cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 71 results. Next

A033429 a(n) = 5*n^2.

Original entry on oeis.org

0, 5, 20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125, 1280, 1445, 1620, 1805, 2000, 2205, 2420, 2645, 2880, 3125, 3380, 3645, 3920, 4205, 4500, 4805, 5120, 5445, 5780, 6125, 6480, 6845, 7220, 7605, 8000, 8405, 8820, 9245, 9680, 10125, 10580, 11045, 11520, 12005, 12500
Offset: 0

Views

Author

Keywords

Comments

Number of edges of the complete bipartite graph of order 6n, K_n,5n. - Roberto E. Martinez II, Jan 07 2002
Number of edges of the complete tripartite graph of order 4n, K_n,n,2n. - Roberto E. Martinez II, Jan 07 2002
a(n+1)-a(n) : 5, 15, 25, 35, 45, ... (see A017329). - Philippe Deléham, Dec 08 2011
From Larry J Zimmermann, Feb 21 2013: (Start)
The sum of the areas of 2 squares that equals the area of a rectangle with whole number sides using the formula x^2 + y^2 = (x+y+sqrt(2*x*y))(x+y-sqrt(2*x*y)), where the substitution y=2*x obtains the whole number sides of the rectangle. So x^2+(2*x)^2=5x(x).
x squares sum rectangle (l,w) area
1 1,4 5 5,1 5
2 4,16 20 10,2 20 (End)

Crossrefs

Central column of A055096.
Cf. A000290.
Cf. A185019.
Similar sequences are listed in A316466.

Programs

  • Mathematica
    5*Range[50]^2 (* Alonso del Arte, May 23 2012 *)
  • PARI
    a(n)=5*n^2

Formula

a(n) = 5*A000290(n). - Omar E. Pol, Dec 11 2008
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: 5*x*(1+x)/(1-x)^3.
a(n) = 4*A000217(n) + A000567(n). (End)
a(n) = a(n-1)+5*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
a(n) = A131242(10*n+4). - Philippe Deléham, Mar 27 2013
a(n) = a(n-1) + 10*n - 5, with a(0)=0. - Jean-Bernard François, Oct 04 2013
a(n) = A001105(n) + A033428(n). - Altug Alkan, Sep 28 2015
E.g.f.: 5*x*(x+1)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = Sum_{i = 2..6} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/30.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/60.
Product_{n>=1} (1 + 1/a(n)) = sqrt(5)*sinh(Pi/sqrt(5))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(5)*sin(Pi/sqrt(5))/Pi. (End)

Extensions

Better description from N. J. A. Sloane, May 15 1998

A054556 a(n) = 4*n^2 - 9*n + 6.

Original entry on oeis.org

1, 4, 15, 34, 61, 96, 139, 190, 249, 316, 391, 474, 565, 664, 771, 886, 1009, 1140, 1279, 1426, 1581, 1744, 1915, 2094, 2281, 2476, 2679, 2890, 3109, 3336, 3571, 3814, 4065, 4324, 4591, 4866, 5149, 5440, 5739, 6046, 6361, 6684, 7015, 7354, 7701, 8056, 8419, 8790
Offset: 1

Views

Author

Keywords

Comments

Move in 1-4 direction in a spiral organized like A068225 etc.
Equals binomial transform of [1, 3, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
Ulam's spiral (N spoke). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonpositive m. - Bruno Berselli, Jan 06 2016

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n)^2 = Sum_{i = 0..2*(4*n-5)} (4*n^2-13*n+9+i)^2*(-1)^i = ((n-1)*(4*n-5)+1)^2. - Bruno Berselli, Apr 29 2010
From Harvey P. Dale, Aug 21 2011: (Start)
a(0)=1, a(1)=4, a(2)=15; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(6*x^2+x+1)/(x-1)^3. (End)
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n - 2, 2) + 2*(n - 1)^2 + 1.
a(n) = A000384(n-1) + A058331(n-1).
a(n) = A130883(n-1) + A001105(n-1). (End)
E.g.f.: exp(x)*(6 - 5*x + 4*x^2) - 6. - Stefano Spezia, Apr 24 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Incorrect formula deleted by N. J. A. Sloane, Aug 02 2009

A054567 a(n) = 4*n^2 - 7*n + 4.

