev[3] = 3; Array[bitRev, 80, 0] (* Robert G. Wilson v, Mar 18 2014 *)
  • PARI
    a(n)=if(n<1,0,subst(Polrev(binary(n)),x,2))
    
  • PARI
    a(n) = fromdigits(Vecrev(binary(n)), 2); \\ Michel Marcus, Nov 10 2017
    
  • Python
    def a(n): return int(bin(n)[2:][::-1], 2) # Indranil Ghosh, Apr 24 2017
    
  • Sage
    def A030101(n): return Integer(bin(n).lstrip("0b")[::-1],2) if n!=0 else 0
    [A030101(n) for n in (0..78)]  # Peter Luschny, Aug 09 2012
    
  • Scala
    (0 to 127).map(n => Integer.parseInt(Integer.toString(n, 2).reverse, 2)) // Alonso del Arte, Feb 11 2020

Formula

a(n) = 0, a(2n) = a(n), a(2n+1) = a(n) + 2^(floor(log_2(n)) + 1). For n > 0, a(n) = 2*A030109(n) - 1. - Ralf Stephan, Sep 15 2003
a(n) = b(n, 0) with b(n, r) = r if n = 0, otherwise b(floor(n/2), 2*r + n mod 2). - Reinhard Zumkeller, Mar 03 2010
a(1) = 1, a(3) = 3, a(2n) = a(n), a(4n+1) = 2a(2n+1) - a(n), a(4n+3) = 3a(2n+1) - 2a(n) (as in the Project Euler problem). To prove this, expand the recurrence into binary strings and reversals. - David Applegate, Mar 16 2014, following a posting to the Sequence Fans Mailing List by Martin Møller Skarbiniks Pedersen.
Conjecture: a(n) = 2*w(n) - 2*w(A053645(n)) - 1 for n > 0, where w = A264596. - Velin Yanev, Sep 12 2017

Extensions

Edits (including correction of an erroneous date pointed out by J. M. Bergot) by Jon E. Schoenfield, Mar 16 2014
Name clarified by Antti Karttunen, Nov 09 2017

A005150 Look and Say sequence: describe the previous term! (method A - initial term is 1).

Original entry on oeis.org

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, 13211311123113112211, 11131221133112132113212221, 3113112221232112111312211312113211, 1321132132111213122112311311222113111221131221, 11131221131211131231121113112221121321132132211331222113112211, 311311222113111231131112132112311321322112111312211312111322212311322113212221
Offset: 1

Views

Author

Keywords

Comments

Method A = "frequency" followed by "digit"-indication.
Also known as the "Say What You See" sequence.
Only the digits 1, 2 and 3 appear in any term. - Robert G. Wilson v, Jan 22 2004
All terms end with 1 (the seed) and, except the third a(3), begin with 1 or 3. - Jean-Christophe Hervé, May 07 2013
Proof that 333 never appears in any a(n): suppose it appears for the first time in a(n); because of "three 3" in 333, it would imply that 333 is also in a(n-1), which is a contradiction. - Jean-Christophe Hervé, May 09 2013
This sequence is called "suite de Conway" in French (see Wikipédia link). - Bernard Schott, Jan 10 2021
Contrary to many accounts (including an earlier comment on this page), Conway did not invent the sequence. The first mention of the sequence appears to date back to the 1977 International Mathematical Olympiad in Belgrade, Yugoslavia. See the Editor's note on page 4, directly preceding Conway's article in Eureka referenced below. - Harlan J. Brothers, May 03 2024

Examples

			The term after 1211 is obtained by saying "one 1, one 2, two 1's", which gives 111221.
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 208.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, section 6.12 Conway's Constant, pp. 452-455.
  • M. Gilpin, On the generalized Gleichniszahlen-Reihe sequence, Manuscript, Jul 05 1994.
  • A. Lakhtakia and C. Pickover, Observations on the Gleichniszahlen-Reihe: An Unusual Number Theory Sequence, J. Recreational Math., 25 (No. 3, 1993), 192-198.
  • Clifford A. Pickover, Computers and the Imagination, St Martin's Press, NY, 1991.
  • Clifford A. Pickover, Fractal horizons: the future use of fractals, New York: St. Martin's Press, 1996. ISBN 0312125992. Chapter 7 has an extensive description of the elements and their properties.
  • C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 486.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, 1999, p. 23.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.

