A074650
Table T(n,k) read by downward antidiagonals: number of Lyndon words (aperiodic necklaces) with n beads of k colors, n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 8, 3, 0, 6, 10, 20, 18, 6, 0, 7, 15, 40, 60, 48, 9, 0, 8, 21, 70, 150, 204, 116, 18, 0, 9, 28, 112, 315, 624, 670, 312, 30, 0, 10, 36, 168, 588, 1554, 2580, 2340, 810, 56, 0, 11, 45, 240, 1008, 3360, 7735, 11160, 8160, 2184, 99, 0
Offset: 1
T(4, 3) counts the 18 ternary prime strings of length 4 which are: 0001, 0002, 0011, 0012, 0021, 0022, 0102, 0111, 0112, 0121, 0122, 0211, 0212, 0221, 0222, 1112, 1122, 1222.
Square array starts:
1, 2, 3, 4, 5, 6, 7, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 2, 8, 20, 40, 70, 112, ...
0, 3, 18, 60, 150, 315, 588, ...
0, 6, 48, 204, 624, 1554, 3360, ...
0, 9, 116, 670, 2580, 7735, 19544, ...
0, 18, 312, 2340, 11160, 39990, 117648, ...
...
The transposed array starts:
1 0 0 0 0 0 0 0 0 0,
2 1 2 3 6 9 18 30 56 99,
3 3 8 18 48 116 312 810 2184 5880,
4 6 20 60 204 670 2340 8160 29120 104754,
5 10 40 150 624 2580 11160 48750 217000 976248,
6 15 70 315 1554 7735 39990 209790 1119720 6045837,
7 21 112 588 3360 19544 117648 720300 4483696 28245840,
8 28 168 1008 6552 43596 299592 2096640 14913024 107370900,
9 36 240 1620 11808 88440 683280 5380020 43046640 348672528,
10 45 330 2475 19998 166485 1428570 12498750 111111000 999989991,
11 55 440 3630 32208 295020 2783880 26793030 261994040 2593726344,
12 66 572 5148 49764 497354 5118828 53745120 573308736 6191711526,
...
The initial antidiagonals are:
1
2 0
3 1 0
4 3 2 0
5 6 8 3 0
6 10 20 18 6 0
7 15 40 60 48 9 0
8 21 70 150 204 116 18 0
9 28 112 315 624 670 312 30 0
10 36 168 588 1554 2580 2340 810 56 0
11 45 240 1008 3360 7735 11160 8160 2184 99 0
12 55 330 1620 6552 19544 39990 48750 29120 5880 186 0
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 97 (2.3.74)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 495.
- D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, pp. 26-27, Addison-Wesley, 2005.
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- B. Hayes, The invention of the genetic code, American Scientist, Vol. 86, No. 1 (January-February 1998), pp. 8-14.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Irem Kucukoglu and Yilmaz Simsek, On k-ary Lyndon words and their generating functions, AIP Conference Proceedings 1863, 300004 (2017).
- R. C. Lyndon, On Burnside's problem, Transactions of the American Mathematical Society 77, (1954) 202-215.
- Dominique Perrin and Christophe Reutenauer, Hall sets, Lazard sets and comma-free codes, arXiv preprint arXiv:1609.05438 [math.CO] (2016).
- Dominique Perrin and Christophe Reutenauer, Hall sets, Lazard sets and comma-free codes, Discrete Math., 341 (2018), 232-243.
- Dominique Perrin and Christophe Reutenauer, Hall sets, Lazard sets and comma-free codes, Discrete Math., 341 (2018), 232-243. [Annotated scanned copy of page 236 only.]
- Wikipedia, Lyndon word
- Index entries for sequences related to Lyndon words
Columns k:
A001037 (k=2),
A027376 (k=3),
A027377 (k=4),
A001692 (k=5),
A032164 (k=6),
A001693 (k=7),
A027380 (k=8),
A027381 (k=9),
A032165 (k=10),
A032166 (k=11),
A032167 (k=12),
A060216 (k=13),
A060217 (k=14),
A060218 (k=15),
A060219 (k=16),
A060220 (k=17),
A060221 (k=18),
A060222 (k=19).