Original entry on oeis.org

1, 6, 19, 40, 69, 106, 151, 204, 265, 334, 411, 496, 589, 690, 799, 916, 1041, 1174, 1315, 1464, 1621, 1786, 1959, 2140, 2329, 2526, 2731, 2944, 3165, 3394, 3631, 3876, 4129, 4390, 4659, 4936, 5221, 5514, 5815, 6124, 6441, 6766, 7099, 7440, 7789, 8146, 8511, 8884
Offset: 1

Views

Author

Keywords

Comments

The number 1 is placed in the middle of a sheet of squared paper and the numbers 2, 3, 4, 5, 6, etc. are written in a clockwise spiral around 1, as in A068225 etc. This sequence is read off along one of the rays from 1.
Ulam's spiral (W spoke of A054552). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonnegative m. - Bruno Berselli, Jan 06 2016
The sequence forms the 1x2 diagonal of the square maze arrangement in A081344. - Jarrod G. Sage, Jul 17 2024

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 8*n+a(n-1)-11 for n>1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
a(n) = A204674(n-1) / n. - Reinhard Zumkeller, Jan 18 2012
From Colin Barker, Oct 25 2014: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: -x*(4*x^2+3*x+1) / (x-1)^3. (End)
E.g.f.: exp(x)*(4 - 3*x + 4*x^2) - 4. - Stefano Spezia, Apr 24 2024
a(n) = A016742(n-1) + n. - Jarrod G. Sage, Jul 17 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Typo fixed by Charles R Greathouse IV, Oct 28 2009

A140090 a(n) = n*(3*n + 7)/2.

Original entry on oeis.org

0, 5, 13, 24, 38, 55, 75, 98, 124, 153, 185, 220, 258, 299, 343, 390, 440, 493, 549, 608, 670, 735, 803, 874, 948, 1025, 1105, 1188, 1274, 1363, 1455, 1550, 1648, 1749, 1853, 1960, 2070, 2183, 2299, 2418, 2540, 2665, 2793, 2924
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

This sequence is mentioned in the Guo-Niu Han's paper, chapter 6: Dictionary of the standard puzzle sequences, p. 19 (see link). - Omar E. Pol, Oct 28 2011
Number of cards needed to build an n-tier house of cards with a flat, one-card-wide roof. - Tyler Busby, Dec 28 2022

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, this sequence, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. numbers of the form n*(d*n + 10 - d)/2: A008587, A056000, A028347, A014106, A028895, A045944, A186029, A007742, A022267, A033429, A022268, A049452, A186030, A135703, A152734, A139273.

Programs

Formula

G.f.: x*(5 - 2*x)/(1 - x)^3. - Bruno Berselli, Feb 11 2011
a(n) = (3*n^2 + 7*n)/2.
a(n) = a(n-1) + 3*n + 2 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
E.g.f.: (1/2)*(3*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 117/98 - Pi/(7*sqrt(3)) - 3*log(3)/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(7*sqrt(3)) + 4*log(2)/7 - 75/98. (End)

A074378 Even triangular numbers halved.

Original entry on oeis.org

0, 3, 5, 14, 18, 33, 39, 60, 68, 95, 105, 138, 150, 189, 203, 248, 264, 315, 333, 390, 410, 473, 495, 564, 588, 663, 689, 770, 798, 885, 915, 1008, 1040, 1139, 1173, 1278, 1314, 1425, 1463, 1580, 1620, 1743, 1785, 1914, 1958, 2093, 2139, 2280, 2328, 2475
Offset: 0

Views

Author

W. Neville Holmes, Sep 04 2002

Keywords

Comments

Set of integers k such that k + (1 + 2 + 3 + 4 + ... + x) = 3*k, where x is sufficiently large. For example, 203 is a term because 203 + (1 + 2 + 3 + 4 + ... +28) = 609 and 609 = 3*203. - Gil Broussard, Sep 01 2008
Set of all m such that 16*m+1 is a perfect square. - Gary Detlefs, Feb 21 2010
Integers of the form Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Feb 07 2012
Numbers of the form h*(4*h + 1) for h = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Numbers whose distance to nearest square equals their distance to nearest oblong; that is, numbers k such that A053188(k) = A053615(k). - Lamine Ngom, Oct 27 2020
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5)) = 1 + q^3 + q^5 + q^14 + q^18 + .... - Peter Bala, Dec 30 2024

Crossrefs

Cf. A010709, A047522. [Vincenzo Librandi, Feb 14 2009]
Cf. A266883 (numbers n such that 16*n-15 is a square).