Crossrefs

Cf. A001387, Periodic table: A119566.
Cf. A225224, A221646, A225212 (continuous versions).
Apart from the first term, all terms are in A001637.
About digits: A005341 (number of digits), A022466 (number of 1's), A022467 (number of 2's), A022468 (number of 3's), A004977 (sum of digits), A253677 (product of digits).
About primes: A079562 (number of distinct prime factors), A100108 (terms that are primes), A334132 (smallest prime factor).
Cf. A014715 (Conway's constant), A098097 (terms interpreted as written in base 4).

Programs

  • Haskell
    import List
    say :: Integer -> Integer
    say = read . concatMap saygroup . group . show
    where saygroup s = (show $ length s) ++ [head s]
    look_and_say :: [Integer]
    look_and_say = 1 : map say look_and_say
    -- Josh Triplett (josh(AT)freedesktop.org), Jan 03 2007
    
  • Haskell
    a005150 = foldl1 (\v d -> 10 * v + d) . map toInteger . a034002_row
    -- Reinhard Zumkeller, Aug 09 2012
    
  • Java
    See Paulo Ortolan link.
    
  • Mathematica
    RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 1 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 15} ]
    A005150[1] := 1; A005150[n_] := A005150[n] = FromDigits[Flatten[{Length[#], First[#]}&/@Split[IntegerDigits[A005150[n-1]]]]]; Map[A005150, Range[25]] (* Peter J. C. Moses, Mar 21 2013 *)
  • PARI
    A005150(n,a=1)={ while(n--, my(c=1); for(j=2,#a=Vec(Str(a)), if( a[j-1]==a[j], a[j-1]=""; c++, a[j-1]=Str(c,a[j-1]); c=1)); a[#a]=Str(c,a[#a]); a=concat(a)); a }  \\ M. F. Hasler, Jun 30 2011
  • Perl
    $str="1"; for (1 .. shift(@ARGV)) { print($str, ","); @a = split(//,$str); $str=""; $nd=shift(@a); while (defined($nd)) { $d=$nd; $cnt=0; while (defined($nd) && ($nd eq $d)) { $cnt++; $nd = shift(@a); } $str .= $cnt.$d; } } print($str);
    # Jeff Quilici (jeff(AT)quilici.com), Aug 12 2003
    
  • Perl
    # This outputs the first n elements of the sequence, where n is given on the command line.
    $s = 1;
    for (2..shift @ARGV) {
    print "$s, ";
    $s =~ s/(.)\1*/(length $&).$1/eg;
    }
    # Arne 'Timwi' Heizmann (timwi(AT)gmx.net), Mar 12 2008
    print "$s\n";
    
  • Python
    def A005150(n):
        p = "1"
        seq = [1]
        while (n > 1):
            q = ''
            idx = 0 # Index
            l = len(p) # Length
            while idx < l:
                start = idx
                idx = idx + 1
                while idx < l and p[idx] == p[start]:
                    idx = idx + 1
                q = q + str(idx-start) + p[start]
            n, p = n - 1, q
            seq.append(int(p))
        return seq
    # Olivier Mengue (dolmen(AT)users.sourceforge.net), Jul 01 2005
    
  • Python
    def A005150(n):
        seq = [1] + [None] * (n - 1) # allocate entire array space
        def say(s):
            acc = '' # initialize accumulator
            while len(s) > 0:
                i = 0
                c = s[0] # char of first run
                while (i < len(s) and s[i] == c): # scan first digit run
                    i += 1
                acc += str(i) + c # append description of first run
                if i == len(s):
                    break # done
                else:
                    s = s[i:] # trim leading run of digits
            return acc
        for i in range(1, n):
            seq[i] = int(say(str(seq[i-1])))
        return seq
    # E. Johnson (ejohnso9(AT)earthlink.net), Mar 31 2008
    
  • Python
    # program without string operations
    def sign(n): return int(n > 0)
    def say(a):
        r = 0
        p = 0
        while a > 0:
            c = 3 - sign((a % 100) % 11) - sign((a % 1000) % 111)
            r += (10 * c + (a % 10)) * 10**(2*p)
            a //= 10**c
            p += 1
        return r
    a = 1
    for i in range(1, 26):
        print(i, a)
        a = say(a)
    # Volker Diels-Grabsch, Aug 18 2013
    
