cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 282 results. Next

A057820 First differences of sequence of consecutive prime powers (A000961).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Labos Elemer, Nov 08 2000

Keywords

Comments

a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002
Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012
Does this sequence contain all positive integers? - Gus Wiseman, Oct 09 2024

Examples

			Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}
		

Crossrefs

For perfect-powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
Positions of ones are A375734.
Run-compression is A376308.
Run-lengths are A376309.
Sorted positions of first appearances are A376340.
The second (instead of first) differences are A376596, zeros A376597.
Prime-powers:
- terms: A000961 or A246655, complement A024619
- differences: A057820 (this), first appearances A376341
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708 (ones A375713)
- anti-runs: A373679, A373575, A255346, A373672

Programs

  • Haskell
    a057820_list = zipWith (-) (tail a000961_list) a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Maple
    A057820 := proc(n)
            A000961(n+1)-A000961(n) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *)
    Join[{1},Differences[Select[Range[500],PrimePowerQ]]] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    isA000961(n) = (omega(n) == 1 || n == 1)
    n_prev=1;for(n=2,500,if(isA000961(n),print(n-n_prev);n_prev=n)) \\ Michael B. Porter, Oct 30 2009
    
  • Python
    from sympy import primepi, integer_nthroot
    def A057820(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        r, k = m, f(m)+1
        while r != k: r, k = k, f(k)+1
        return r-m # Chai Wah Wu, Sep 12 2024

Formula

a(n) = A000961(n+1) - A000961(n).

Extensions

Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012

A007489 a(n) = Sum_{k=1..n} k!.

Original entry on oeis.org

0, 1, 3, 9, 33, 153, 873, 5913, 46233, 409113, 4037913, 43954713, 522956313, 6749977113, 93928268313, 1401602636313, 22324392524313, 378011820620313, 6780385526348313, 128425485935180313, 2561327494111820313, 53652269665821260313, 1177652997443428940313
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A143122 starting (1, 3, 9, 33, ...). - Gary W. Adamson, Jul 26 2008
a(n) for n>=4 is never a perfect square. - Alexander R. Povolotsky, Oct 16 2008
Number of cycles that can be written in the form (j,j+1,j+2,...), in all permutations of {1,2,...,n}. Example: a(3)=9 because in (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), (132) we have 3+2+2+1+1+0=9 such cycles. - Emeric Deutsch, Jul 14 2009
Conjectured to be the length of the shortest word over {1,...,n} that contains each of the n! permutations as a factor (cf. A180632) [see Johnston]. - N. J. A. Sloane, May 25 2013
The above conjecture has been disproven for n>=6. See A180632 and the Houston 2014 reference. - Dmitry Kamenetsky, Mar 07 2016
a(n) is also the number of compositions of n if cardinal values do not matter but ordinal rankings do. Since cardinal values do not matter, a sequence of k summands summing to n can be represented as (s(1),...,s(k)), where the s's are positive integers and the numbers in parentheses are the initial ordinal rankings. The number of compositions of these summands are equal to k!, with k ranging from 1 to n. - Gregory L. Simay, Jul 31 2016
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the left. Compare array A211370 for circular shifts to the left in a broader sense. Compare sequence A001563 for circular shifts to the right. - Tilman Piesk, Apr 29 2017
Since a(n) = (1!+2!+3!+...+n!) = 3(1+3!/3+4!/3+...+n!/3) is a multiple of 3 for n>2, the only prime in this sequence is a(2) = 3. - Eric W. Weisstein, Jul 15 2017
Generalization of 2nd comment: a(n) for n>=4 is never a perfect power (A007916) (Chentzov link). - Bernard Schott, Jan 26 2023

Examples

			a(4) = 1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33. - _Michael B. Porter_, Aug 03 2016
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Section B44, Springer 2010.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A003422(n+1) - 1.
Column k=0 of A120695.

