A008787
a(n) = (n + 6)^n.
Original entry on oeis.org
1, 7, 64, 729, 10000, 161051, 2985984, 62748517, 1475789056, 38443359375, 1099511627776, 34271896307633, 1156831381426176, 42052983462257059, 1638400000000000000, 68122318582951682301, 3011361496339065143296
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786, this sequence,
A008788,
A008789,
A008790,
A008791.
-
List([0..20], n-> (n+6)^n); # G. C. Greubel, Sep 11 2019
-
[(n+6)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:= n-> (n+6)^n: seq(a(n), n=0..20);
-
Table[(n+6)^n,{n,0,20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n+5)^(n-1)) \\ G. C. Greubel, Sep 11 2019
-
[(n+6)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
A008790
a(n) = n^(n+4).
Original entry on oeis.org
0, 1, 64, 2187, 65536, 1953125, 60466176, 1977326743, 68719476736, 2541865828329, 100000000000000, 4177248169415651, 184884258895036416, 8650415919381337933, 426878854210636742656, 22168378200531005859375
Offset: 0
Cf.
A000169,
A000272,
A000312,
A007778,
A007830,
A008785,
A008786,
A008787,
A008788,
A008789,
A008791.
-
List([0..20], n-> n^(n+4)); # G. C. Greubel, Sep 11 2019
-
[n^(n+4): n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
-
a:=n->mul(n,k=-3..n):seq(a(n),n=0..20); # Zerinvary Lajos, Jan 26 2008
-
Table[n^(n+4),{n,0,20}](* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
-
vector(20, n, (n-1)^(n+3)) \\ G. C. Greubel, Sep 11 2019
-
[n^(n+4) for n in (0..20)] # G. C. Greubel, Sep 11 2019
A283498
a(n) = Sum_{d|n} d^(d+1).
Original entry on oeis.org
1, 9, 82, 1033, 15626, 280026, 5764802, 134218761, 3486784483, 100000015634, 3138428376722, 106993205660122, 3937376385699290, 155568095563577034, 6568408355712906332, 295147905179487044617, 14063084452067724991010, 708235345355341163422059, 37589973457545958193355602
Offset: 1
a(6) = 1^2 + 2^3 + 3^4 + 6^7 = 280026.
-
f[n_] := Block[{d = Divisors[n]}, Total[d^(d + 1)]]; Array[f, 19] (* Robert G. Wilson v, Mar 10 2017 *)
-
a(n) = sumdiv(n, d, d^(d+1)); \\ Michel Marcus, Mar 09 2017
-
from sympy import divisors
def A283498(n): return sum(d**(d+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 19 2022
A085606
a(n) = (n-1)^n - 1.
Original entry on oeis.org
0, -1, 0, 7, 80, 1023, 15624, 279935, 5764800, 134217727, 3486784400, 99999999999, 3138428376720, 106993205379071, 3937376385699288, 155568095557812223, 6568408355712890624, 295147905179352825855, 14063084452067724991008, 708235345355337676357631
Offset: 0
A110567
a(n) = n^(n+1) + 1.
Original entry on oeis.org
1, 2, 9, 82, 1025, 15626, 279937, 5764802, 134217729, 3486784402, 100000000001, 3138428376722, 106993205379073, 3937376385699290, 155568095557812225, 6568408355712890626, 295147905179352825857, 14063084452067724991010
Offset: 0
Examples illustrating the Comment:
a(2) = 9 because the first positive integer (base 2) with a block of 2 consecutive zeros is 100 (base 2) = 4, and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
a(3) = 82 because the first positive integer (base 3) with a block of 3 consecutive zeros is 1000 (base 3) = 81, the 2nd is 2000 (base 3) = 54 and the 3rd is 10001 (base 3) = 82 = 1 + 3^4.
a(4) = 1025 because the first positive integer (base 4) with a block of 4 consecutive zeros is 10000 (base 4) = 256, the 2nd is 20000 (base 4) = 512, the 3rd is 30000 (base 4) = 768 and the 4th 100001 (base 4) = 1025 = 1 + 4^5. and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
-
[n^(n+1) + 1: n in [0..25]]; // G. C. Greubel, Oct 16 2017
-
Table[n^(n+1)+1,{n,0,30}] (* Harvey P. Dale, Oct 30 2015 *)
-
for(n=0,25, print1(1 + n^(n+1), ", ")) \\ G. C. Greubel, Aug 31 2017
A084363
a(n) = n^(n+1) - (n-1)^n.
Original entry on oeis.org
1, 7, 73, 943, 14601, 264311, 5484865, 128452927, 3352566673, 96513215599, 3038428376721, 103854777002351, 3830383180320217, 151630719172112935, 6412840260155078401, 288579496823639935231, 13767936546888372165153
Offset: 1
-
Table[n^(n+1)-(n-1)^n, {n,25}] (* Vladimir Joseph Stephan Orlovsky, Dec 29 2010 *)
-
A084363[n]:=n^(n+1)-(n-1)^n$
makelist(A084363[n],n,1,30); /* Martin Ettl, Oct 29 2012 */
-
for(n=1,17,print1(n^(n+1)-(n-1)^n,","))
A062815
a(n) = Sum_{i=1..n} i^(i+1).