  • Python
    import re
    def lookandsay(limit, sequence = 1):
        if limit > 1:
            return lookandsay(limit-1, "".join([str(len(match.group()))+match.group()[0] for matchNum, match in enumerate(re.finditer(r"(\w)\1*", str(sequence)))]))
        else:
            return sequence
    # lookandsay(3) --> 21
    # Nicola Vanoni, Nov 29 2016
    
  • Python
    import itertools
    x = "1"
    for i in range(20):
        print(x)
        x = ''.join(str(len(list(g)))+k for k,g in itertools.groupby(x))
    # Matthew Cotton, Nov 12 2019
    

Formula

a(n+1) = A045918(a(n)). - Reinhard Zumkeller, Aug 09 2012
a(n) = Sum_{k=1..A005341(n)} A034002(n,k)*10^(A005341(n)-k). - Reinhard Zumkeller, Dec 15 2012
a(n) = A004086(A007651(n)). - Bernard Schott, Jan 08 2021
A055642(a(n+1)) = A005341(n+1) = 2*A043562(a(n)). - Ya-Ping Lu, Jan 28 2025
Conjecture: DC(a(n)) ~ k * (Conway's constant)^n where k is approximately 1.021... and DC denotes the number of digit changes in the decimal representation of n (e.g., DC(13112221)=4 because 1->3, 3-1, 1->2, 2->1). - Bill McEachen, May 09 2025
Conjecture: lim_{n->infinity} (c2+c3-c1)/(c1+c2+c3) = 0.01 approximately, where ci is the number of appearances of 'i' in a(n). - Ya-Ping Lu, Jun 05 2025

A007500 Primes whose reversal in base 10 is also prime (called "palindromic primes" by David Wells, although that name usually refers to A002385). Also called reversible primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 101, 107, 113, 131, 149, 151, 157, 167, 179, 181, 191, 199, 311, 313, 337, 347, 353, 359, 373, 383, 389, 701, 709, 727, 733, 739, 743, 751, 757, 761, 769, 787, 797, 907, 919, 929, 937, 941, 953, 967, 971, 983, 991, 1009, 1021
Offset: 1

Views

Author

Keywords

Comments

The numbers themselves need not be palindromes.
The range is a subset of the range of A071786. - Reinhard Zumkeller, Jul 06 2009
Number of terms less than 10^n: 4, 13, 56, 260, 1759, 11297, 82439, 618017, 4815213, 38434593, ..., . - Robert G. Wilson v, Jan 08 2015

References

  • Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 39, 131-132
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 113.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 134.

Crossrefs

Cf. A002385 (primes that are palindromes in base 10).
Equals A002385 union A006567.
Complement of A076056 with respect to A000040. [From Reinhard Zumkeller, Jul 06 2009]

Programs

  • Haskell
    a007500 n = a007500_list !! (n-1)
    a007500_list = filter ((== 1) . a010051 . a004086) a000040_list
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Magma
    [ p: p in PrimesUpTo(1030) | IsPrime(Seqint(Reverse(Intseq(p)))) ];  // Bruno Berselli, Jul 08 2011
    
  • Maple
    revdigs:= proc(n)
    local L,nL,i;
    L:= convert(n,base,10);
    nL:= nops(L);
    add(L[i]*10^(nL-i),i=1..nL);
    end:
    Primes:= select(isprime,{2,seq(2*i+1,i=1..5*10^5)}):
    Primes intersect map(revdigs,Primes); # Robert Israel, Aug 14 2014
  • Mathematica
    Select[ Prime[ Range[ 168 ] ], PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ # ] ] ] ]& ] (* Zak Seidov, corrected by T. D. Noe *)
    Select[Prime[Range[1000]],PrimeQ[IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)
  • PARI
    is_A007500(n)={ isprime(n) & is_A095179(n)} \\ M. F. Hasler, Jan 13 2012
    
  • Python
    from sympy import prime, isprime
    A007500 = [prime(n) for n in range(1,10**6) if isprime(int(str(prime(n))[::-1]))] # Chai Wah Wu, Aug 14 2014
    
  • Python
    from gmpy2 import is_prime, mpz
    from itertools import count, islice, product
    def agen(): # generator of terms
        yield from [2, 3, 5, 7]
        p = 11
        for digits in count(2):
            for first in "1379":
                for mid in product("0123456789", repeat=digits-2):
                    for last in "1379":
                        s = first + "".join(mid) + last
                        if is_prime(t:=mpz(s)) and is_prime(mpz(s[::-1])):
                            yield int(t)
    print(list(islice(agen(), 60))) # Michael S. Branicky, Jan 02 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 31 2000
Added further terms to the sequence Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 16 2009. Checked by N. J. A. Sloane, Jan 20 2009.
Third reference added by Harvey P. Dale, Oct 17 2011