Programs

  • Magma
    f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]]; // Bruno Berselli, Nov 13 2012
  • Maple
    a:=n->(2*n+1)*floor((n+1)/2): seq(a(n),n=0..50); # Muniru A Asiru, Feb 01 2019
  • Mathematica
    1/2 * Select[PolygonalNumber@ Range[0, 100], EvenQ] (* Michael De Vlieger, Jun 01 2017, Version 10.4 *)
    Select[Accumulate[Range[0,100]],EvenQ]/2 (* Harvey P. Dale, Feb 15 2025 *)
  • PARI
    a(n)=(2*n+1)*(n-n\2)
    

Formula

Sum_{n>=0} q^a(n) = (Prod_{n>0} (1-q^n))*(Sum_{n>=0} A035294(n)*q^n).
a(n) = n*(n + 1)/4 where n*(n + 1)/2 is even.
G.f.: x*(3 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)^2).
From Benoit Jubin, Feb 05 2009: (Start)
a(n) = (2*n + 1)*floor((n + 1)/2).
a(2*k) = k*(4*k+1); a(2*k+1) = (k+1)*(4*k+3). (End)
a(2*n) = A007742(n), a(2*n-1) = A033991(n). - Arkadiusz Wesolowski, Jul 20 2012
a(n) = (4*n + 1 - (-1)^n)*(4*n + 3 - (-1)^n)/4^2. - Peter Bala, Jan 21 2019
a(n) = (2*n+1)*(n+1)*(1+(-1)^(n+1))/4 + (2*n+1)*(n)*(1+(-1)^n)/4. - Eric Simon Jacob, Jan 16 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi (A153799).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(2) - 4 (See A016687). (End)
a(n) = A014494(n)/2 = A274757(n)/3 = A266883(n) - 1. - Hugo Pfoertner, Dec 31 2024

A080335 Diagonal in square spiral or maze arrangement of natural numbers.

Original entry on oeis.org

1, 5, 9, 17, 25, 37, 49, 65, 81, 101, 121, 145, 169, 197, 225, 257, 289, 325, 361, 401, 441, 485, 529, 577, 625, 677, 729, 785, 841, 901, 961, 1025, 1089, 1157, 1225, 1297, 1369, 1445, 1521, 1601, 1681, 1765, 1849, 1937, 2025, 2117, 2209, 2305, 2401, 2501
Offset: 0

Author

Paul Barry, Mar 19 2003

Keywords

Comments

Interleaves the odd squares A016754 with (1+4n^2), A053755.
Squares of positive integers (plus 1 if n is odd). - Wesley Ivan Hurt, Oct 10 2013
a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+3] X [n+3] chessboard, when the lone queen is in the most vulnerable position on the board. Specifically, the lone queen will placed in any center position, facing an opponent's "army" of size a(n)-1 == A137932(n+2). - Bob Selcoe, Feb 12 2015
a(n) is also the edge chromatic number of the complement of the (n+2) X (n+2) rook graph. - Eric W. Weisstein, Jan 31 2024

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = (3 + 4*n + 2*n^2 - (-1)^n)/2.
a(2*n) = A016754(n), a(2*n+1) = A053755(n+1).
E.g.f.: exp(x)*(2 + 3*x + x^2) - cosh(x). The sequence 1,1,5,9,... is given by n^2+(1+(-1)^n)/2 with e.g.f. exp(1+x+x^2)*exp(x)-sinh(x). - Paul Barry, Sep 02 2003 and Sep 19 2003
a(0)=1, a(1)=5, a(2)=9, a(3)=17, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Jan 29 2012
a(n)+(-1)^n = A137928(n+1). - Philippe Deléham, Feb 17 2012
G.f.: (1 + 3*x - x^2 + x^3)/((1-x)^3*(1+x)). - Colin Barker, Mar 18 2012
a(n) = A000035(n) + A000290(n+1). - Wesley Ivan Hurt, Oct 10 2013
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = A137932(n+2) + 1.
a(n) = (n+1)^2 when n is even; a(n) = (n+1)^2 + 1 when n is odd.
a(n) = A002378(n+2) - A047238(n+3) + 1.
(End)
Sum_{n>=0} 1/a(n) = Pi*coth(Pi/2)/4 + Pi^2/8 - 1/2. - Amiram Eldar, Jul 07 2022