Programs

Formula

a(n) = Sum_{k=1..n} P(n, k)/C(n, k). - Ross La Haye, Sep 21 2004
a(n) = 3*A056199(n) for n>=2. - Philippe Deléham, Feb 10 2007
a(n) = !(n+1)-1=A003422(n+1)-1. - Artur Jasinski, Nov 08 2007 [corrected by Werner Schulte, Oct 20 2021]
Starting (1, 3, 9, 33, 153, ...), = row sums of triangle A137593 - Gary W. Adamson, Jan 28 2008
a(n) = a(n-1) + n! for n >= 1. - Jaroslav Krizek, Jun 16 2009
E.g.f. A(x) satisfies to the differential equation A'(x)=A(x)+x/(1-x)^2+1. - Vladimir Kruchinin, Jan 22 2011
a(0)=0, a(1)=1, a(n) = (n+1)*a(n-1)-n*a(n-2). - Sergei N. Gladkovskii, Jul 05 2012
G.f.: W(0)*x/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+2)/( x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
G.f.: x /(1-x)/Q(0),m=+2, where Q(k) = 1 - 2*x*(2*k+1) - m*x^2*(k+1)*(2*k+1)/( 1 - 2*x*(2*k+2) - m*x^2*(k+1)*(2*k+3)/Q(k+1) ) ; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
E.g.f.: exp(x-1)*(Ei(1) - Ei(1-x)) - exp(x) + 1/(1 - x), where Ei(x) is the exponential integral. - Ilya Gutkovskiy, Nov 27 2016
a(n) = sqrt(a(n-1)*a(n+1)-a(n-2)*n*n!), n >= 2. - Gary Detlefs, Oct 26 2020
a(n) ~ n!. - Ridouane Oudra, Jun 11 2025

A052410 Write n = m^k with m, k integers, k >= 1, then a(n) is the smallest possible choice for m.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Keywords

Comments

Value of m in m^p = n, where p is the largest possible power (see A052409).
For n > 1, n is a perfect power iff a(n) <> n. - Reinhard Zumkeller, Oct 13 2002
a(n)^A052409(n) = n. - Reinhard Zumkeller, Apr 06 2014
Every integer root of n is a power of a(n). All entries (except 1) belong to A007916. - Gus Wiseman, Sep 11 2017

Crossrefs

Programs

  • Haskell
    a052410 n = product $ zipWith (^)
                          (a027748_row n) (map (`div` (foldl1 gcd es)) es)
                where es = a124010_row n
    -- Reinhard Zumkeller, Jul 15 2012
    
  • Maple
    a:= n-> (l-> (t-> mul(i[1]^(i[2]/t), i=l))(
             igcd(seq(i[2], i=l))))(ifactors(n)[2]):
    seq(a(n), n=1..74);  # Alois P. Heinz, Jul 22 2024
  • Mathematica
    Table[If[n==1, 1, n^(1/(GCD@@(Last/@FactorInteger[n])))], {n, 100}]
  • PARI
    a(n) = if (ispower(n,,&r), r, n); \\ Michel Marcus, Jul 19 2017
    
  • Python
    def upto(n):
        list = [1] + [0] * (n - 1)
        for i in range(2, n + 1):
            if not list[i - 1]:
                j = i
                while j <= n:
                    list[j - 1] = i
                    j *= i
        return list
    # M. Eren Kesim, Jun 03 2021
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A052410(n): return integer_nthroot(n,gcd(*factorint(n).values()))[0] if n>1 else 1 # Chai Wah Wu, Mar 02 2024

Formula

a(A001597(k)) = A025478(k).
a(n) = A007916(A278028(n,1)). - Gus Wiseman, Sep 11 2017

Extensions

Definition edited (in a complementary form to A052409) by Daniel Forgues, Mar 14 2009
Corrected by Charles R Greathouse IV, Sep 02 2009
Definition edited by N. J. A. Sloane, Sep 03 2010

A182850 a(n) = number of iterations that n requires to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

The fixed points of the x -> A181819(x) map are 1 and 2. Note that the x -> A000005(x) map has the same fixed points, and that A000005(n) = A181819(n) iff n is cubefree (cf. A004709). Under the x -> A181819(x) map, it seems significantly easier to generalize about which kinds of integers take a given number of iterations to reach a fixed point than under the x -> A000005(x) map.
Also the number of steps in the reduction of the multiset of prime factors of n wherein one repeatedly takes the multiset of multiplicities. For example, the a(90) = 5 steps are {2,3,3,5} -> {1,1,2} -> {1,2} -> {1,1} -> {2} -> {1}. - Gus Wiseman, May 13 2018

Examples

			A181819(6) = 4; A181819(4) = 3; A181819(3) = 2; A181819(2) = 2. Therefore, a(6) = 3, a(4) = 2, a(3)= 1, and a(2) = 0.
		

Crossrefs

A182857 gives values of n where a(n) increases to a record.