A056964 a(n) = n + reversal of digits of n.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 66, 77, 88, 99, 110
Offset: 0

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Comments

If n has an even number of digits then a(n) is a multiple of 11.
Also called the Reverse and Add!, or RADD operation. Iteration of this function leads to the definition of Lychrel and related numbers, cf. A023108, A063048, A088753, A006960, and many others. - M. F. Hasler, Apr 13 2019

Examples

			a(17) = 17 + 71 = 88.
		

Crossrefs

Differs from A052008 when n=101 and a(101)=202 while A052008(101)=121
Cf. A036839.

Programs

Formula

a(n) = n + A004086(n) = 2*n - A056965(n).
n < a(n) < 11n for n > 0. - Charles R Greathouse IV, Nov 17 2022

A023108 Positive integers which apparently never result in a palindrome under repeated applications of the function A056964(x) = x + (x with digits reversed).

Original entry on oeis.org

196, 295, 394, 493, 592, 689, 691, 788, 790, 879, 887, 978, 986, 1495, 1497, 1585, 1587, 1675, 1677, 1765, 1767, 1855, 1857, 1945, 1947, 1997, 2494, 2496, 2584, 2586, 2674, 2676, 2764, 2766, 2854, 2856, 2944, 2946, 2996, 3493, 3495, 3583, 3585, 3673, 3675
Offset: 1

Views

Author

Keywords

Comments

196 is conjectured to be smallest initial term which does not lead to a palindrome. John Walker, Tim Irvin and others have extended this to millions of digits without finding one (see A006960).
Also called Lychrel numbers, though the definition of "Lychrel number" varies: Purists only call the "seeds" or "root numbers" Lychrel; the "related" or "extra" numbers (arising in the former's orbit) have been coined "Kin numbers" by Koji Yamashita. There are only 2 "root" Lychrels below 1000 and 3 more below 10000, cf. A088753. - M. F. Hasler, Dec 04 2007
Question: when do numbers in this sequence start to outnumber numbers that are not in the sequence? - J. Lowell, May 15 2014
Answer: according to Doucette's site, 10-digit numbers have 49.61% of Lychrels. So beyond 10 digits, Lychrels start to outnumber non-Lychrels. - Dmitry Kamenetsky, Oct 12 2015
From the current definition it is unclear whether palindromes are excluded from this sequence, cf. A088753 vs A063048. 9999 would be the first palindromic term that will never result in a palindrome when the Reverse-then-add function A056964 is repeatedly applied. - M. F. Hasler, Apr 13 2019

Examples

			From _M. F. Hasler_, Feb 16 2020: (Start)
Under the "add reverse" operation, we have:
196 (+ 691) -> 887 (+ 788) -> 1675 (+ 5761) -> 7436 (+ 6347) -> 13783 (+ 38731) -> etc. which apparently never leads to a palindrome.
Similar for 295 (+ 592) -> 887, 394 (+ 493) -> 887, 790 (+ 097) -> 887 and 689 (+ 986) -> 1675, which all merge immediately into the above sequence, and also for the reverse of any of the numbers occurring in these sequences: 493, 592, 691, 788, ...
879 (+ 978) -> 1857 -> 9438 -> 17787 -> 96558 is the only other "root" Lychrel below 1000 which yields a sequence distinct from that of 196. (End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.

Crossrefs

Cf. A056964 ("reverse and add" operation on which this is based).

Programs

  • Mathematica
    With[{lim = 10^3}, Select[Range@ 4000, Length@ NestWhileList[# + IntegerReverse@ # &, #, ! PalindromeQ@ # &, 1, lim] == lim + 1 &]] (* Michael De Vlieger, Dec 23 2017 *)
  • PARI
    select( {is_A023108(n, L=exponent(n+1)*5)=while(L--&& n*2!=n+=A004086(n),);!L}, [1..3999]) \\ with {A004086(n)=fromdigits(Vecrev(digits(n)))}; default value for search limit L chosen according to known records A065199 and indices A065198. - M. F. Hasler, Apr 13 2019, edited Feb 16 2020