-
t:= func< n,k | (&+[MoebiusMu(Floor(n/d))*k^d: d in Divisors(n)])/n >; // array
A074650:= func< n,k | t(k, n-k+1) >; // downward diagonals
[A074650(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Aug 01 2024
-
with(numtheory):
T:= proc(n, k) add(mobius(n/d)*k^d, d=divisors(n))/n end:
seq(seq(T(i, 1+d-i), i=1..d), d=1..11); # Alois P. Heinz, Mar 28 2008
-
max = 12; t[n_, k_] := Total[ MoebiusMu[n/#]*k^# & /@ Divisors[n]]/n; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 18 2011, after Maple *)
-
T(n,k)=sumdiv(n,d,moebius(n/d)*k^d)/n \\ Charles R Greathouse IV, Oct 18 2011
-
# This algorithm generates and counts all k-ary n-tuples (a_1,..,a_n) such
# that the string a_1...a_n is prime. It is algorithm F in Knuth 7.2.1.1.
def A074650(n, k):
a = [0]*(n+1); a[0]=-1
j = 1; count = 0
while(j != 0) :
if j == n : count += 1; # print("".join(map(str,a[1:])))
else: j = n
while a[j] >= k-1 : j -= 1
a[j] += 1
for i in (j+1..n): a[i] = a[i-j]
return count # Peter Luschny, Aug 14 2012
A034827
a(n) = 2*binomial(n,4).
Original entry on oeis.org
0, 0, 0, 0, 2, 10, 30, 70, 140, 252, 420, 660, 990, 1430, 2002, 2730, 3640, 4760, 6120, 7752, 9690, 11970, 14630, 17710, 21252, 25300, 29900, 35100, 40950, 47502, 54810, 62930, 71920, 81840, 92752, 104720, 117810, 132090, 147630, 164502, 182780
Offset: 0
- Charles Jordan, Calculus of Finite Differences, Chelsea, 1965, p. 449.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- M. Aganagic, A. Klemm and C. Vafa, Disk Instantons, Mirror Symmetry and the Duality Web, arXiv:hep-th/0105045, 2001.
- Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
- Elie Feder and David Garber, The Orchard crossing number of an abstract graph, arXiv:math/0303317 [math.CO], 2003-2009.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[2*Binomial(n,4): n in [0..40]]; // Vincenzo Librandi, Oct 20 2013
-
[seq(binomial(n,4)*2,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
-
CoefficientList[Series[2 x^4/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 20 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 2}, 50] (* Harvey P. Dale, Jun 09 2016 *)
Table[2 Binomial[n, 4], {n, 0, 40}] (* Bruno Berselli, Oct 24 2016 *)
2 Binomial[Range[0, 20], 4] (* Eric W. Weisstein, Aug 10 2017 *)
-
a(n)=2*binomial(n,4) \\ Charles R Greathouse IV, Jun 23 2015
A008291
Triangle of rencontres numbers.
Original entry on oeis.org
1, 2, 3, 9, 8, 6, 44, 45, 20, 10, 265, 264, 135, 40, 15, 1854, 1855, 924, 315, 70, 21, 14833, 14832, 7420, 2464, 630, 112, 28, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 14684570
Offset: 2
Triangle begins:
1
2 3
9 8 6
44 45 20 10
265 264 135 40 15
1854 1855 924 315 70 21
14833 14832 7420 2464 630 112 28
133496 133497 66744 22260 5544 1134 168 36
...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
- Kaufmann, Arnold. "Introduction a la combinatorique en vue des applications." Dunod, Paris, 1968. See p. 92.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
-
T:= proc(n, k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
(T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
end:
seq(seq(T(n, k), k=0..n-2), n=2..12); # Alois P. Heinz, Mar 17 2013
-
Prepend[Flatten[f[list_]:=Select[list,#>1&];Map[f,Drop[Transpose[Table[d = Exp[-x]/(1 - x);Range[0, 10]! CoefficientList[Series[d x^k/k!, {x, 0, 10}],x], {k, 0, 8}]], 3]]], 1] (* Geoffrey Critzer, Nov 28 2011 *)
-
T(n, k)= if(k<0 || k>n, 0, n!/k!*sum(i=0, n-k, (-1)^i/i!))
A011886
a(n) = floor(n*(n-1)*(n-2)/4).