A137932 Terms in an n X n spiral that do not lie on its principal diagonals.

Original entry on oeis.org

0, 0, 0, 4, 8, 16, 24, 36, 48, 64, 80, 100, 120, 144, 168, 196, 224, 256, 288, 324, 360, 400, 440, 484, 528, 576, 624, 676, 728, 784, 840, 900, 960, 1024, 1088, 1156, 1224, 1296, 1368, 1444, 1520, 1600, 1680, 1764, 1848, 1936, 2024, 2116, 2208, 2304, 2400, 2500, 2600, 2704, 2808
Offset: 0

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

The count of terms not on the principal diagonals is always even.
The last digit is the repeating pattern 0,0,0,4,8,6,4,6,8,4, which is palindromic if the leading 0's are removed, 4864684.
The sum of the last digits is 40, which is the count of the pattern times 4.
A 4 X 4 spiral is the only spiral, aside from a 0 X 0, whose count of terms that do not lie on its principal diagonals equal the count of terms that do [A137932(4) = A042948(4)] making the 4 X 4 the "perfect spiral".
Yet another property is mod(a(n), A042948(n)) = 0 iff n is even. This is a large family that includes the 4 X 4 spiral.
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an [n+1] X [n+1] chessboard, when the lone queen is in the most vulnerable position on the board, i.e., on a center square. - Bob Selcoe, Feb 12 2015
Also the circumference of the (n-1) X (n-1) grid graph for n > 2. - Eric W. Weisstein, Mar 25 2018
Also the crossing number of the complete bipartite graph K_{5,n}. - Eric W. Weisstein, Sep 11 2018

Examples

			a(0) = 0^2 - (2(0) - mod(0,2)) = 0.
a(3) = 3^2 - (2(3) - mod(3,2)) = 4.
		

Crossrefs

Cf. A042948.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 - (2*n - mod(n,2)) = n^2 - A042948(n).
a(n) = 2*A007590(n-1). - Enrique Pérez Herrero, Jul 04 2012
G.f.: -4*x^3 / ( (1+x)*(x-1)^3 ). a(n) = 4*A002620(n-1). - R. J. Mathar, Jul 06 2012
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = (n-1)^2 when n is odd; a(n) = (n-1)^2 - 1 when n is even.
a(n) = A002378(n) - A047238(n+1). (End)
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/24 + 1/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/24 - 1/4. (End)
E.g.f.: x*(x - 1)*cosh(x) + (x^2 - x + 1)*sinh(x). - Stefano Spezia, Oct 17 2022

A156859 The main column of a version of the square spiral.

Original entry on oeis.org

0, 3, 7, 14, 22, 33, 45, 60, 76, 95, 115, 138, 162, 189, 217, 248, 280, 315, 351, 390, 430, 473, 517, 564, 612, 663, 715, 770, 826, 885, 945, 1008, 1072, 1139, 1207, 1278, 1350, 1425, 1501, 1580, 1660, 1743, 1827, 1914, 2002, 2093, 2185, 2280, 2376, 2475, 2575
Offset: 0

Author

Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 17 2009

Keywords

Comments

This spiral is sometimes called an Ulam spiral, but square spiral is a better name. - N. J. A. Sloane, Jul 27 2018
It is easy to see that the only two primes in the sequence are 3, 7. Therefore the primes of the version of Ulam spiral are divided into four parts (see also A035608): northeast (NE), northwest (NW), southwest (SW), and southeast (SE).
Number of pairs (x,y) having x and y of opposite parity with x in {0,...,n} and y in {0,...,2n}. - Clark Kimberling, Jul 02 2012
Partial Sums of A014601(n). - Wesley Ivan Hurt, Oct 11 2013