Extensions

Edited by M. F. Hasler, Dec 04 2007

A136522 a(n) = 1 if n is a palindrome, otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Apr 21 2008

Keywords

Comments

a(A002113(n)) = 1; a(A029742(n)) = 0.
a(n) = A202022(n) for n <= 100, a(101) = 1, A202022(101) = 0. - Reinhard Zumkeller, Dec 10 2011

Crossrefs

Programs

  • Haskell
    a136522 n = fromEnum $ n == a004086 n  -- Reinhard Zumkeller, Apr 08 2011
    
  • Mathematica
    fQ[n_]:=Module[{id=IntegerDigits[n]}, Boole[id==Reverse[id]]]; Array[fQ, 100] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)
    Table[If[PalindromeQ[n],1,0],{n,0,120}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2019 *)
  • Python
    def A136522(n): return int((s:=str(n))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1]) # Chai Wah Wu, Jun 23 2022

Formula

a(n) = if A004086(n) = n then 1 else 0. - Reinhard Zumkeller, Apr 08 2011
a(n) = A000007(A064834(n)). - Reinhard Zumkeller, Sep 18 2013

A006960 Reverse and Add! sequence starting with 196.

Original entry on oeis.org

196, 887, 1675, 7436, 13783, 52514, 94039, 187088, 1067869, 10755470, 18211171, 35322452, 60744805, 111589511, 227574622, 454050344, 897100798, 1794102596, 8746117567, 16403234045, 70446464506, 130992928913, 450822227944, 900544455998, 1800098901007, 8801197801088, 17602285712176
Offset: 0

Views

Author

Keywords

Comments

196 is conjectured to be the smallest initial term which does not lead to a palindrome. John Walker, Tim Irvin and others have extended the trajectory of 196 to millions of digits without finding a palindrome.
From A.H.M. Smeets, Jan 31 2019: (Start)
Palindromes for a(9)/2, a(14)/2 and a(20)/2.
Observed: It seems that most, but not all, Lychrel numbers (seeds given in A063048) have a trajectory term that, divided by 2, becomes palindromic. Note that 196 is the first Lychrel number (A063048(1)). (End)
Observed: On average, 0.414 digits are gained by each step of the reverse and add procedure; i.e., 2.416 steps are needed on average to gain a factor of 10. This holds for any trajectory of reverse and add for decimal number representation. - A.H.M. Smeets, Feb 03 2019

Examples

			From _M. F. Hasler_, Apr 13 2019: (Start)
Start with 196 = a(0), then:
A056964(196) = 196 + 691 = 887 = a(1); then:
A056964(887) = 887 + 788 = 1675 = a(2); then:
A056964(1675) = 1675 + 5761 = 7436 = a(3); then:
A056964(7436) = 7436 + 6347 = 13783 = a(4); then:
A056964(13783) = 13783 + 38731 = 52514 = a(5); etc. (End)
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 196, p. 58, Ellipses, Paris 2008.
  • D. H. Lehmer, "Sujets d'étude. No. 74," Sphinx (Bruxelles), 8 (1938), 12-13. (This is the currently earliest known reference to the 196 Problem). - James D. Klein, Apr 09 2012
  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 70.
  • Popular Computing (Calabasas, CA), The 196 Problem, Vol. 3 (No. 30, Sep 1975), pages PC30-6 to PC30-9.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006960 n = a006960_list !! n
    a006960_list = iterate a056964 196 -- Reinhard Zumkeller, Sep 22 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 196, (h-> h+ (s->
          parse(cat(s[-i]$i=1..length(s))))(""||h))(a(n-1)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 25 2014
  • Mathematica
    a = {196}; For[i = 2, i < 26, i++, a = Append[a, a[[i - 1]] + ToExpression[ StringReverse[ToString[a[[i - 1]]]]]]]; a
    NestList[#+FromDigits[Reverse[IntegerDigits[#]]]&,196,25] (* Harvey P. Dale, Jun 05 2011 *)
    NestList[#+IntegerReverse[#]&,196,25] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2019 *)
  • PARI
    A006960_vec(N=99)=vector(N,i,N=if(i>1,A056964(N),196)) \\ M. F. Hasler, Apr 13 2019

Formula

a(n+1) = A056964(a(n)). - A.H.M. Smeets, Jan 27 2019

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 28 2002
Previous Showing 101-110 of 587 results. Next