Original entry on oeis.org
0, 0, 0, 1, 6, 15, 30, 52, 84, 126, 180, 247, 330, 429, 546, 682, 840, 1020, 1224, 1453, 1710, 1995, 2310, 2656, 3036, 3450, 3900, 4387, 4914, 5481, 6090, 6742, 7440, 8184, 8976, 9817, 10710, 11655, 12654, 13708, 14820, 15990, 17220, 18511, 19866, 21285
Offset: 0
Sequences of the form floor(n*(n-1)*(n-2)/m):
A007531 (m=1),
A135503 (m=2),
A007290 (m=3), this sequence (m=4),
A011887 (m=5),
A000292 (m=6),
A011889 (m=7),
A011890 (m=8),
A011891 (m=9),
A011892 (m=10),
A011893 (m=11),
A011894 (m=12),
A011895 (m=13),
A011896 (m=14),
A011897 (m=15),
A011898 (m=16),
A011899 (m=17),
A011849 (m=18),
A011901 (m=19),
A011902 (m=20),
A011903 (m=21),
A011904 (m=22),
A011905 (m=23),
A011842 (m=24),
A011907 (m=25),
A011908 (m=26),
A011909 (m=27),
A011910 (m=28),
A011911 (m=29),
A011912 (m=30),
A011912 (m=31),
A011913 (m=32).
-
[Floor(n*(n-1)*(n-2)/4): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
-
Table[Floor[(n(n-1)(n-2))/4],{n,0,50}] (* or *) LinearRecurrence[{3,-3,1,1, -3,3,-1},{0,0,0,1,6,15,30}, 50] (* Harvey P. Dale, Feb 25 2012 *)
CoefficientList[Series[x^3*(1+3*x+2*x^3)/((1-x)^3*(1-x^4)),{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
-
[3*binomial(n,3)//2 for n in range(51)] # G. C. Greubel, Oct 06 2024
A084990
a(n) = n*(n^2+3*n-1)/3.
Original entry on oeis.org
0, 1, 6, 17, 36, 65, 106, 161, 232, 321, 430, 561, 716, 897, 1106, 1345, 1616, 1921, 2262, 2641, 3060, 3521, 4026, 4577, 5176, 5825, 6526, 7281, 8092, 8961, 9890, 10881, 11936, 13057, 14246, 15505, 16836, 18241, 19722, 21281, 22920, 24641, 26446, 28337, 30316
Offset: 0
Let n=2. Consider nonnegative multiples of 5 up to 16*2^4 - 1 = 255. There are 52 such numbers and from them only 8 (namely, 35, 50, 55, 115, 140, 200, 205, 220) have an odd digit sum in base 4. Therefore, a(4) = (52 - 8) - 8 = 36. - _Vladimir Shevelev_, May 18 2012
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem III. Partial queens, arXiv:1402.4886 [math.CO], 2014-2018. See Conjecture 4.4.
- Vladimir Shevelev, On monotonic strengthening of Newman-like phenomenon on (2m+1)-multiples in base 2m, arXiv:0710.3177 [math.NT], 2007.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
I:=[0,1,6,17]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Mar 28 2014
-
A084990:=n->n*(n^2+3*n-1)/3; seq(A084990(k),k=0..100); # Wesley Ivan Hurt, Oct 19 2013
-
Table[n*(n^2+3*n-1)/3,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
CoefficientList[Series[(x + 2 x^2 - x^3)/((1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,6,17},50] (* Harvey P. Dale, Aug 18 2015 *)
-
a(n) = n*(n^2+3*n-1)/3 \\ Charles R Greathouse IV, Sep 24 2015
A071951
Triangle of Legendre-Stirling numbers of the second kind T(n,j), n >= 1, 1 <= j <= n, read by rows.
Original entry on oeis.org
1, 2, 1, 4, 8, 1, 8, 52, 20, 1, 16, 320, 292, 40, 1, 32, 1936, 3824, 1092, 70, 1, 64, 11648, 47824, 25664, 3192, 112, 1, 128, 69952, 585536, 561104, 121424, 7896, 168, 1, 256, 419840, 7096384, 11807616, 4203824, 453056, 17304, 240, 1, 512, 2519296, 85576448, 243248704, 137922336, 23232176, 1422080, 34584, 330, 1
Offset: 1
The triangle begins:
n\j 1 2 3 4 5 6 7 8 9 ...
1: 1
2: 2 1
3: 4 8 1
4: 8 52 20 1
5: 16 320 292 40 1
6: 32 1936 3824 1092 70 1
7: 64 11648 47824 25664 3192 112 1
8: 128 69952 585536 561104 121424 7896 168 1
9: 256 419840 7096384 11807616 4203824 453056 17304 240 1
...