Crossrefs

Cf. A000290, A000384, A004526, A014601 (first differences), A115258.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 + n + floor((n+1)/2) = A002378(n) + A004526(n+1) = A002620(n+1) + 3*A002620(n).
From R. J. Mathar, Feb 20 2009: (Start)
G.f.: x*(3+x)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n-1) = floor(n/(e^(1/n)-1)). - Richard R. Forberg, Jun 19 2013
a(n) = A000290(n+1) + A004526(-n-1). - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A014105(n+1). - R. J. Mathar, Jul 15 2013
a(n) = floor(A000384(n+1)/2). - Bruno Berselli, Nov 11 2013
E.g.f.: (x*(5 + 2*x)*cosh(x) + (1 + 5*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
Sum_{n>=1} 1/a(n) = 4/9 + 2*log(2) - Pi/3. - Amiram Eldar, Apr 26 2024

Extensions

More terms added by Wesley Ivan Hurt, Oct 11 2013

A317186 One of many square spiral sequences: a(n) = n^2 + n - floor((n-1)/2).

Original entry on oeis.org

1, 2, 6, 11, 19, 28, 40, 53, 69, 86, 106, 127, 151, 176, 204, 233, 265, 298, 334, 371, 411, 452, 496, 541, 589, 638, 690, 743, 799, 856, 916, 977, 1041, 1106, 1174, 1243, 1315, 1388, 1464, 1541, 1621, 1702, 1786, 1871, 1959, 2048, 2140, 2233, 2329, 2426
Offset: 0

Author

N. J. A. Sloane, Jul 27 2018

Keywords

Comments

Draw a square spiral on a piece of graph paper, and label the cells starting at the center with the positive (resp. nonnegative) numbers. This produces two versions of the labeled square spiral, shown in the Example section below.
The spiral may proceed clockwise or counterclockwise, and the first arm of the spiral may be along any of the four axes, so there are eight versions of each spiral. However, this has no effect on the resulting sequences, and it is enough to consider just two versions of the square spiral (starting at 1 or starting at 0).
The present sequence is obtained by reading alternate entries on the X-axis (say) of the square spiral started at 1.
The cross-references section lists many sequences that can be read directly off the two spirals. Many other sequences can be obtained from them by using them to extract subsequences from other important sequences. For example, the subsequence of primes indexed by the present sequence gives A317187.
a(n) is also the number of free polyominoes with n + 4 cells whose difference between length and width is n. In this comment the length is the longer of the two dimensions and the width is the shorter of the two dimensions (see the examples of polyominoes). Hence this is also the diagonal 4 of A379625. - Omar E. Pol, Jan 24 2025
From John Mason, Feb 19 2025: (Start)
The sequence enumerates polyominoes of width 2 having precisely 2 horizontal bars. By classifying such polyominoes according to the following templates, it is possible to define a formula that reduces to the one below:
.
OO O O
O OO OO
O O O
O O OO
OO OO O
.
(End)

Examples

			The square spiral when started with 1 begins:
.
  100--99--98--97--96--95--94--93--92--91
                                        |
   65--64--63--62--61--60--59--58--57  90
    |                               |   |
   66  37--36--35--34--33--32--31  56  89
    |   |                       |   |   |
   67  38  17--16--15--14--13  30  55  88
    |   |   |               |   |   |   |
   68  39  18   5---4---3  12  29  54  87
    |   |   |   |       |   |   |   |   |
   69  40  19   6   1---2  11  28  53  86
    |   |   |   |           |   |   |   |
   70  41  20   7---8---9--10  27  52  85
    |   |   |                   |   |   |
   71  42  21--22--23--24--25--26  51  84
    |   |                           |   |
   72  43--44--45--46--47--48--49--50  83
    |                                   |
   73--74--75--76--77--78--79--80--81--82
.
For the square spiral when started with 0, subtract 1 from each entry. In the following diagram this spiral has been reflected and rotated, but of course that makes no difference to the sequences:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3   0   7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13   2---1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31  12--11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57  30--29--28--27--26--25  48  79
    |   |                           |   |
   91  56--55--54--53--52--51--50--49  80
    |                                   |
   90--89--88--87--86--85--84--83--82--81
.
From _Omar E. Pol_, Jan 24 2025: (Start)
For n = 0 there is only one free polyomino with 0 + 4 = 4 cells whose difference between length and width is 0 as shown below, so a(0) = 1.
   _ _
  |_|_|
  |_|_|
.
For n = 1 there are two free polyominoes with 1 + 4 = 5 cells whose difference between length and width is 1 as shown below, so a(1) = 2.
   _ _     _ _
  |_|_|   |_|_|
  |_|_|   |_|_
  |_|     |_|_|
.
(End)
		