Programs

  • Haskell
    a182850 n = length $ takeWhile (`notElem` [1,2]) $ iterate a181819 n
    -- Reinhard Zumkeller, Mar 26 2012
    
  • Mathematica
    Table[If[n<=2,0,Length[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]-1],{n,100}] (* Gus Wiseman, May 13 2018 *)
  • Scheme
    ;; With memoization-macro definec.
    (definec (A182850 n) (if (<= n 2) 0 (+ 1 (A182850 (A181819 n))))) ;; Antti Karttunen, Feb 05 2016

Formula

For n > 2, a(n) = a(A181819(n)) + 1.
a(n) = 0 iff n equals 1 or 2.
a(n) = 1 iff n is an odd prime (A000040(n) for n>1).
a(n) = 2 iff n is a composite perfect prime power (A025475(n) for n>1).
a(n) = 3 iff n is a squarefree composite integer or a power of a squarefree composite integer (cf. A182853).
a(n) = 4 iff n's prime signature a) contains at least two distinct numbers, and b) contains no number that occurs less often than any other number (cf. A182854).

A052409 a(n) = largest integer power m for which a representation of the form n = k^m exists (for some k).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Greatest common divisor of all prime-exponents in canonical factorization of n for n>1: a(n)>1 iff n is a perfect power; a(A001597(k))=A025479(k). - Reinhard Zumkeller, Oct 13 2002
a(1) set to 0 since there is no largest finite integer power m for which a representation of the form 1 = 1^m exists (infinite largest m). - Daniel Forgues, Mar 06 2009
A052410(n)^a(n) = n. - Reinhard Zumkeller, Apr 06 2014
Positions of 1's are A007916. Smallest base is given by A052410. - Gus Wiseman, Jun 09 2020

Examples

			n = 72 = 2*2*2*3*3: GCD[exponents] = GCD[3,2] = 1. This is the least n for which a(n) <> A051904(n), the minimum of exponents.
For n = 10800 = 2^4 * 3^3 * 5^2, GCD[4,3,2] = 1, thus a(10800) = 1.
		

Crossrefs

Apart from the initial term essentially the same as A253641.
Differs from A051904 for the first time at n=72, where a(72) = 1, while A051904(72) = 2.
Differs from A158378 for the first time at n=10800, where a(10800) = 1, while A158378(10800) = 2.

Programs

Formula

a(1) = 0; for n > 1, a(n) = gcd(A067029(n), a(A028234(n))). - Antti Karttunen, Aug 07 2017

Extensions

More terms from Labos Elemer, Jun 17 2002

A281116 Number of factorizations of n>=2 into factors greater than 1 with no common divisor other than 1 (a(1)=0 by convention).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 5, 0, 1, 1, 3, 0, 4, 0, 2, 2, 1, 0, 5, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 8, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 9, 0, 1, 2, 2, 1, 4, 0, 5, 0, 1, 0, 8, 1, 1, 1, 3, 0, 8, 1, 2, 1, 1, 1, 7, 0, 2, 2, 5
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2017

Keywords

Comments

Let (e1, e2, ..., ek) be a prime-signature of n (that is, n = p^e1 * q^e2 * ... * r^ek for some primes, p, q, ..., r). Then a(n) is the number of ways of partitioning multiset {e1 x 1, e2 x 2, ..., ek x k} into multisets such that none of the numbers 1 .. k is present in all member multisets of that set partition. - Antti Karttunen, Sep 08 2018

Examples

			a(6)=1:  (2*3)
a(12)=2; (2*2*3)       (3*4)
a(24)=3: (2*2*2*3)     (2*3*4)     (3*8)
a(30)=4: (2*3*5)       (2*15)      (3*10)    (5*6)
a(36)=5: (2*2*3*3)     (2*2*9)     (2*3*6)   (3*3*4)   (4*9)
a(96)=7: (2*2*2*2*2*3) (2*2*2*3*4) (2*2*3*8) (2*3*4*4) (2*3*16) (3*4*8) (3*32).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[postfacs[n],GCD@@#===1&]],{n,2,100}]
  • PARI
    A281116(n, m=n, facs=List([])) = if(1==n, (1==gcd(Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A281116(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Sep 08 2018

Extensions

Term a(1) = 0 prepended by Antti Karttunen, Sep 08 2018

A053289 First differences of consecutive perfect powers (A001597).

Original entry on oeis.org

3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, 35, 19, 18, 39, 41, 43, 28, 17, 47, 49, 51, 53, 55, 57, 59, 61, 39, 24, 65, 67, 69, 71, 35, 38, 75, 77, 79, 81, 47, 36, 85, 87, 89, 23, 68, 71, 10, 12, 95, 97, 99, 101, 103, 40, 65, 107, 109, 100
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Michel Waldschmidt writes: Conjecture 1.3 (Pillai). Let k be a positive integer. The equation x^p - y^q = k where the unknowns x, y, p and q take integer values, all >= 2, has only finitely many solutions (x,y,p,q). This means that in the increasing sequence of perfect powers [A001597] the difference between two consecutive terms [the present sequence] tends to infinity. It is not even known whether for, say, k=2, Pillai's equation has only finitely many solutions. A related open question is whether the number 6 occurs as a difference between two perfect powers. See Sierpiński [1970], problem 238a, p. 116. - Jonathan Vos Post, Feb 18 2008
Are there are any adjacent equal terms? - Gus Wiseman, Oct 08 2024

Examples

			Consecutive perfect powers are A001597(14) = 121, A001597(13) = 100, so a(13) = 121 - 100 = 21.
		