Row 10: 512 2519296 85576448 243248704 137922336 23232176 1422080 34584 330 1. Reformatted by _Wolfdieter Lang_, Apr 10 2013
- Robert Israel, Table of n, a(n) for n = 1..10011 (first 141 rows, flattened)
- G. E. Andrews, W. Gawronski and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
- M. W. Coffey, M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
- E. S. Egge, Legendre-Stirling permutations, Eur. J. Combin. 13 (2010) 1735-1750.
- W. N. Everitt, L. L. Littlejohn and R. Wellman, Legendre polynomials, Legendre-Stirling numbers and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math. 148, 2002, 213-238.
- H. Li, T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, Theorem 43.
- L. L. Littlejohn and R. Wellman, A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.
-
[[(&+[(-1)^(r+j)*(2*r+1)*(r^2+r)^n/(Factorial(r+j+1)*Factorial(j-r)): r in [1..j]]): j in [1..n]]: n in [1..12]]; // G. C. Greubel, Mar 16 2019
-
N:= 20: # to get the first N rows, flattened
for j from 1 to N do S[j]:= series(x^j/mul(1-r*(r+1)*x, r=1..j), x, N+1) od:
seq(seq(coeff(S[j],x,i),j=1..i),i=1..N); # Robert Israel, Dec 03 2015
# alternative
A071951 := proc(n,k)
option remember;
if k =0 then
if n = 0 then
1;
else
0;
end if;
elif n = 0 then
if k =0 then
1;
else
0;
end if;
else
procname(n-1,k-1)+k*(k+1)*procname(n-1,k) ;
end if;
end proc: # R. J. Mathar, Jun 30 2018
-
Flatten[ Table[ Sum[(-1)^{r + j}(2r + 1)(r^2 + r)^n/((r + j + 1)!(j - r)!), {r, j}], {n, 10}, {j, n}]]
-
{T(n, k) = sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! )} /* Michael Somos, Feb 25 2012 */
-
[[sum( (-1)^(r+j)*(2*r+1)*(r^2+r)^n/(factorial(r+j+1)*factorial(j-r)) for r in (1..j)) for j in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 16 2019
A059419
Triangle T(n,k) (1 <= k <= n) of tangent numbers, read by rows: T(n,k) = coefficient of x^n/n! in expansion of (tan x)^k/k!.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 16, 0, 20, 0, 1, 0, 136, 0, 40, 0, 1, 272, 0, 616, 0, 70, 0, 1, 0, 3968, 0, 2016, 0, 112, 0, 1, 7936, 0, 28160, 0, 5376, 0, 168, 0, 1, 0, 176896, 0, 135680, 0, 12432, 0, 240, 0, 1, 353792, 0, 1805056, 0, 508640, 0, 25872, 0, 330, 0, 1, 0
Offset: 1
1;
0, 1;
2, 0, 1;
0, 8, 0, 1;
16, 0, 20, 0, 1;
0, 136, 0, 40, 0, 1;
272, 0, 616, 0, 70, 0, 1;
0, 3968, 0, 2016, 0, 112, 0, 1;
7936, 0, 28160, 0, 5376, 0, 168, 0, 1;
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Toufik Mansour, Mark Shattuck, Combinatorial parameters on bargraphs of permutations, Transactions on Combinatorics, Article 1, Vol. 7, Issue 2, June 2018, Page 1-16.
A111593 (signed triangle with extra column k=0 and row n=0).
-
A059419 := proc(n,k) option remember; if n = k then 1; elif k <0 or k > n then 0; else procname(n-1,k-1)+k*(k+1)*procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Feb 11 2011
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 2^(n+1)*abs(euler(n+1, 1)), 10); # Peter Luschny, Jan 26 2016
-
d[f_ ] := (1+x^2)*D[f, x]; d[ f_, n_] := Nest[d, f, n]; row[n_] := Rest[ CoefficientList[ d[Exp[x*t], n] /. x -> 0, t]]; Flatten[ Table[ row[n], {n, 1, 12}]] (* Jean-François Alcover, Dec 21 2011, after Peter Bala *)
rows = 12;
t = Table[2^(n+1)*Abs[EulerE[n+1, 1]], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
T(n,k)=if(k<1 || k>n,0,n!*polcoeff(tan(x+x*O(x^n))^k/k!,n))
-
def A059419_triangle(dim):
M = matrix(ZZ, dim, dim)
for n in (0..dim-1): M[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n,k] = M[n-1,k-1]+(k+1)*(k+2)*M[n-1,k+1]
return M
A059419_triangle(9) # Peter Luschny, Sep 19 2012
More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001
A208535
Square array read by descending antidiagonals: T(n,k) is the number of n-bead necklaces of k colors not allowing reversal, with no adjacent beads having the same color (n, k >= 1).