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Filling in these two squares spirals with greedy algorithm: A274640, A274641.
Cf. also A317187.

Programs

  • Mathematica
    a[n_] := n^2 + n - Floor[(n - 1)/2]; Array[a, 50, 0] (* Robert G. Wilson v, Aug 01 2018 *)
    LinearRecurrence[{2, 0, -2 , 1},{1, 2, 6, 11},50] (* or *)
    CoefficientList[Series[(- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)), {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)

Formula

From Daniel Forgues, Aug 01 2018: (Start)
a(n) = (1/4) * (4 * n^2 + 2 * n + (-1)^n + 3), n >= 0.
a(0) = 1; a(n) = - a(n-1) + 2 * n^2 - n + 2, n >= 1.
a(0) = 1; a(1) = 2; a(2) = 6; a(3) = 11; a(n) = 2 * a(n-1) - 2 * a(n-3) + a(n-4), n >= 4.
G.f.: (- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)). (End)
E.g.f.: ((2 + 3*x + 2*x^2)*cosh(x) + (1 + 3*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
a(n)+a(n+1)=A033816(n). - R. J. Mathar, Mar 21 2025
a(n)-a(n-1) = A042948(n), n>=1. - R. J. Mathar, Mar 21 2025

A011848 a(n) = floor(binomial(n, 2)/2).

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 203, 217, 232, 248, 264, 280, 297, 315, 333, 351, 370, 390, 410, 430, 451, 473, 495, 517, 540, 564, 588, 612, 637, 663, 689, 715, 742, 770, 798
Offset: 0

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Column sums of an array of the odd numbers repeatedly shifted 4 places to the right:
1 3 5 7 9 11 13 15 17...
1 3 5 7 9...
1...
.........................
-------------------------
1 3 5 7 10 14 18 22 27...
Floor of the area under the polygon connecting the lattice points (n, floor(n/2)) from 0..n. - Wesley Ivan Hurt, Jun 09 2014
Beginning with a(4)=3, the sequence might be called the "off-axis" Ulam-Spiral numbers because they are the numbers in ascending order on the horizontal and vertical spokes (heading outward) starting with the first turning points on the spiral (i.e., 3, 5, 7 and 10). That is, starting with: 3 (upward); 5 (leftward); 7 (downward) and 10 (rightward). These are A033991 (starting at a(1)), A007742 (starting at a(1)), A033954 (starting at a(1)) and A001107 (starting at a(2)), respectively. These quadri-sections are summarized in the formulas of Sep 26 2015. - Bob Selcoe, Oct 05 2015
Conjecture: For n = 2, a(n) is the greatest k such that A123663(k) < A000217(n - 2). - Peter Kagey, Nov 18 2016
a(n) is also the matching number of the n-triangular graph, (n-1)-triangular honeycomb queen graph, (n-1)-triangular honeycomb bishop graphs, and (for n > 7) (n-1)-triangular honeycomb obtuse knight graphs. - Eric W. Weisstein, Jun 02 2017 and Apr 03 2018
After 0, 0, 0, add 1, then add 2 three times, then add 3, then add 4 three times, then add 5, etc.; i.e., first differences are A004524 = (0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, ...). - M. F. Hasler, May 09 2018
Let s(0) = s(1) = 1, s(-1) = s(2) = x, and s(n+2)*s(n-2) = s(n+1)*s(n-1) + s(n)^2 for all n in Z. Then s(n) = p(n) / x^e(n) is a Laurent polynomial in x with p(n) a polynomial with nonnegative integer coefficients of degree a(n) for all n in Z. If x = 1, then s(n) = p(n) = A006720(n+1). - Michael Somos, Mar 22 2023