Original entry on oeis.org
1, 9, 90, 1114, 16739, 296675, 6061476, 140279204, 3627063605, 103627063605, 3242055440326, 110235260819398, 4047611646518687, 159615707204330911, 6728024062917221536, 301875929242270047392, 14364960381309995038401
Offset: 1
A134362
a(n) is the number of functions f:X->X, where |X| = n, such that for every x in X, f(f(x)) != x (i.e., the square of the function has no fixed points; note this implies that the function has no fixed points).
Original entry on oeis.org
1, 0, 0, 2, 30, 444, 7360, 138690, 2954364, 70469000, 1864204416, 54224221050, 1721080885480, 59217131089908, 2195990208122880, 87329597612123594, 3707783109757616400, 167411012044894728720, 8010372386879991018496, 404912918159552083622130
Offset: 0
Adam Day (adam.r.day(AT)gmail.com), Jan 17 2008
a(3) = 2 because given a three-element set X:= {A, B, C} the only functions whose square has no fixed points are f:X->X where f(A)=B, f(B)=C, f(C)=A and g:X->X where g(A)=C, g(B)=A, g(C)=B.
- Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
- Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
-
a:= n -> (n-1)^n + add((-1)^i*mul(binomial(n-2*(j-1),2),j=1..i)*(n-1)^(n-2*i)/i!,i=1..floor(n/2)): seq(a(n), n=0..20);
-
nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]! CoefficientList[Series[Exp[-t - t^2/2]/(1 - t), {x, 0, nn}], x], 1] (* Geoffrey Critzer, Feb 06 2012 *)
-
a(n) = n!*sum(q=0, n\2, ((-1)^q/(2^q*q!)*(n-1)^(n-2*q)/(n-2*q)!)); \\ Michel Marcus, Mar 09 2016
A176043
a(n) = (2*n-1)*(n-1)^(n-1).
Original entry on oeis.org
1, 1, 3, 20, 189, 2304, 34375, 606528, 12353145, 285212672, 7360989291, 210000000000, 6562168424053, 222902511206400, 8177627877990831, 322248197941182464, 13574710601806640625, 608742554432415203328, 28953409166021786746195, 1455817098785971890290688, 77158366570752229975835181
Offset: 0
a(5) = determinant(M_5) = 2304 where M_5 is the matrix
[5 1 1 1 1]
[1 5 1 1 1]
[1 1 5 1 1]
[1 1 1 5 1]
[1 1 1 1 5]
The 20 functions from [3] to [3] with one or zero fixed point are:
0fp : 211,212,231,232,311,312,331,332
1fp : 111,112,131,132, 221,222,321,322, 213,233,313,333
Cf.
A007778 (functions from [n] to [n] without fixed point).
Cf.
A055897 (functions from [n] to [n] with one fixed point).
Cf.
A212291 (bijections of [n] with zero or one fixed point).
Cf.
A000166 (bijections of [n] without fixed point).
Cf.
A000240 (bijections of [n] with one fixed point).
-
[ (2*n-1)*(n-1)^(n-1): n in [1..17] ]; // Klaus Brockhaus, Apr 19 2010
-
[ Determinant( SymmetricMatrix( &cat[ [ j eq k select n else 1: k in [1..j] ]: j in [1..n] ] ) ): n in [1..17] ]; // Klaus Brockhaus, Apr 19 2010
-
for n from 2 to 30 do:x:=(2*n-1)*(n-1)^(n-1):print(x) :od:
-
Join[{1},Table[(2n-1)(n-1)^(n-1),{n,2,20}]] (* Harvey P. Dale, Jan 16 2014 *)
-
a(n)=n--; (2*n+1)*n^n \\ Charles R Greathouse IV, Jul 31 2016
New interpretation and cross-references by
Olivier Gérard, Jul 31 2016
A350157
Total number of nodes in the smallest connected component summed over all endofunctions on [n].
Original entry on oeis.org
0, 1, 7, 61, 709, 9911, 167111, 3237921, 71850913, 1780353439, 49100614399, 1482061739423, 48873720208853, 1740252983702871, 66793644836081827, 2740470162691675711, 120029057782404141841, 5575505641199441262767, 274412698693082818767335, 14236421024010426118259883
Offset: 0
a(2) = 7 = 2 + 2 + 1 + 2: 11, 22, 12, 21.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(
b(n-i, min(m, i))*g(i)*binomial(n-1, i-1), i=1..n))
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=0..n))(b(n,n)):
seq(a(n), n=0..23);
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[
b[n - i, Min[m, i]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
a[n_] := Function[p, Sum[Coefficient[p, x, i]*i, {i, 0, n}]][b[n, n]];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)
Comments