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 6, 2, 1, 0, 6, 10, 8, 6, 0, 0, 7, 15, 20, 24, 6, 1, 0, 8, 21, 40, 70, 48, 14, 0, 0, 9, 28, 70, 165, 204, 130, 18, 1, 0, 10, 36, 112, 336, 624, 700, 312, 36, 0, 0, 11, 45, 168, 616, 1554, 2635, 2340, 834, 58, 1, 0, 12, 55, 240, 1044, 3360, 7826, 11160
Offset: 1
Table T(n,k) (with rows n >= 1 and columns k >= 1) starts:
1 2 3 4 5 6 7 8 9 10 11 12 13 ...
0 1 3 6 10 15 21 28 36 45 55 66 78 ...
0 0 2 8 20 40 70 112 168 240 330 440 572 ...
0 1 6 24 70 165 336 616 1044 1665 2530 3696 5226 ...
0 0 6 48 204 624 1554 3360 6552 11808 19998 32208 49764 ...
0 1 14 130 700 2635 7826 19684 43800 88725 166870 295526 498004 ...
0 0 18 312 2340 11160 39990 117648 299592 683280 1428570 2783880 5118828 ...
0 1 36 834 8230 48915 210126 720916 2097684 5381685 12501280 26796726 53750346 ...
...
All solutions for n = 4 and k = 3:
1 2 1 1 1 1
3 3 2 2 3 2
2 2 3 1 1 1
3 3 2 2 3 3
-
T[n_, k_] := If[n == 1, k, Sum[ EulerPhi[n/d]*(k-1)^d, {d, Divisors[n]}]/n - If[OddQ[n], k-1, 0]]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
-
T(n,k) = if(n==1, k, sumdiv(n,d,eulerphi(n/d)*(k-1)^d)/n - if(n%2, k-1));
for(n=1, 10, for(k=1, 10, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 14 2017
A271034
T(n,k)=Number of nXnXn triangular 0..k arrays with some element less than a w, nw or ne neighbor exactly once.
Original entry on oeis.org
0, 0, 2, 0, 8, 10, 0, 20, 72, 34, 0, 40, 294, 450, 98, 0, 70, 896, 3114, 2420, 258, 0, 112, 2268, 15116, 29120, 12010, 642, 0, 168, 5040, 58036, 232432, 256020, 56754, 1538, 0, 240, 10164, 188034, 1402082, 3441072, 2173554, 259628, 3586, 0, 330, 19008, 535106
Offset: 1
Some solutions for n=4 k=4
.....0........0........0........1........0........1........0........0
....0.0......0.3......1.0......2.3......0.0......1.1......0.2......0.0
...1.0.0....3.3.3....3.4.4....3.4.4....0.1.3....0.1.2....0.2.2....1.1.0
..1.1.1.1..4.4.3.4..4.4.4.4..3.3.4.4..2.4.3.3..2.3.4.4..0.0.2.3..4.4.4.4
A212124
Total number of states of the first n subshells of the nuclear shell model in which the subshells are ordered by energy level in increasing order.
Original entry on oeis.org
2, 6, 8, 14, 16, 20, 28, 32, 38, 40, 50, 58, 64, 68, 70, 82, 92, 100, 106, 110, 112, 126, 136, 142, 154, 162, 164, 168, 184
Offset: 1
Example 1: written as a triangle in which apparently row i is related to the (i-1)st level of nucleus. Triangle begins:
2;
6, 8;
14, 16, 20;
28, 32, 38, 40;
50, 58, 64, 68, 70;
82, 92, 100, 106, 110, 112;
126, 136, 142, 154, 162, 164, 168;
...
Example 2: written as an irregular triangle in which row j is related to the j-th shell of nucleus. In this case note that row 4 has only one term. Triangle begins:
2;
6, 8;
14, 16, 20;
28,
32, 38, 40, 50;
58, 64, 68, 70, 82;
92, 100, 106, 110, 112, 126;
136, 142, 154, 162, 164, 168, 184;
...
First seven terms of right border give the "magic numbers" A018226.
- M. Goeppert Mayer and J. Hans D. Jensen, Elementary Theory of Nuclear Shell Structure, J. Wiley and Sons, Inc. (1955).
Comments