Examples

			G.f. = x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 14*x^8 + 18*x^9 + 22*x^10 + ...
p(0) = p(1) = 1, p(2) = 1 + x, p(3) = 1 + x + x^3, p(4) = 1 + 2*x + 2*x^2 + x^3 + x^5. - _Michael Somos_, Mar 22 2023
		

Crossrefs

A column of triangle A011857.
First differences are in A004524.
Cf. A007318, A033991, A007742, A033954, A001107, A006720, A035608 (bisection), A156859 (bisection).

Programs

  • GAP
    List([0..60],n->Int(Binomial(n,2)/2)); # Muniru A Asiru, Apr 05 2018
    
  • Haskell
    a011848 n = if n < 2 then 0 else flip div 2 $ a007318 n 2
    -- Reinhard Zumkeller, Mar 04 2015
    
  • Magma
    [ Floor(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    seq(floor(binomial(n,2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Table[Floor[n (n - 1)/4], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    CoefficientList[Series[x^3/((1 + x^2) (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 21 2013 *)
    LinearRecurrence[{3, -4, 4, -4, 1}, {0, 0, 1, 3, 5}, {0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[Floor[Binomial[n, 2]/2], {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[1/4 (-1 + (-1 + n) n + Cos[n Pi/2] + Sin[n Pi/2]), {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Floor[Binomial[Range[0, 20], 2]/2] (* Eric W. Weisstein, Apr 03 2018 *)
  • PARI
    a(n) = binomial(n, 2)\2;
    
  • PARI
    vector(100, n, n--; floor(n*(n-1)/4)) \\ Altug Alkan, Sep 30 2015
    
  • Python
    def a(n): return n*(n-1)//4 # Christoph B. Kassir, Oct 07 2022
  • Sage
    [floor(binomial(n,2)/2) for n in range(0,58)] # Zerinvary Lajos, Dec 01 2009
    

Formula

G.f.: x^3*(1-x^2)/((1-x)^3*(1-x^4)).
G.f.: x^3/((1+x^2)*(1-x)^3). - Jon Perry, Mar 31 2004
a(n) = +3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5). - R. J. Mathar, Apr 15 2010
a(n) = floor((n/(1+e^(1/n)))^2). - Richard R. Forberg, Jun 19 2013
a(n) = floor(n*(n-1)/4). - T. D. Noe, Jun 20 2013
a(n) = (1/4) * ( n^2 - n - 1 + (-1)^floor(n/2) ). - Ralf Stephan, Aug 11 2013
a(n) = A054925(n) - A133872(n+2). - Wesley Ivan Hurt, Jun 09 2014
a(4*n) = A033991(n). a(4*n+1) = A007742(n). a(4*n+2) = A033954(n). a(4*n+3) = A001107(n+1). - Bob Selcoe, Sep 26 2015
E.g.f.: (sin(x) + cos(x) + (x^2 - 1)*exp(x))/4. - Ilya Gutkovskiy, Nov 18 2016
A054925(n) = a(-n). A035608(n) = a(2*n+1). Wesley Ivan Hurt, Jun 09 2014
A156859(n) = a(2*n+2). - Michael Somos, Nov 18 2016
Euler transform of length 4 sequence [ 3, -1, 0, 1]. - Michael Somos, Nov 18 2016
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=3} 1/a(n) = 40/9 - 2*Pi/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = 32/9 - 4*log(2). (End)
0 = a(n+2)*(a(n)*(a(n) -6*a(n+1) +4*a(n+2)) +a(n+1)*(8*a(n+1) -10*a(n+2)) + 3*a(n+2)^2) +a(n+3)*(a(n)*(+a(n) -2*a(n+1)) +a(n+2)*(2*a(n+1) -a(n+2))) for all n in Z. - Michael Somos, Mar 22 2023
2*a(n) + 2*a(n-2) = (n-1)*(n-2). - R. J. Mathar, Feb 12 2024
Previous Showing 21-30 of 71 results. Next