References

  • Wacław Sierpiński, 250 problems in elementary number theory, Modern Analytic and Computational Methods in Science and Mathematics, No. 26, American Elsevier, Warsaw, 1970, pp. 21, 115-116.
  • S. S. Pillai, On the equation 2^x - 3^y = 2^X - 3^Y, Bull, Calcutta Math. Soc. 37 (1945) 15-20.

Crossrefs

For non-perfect-powers (A007916) we have A375706.
The union is A023055.
For prime-powers (A000961 or A246655) we have A057820.
Sorted positions of first appearances are A376268, complement A376519.
For second differences we have A376559.
Ascending and descending points are A376560 and A376561.
A001597 lists perfect-powers.
A112344 counts integer partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.

Programs

  • Mathematica
    Differences@ Select[Range@ 3200, # == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1 &] (* Michael De Vlieger, Jun 30 2016, after Ant King at A001597 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A053289(n):
        if n==1: return 3
        def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax)+1 >= kmax:
            kmax <<= 1
        rmin, rmax = 1, kmax
        while True:
            kmid = kmax+kmin>>1
            if f(kmid)+1 < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        while True:
            rmid = rmax+rmin>>1
            if f(rmid) < rmid:
                rmax = rmid
            else:
                rmin = rmid
            if rmax-rmin <= 1:
                break
        return kmax-rmax # Chai Wah Wu, Aug 13 2024

Formula

a(n) = A001597(n+1) - A001597(n). - Jonathan Vos Post, Feb 18 2008
From Amiram Eldar, Jun 30 2023: (Start)
Formulas from Jakimczuk (2016):
Lim sup_{n->oo} a(n)/(2*n) = 1.
Lim inf_{n->oo} a(n)/(2*n)^(2/3 + eps) = 0. (End)
Can be obtained by inserting 0 between 3 and 6 in A375702 and then adding 1 to all terms. In particular, for n > 2, a(n+1) - 1 = A375702(n). - Gus Wiseman, Sep 14 2024

A181796 a(n) = number of divisors of n whose canonical prime factorizations contain no repeated positive exponents (cf. A130091).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3, 7, 2, 7, 3, 5, 3, 3, 3, 11, 2, 5, 5, 7, 2, 4, 2, 7, 4
Offset: 1

Views

Author

Matthew Vandermast, Nov 22 2010

Keywords

Comments

The canonical factorization of n into prime powers can be written as Product p(i)^e(i), for example. A host of equivalent notations can also be used (for another example, see Weisstein link). a(n) depends only on prime signature of n (cf. A025487).
a(n) >= A085082(n). (A085082(n) equals the number of members of A025487 that divide A046523(n), and each member of A025487 is divisible by at least one member of A130091 that divides no smaller member of A025487.) a(n) > A085082(n) iff n has in its canonical prime factorization at least two exponents greater than 1.
a(n) = number of such divisors of n that in their prime factorization all exponents are unique. - Antti Karttunen, May 27 2017
First differs from A335549 at a(90) = 7, A335549(90) = 8. First differs from A335516 at a(180) = 9, A335516(180) = 10. - Gus Wiseman, Jun 28 2020

Examples

			12 has a total of six divisors (1, 2, 3, 4, 6 and 12). Of those divisors, the number 1 has no prime factors, hence, no positive exponents at all (and no repeated positive exponents) in its canonical prime factorization. The lists of positive exponents for 2, 3, 4, 6 and 12 are (1), (1), (2), (1,1) and (2,1) respectively (cf. A124010). Of all six divisors, only the number 6 (2^1*3^1) has at least one positive exponent repeated (namely, 1). The other five do not; hence, a(12) = 5.
For n = 90 = 2 * 3^2 * 5, the divisors that satisfy the condition are: 1, 2, 3, 3^2, 5, 2 * 3^2, 3^2 * 5, altogether 7, (but for example 90 itself is not included), thus a(90) = 7.
		

Crossrefs

Diverges from A088873 at n=24 and from A085082 at n=36. a(36) = 7, while A085082(36) = 6.
Partitions with distinct multiplicities are A098859.
Sorted prime signature is A118914.
Unsorted prime signature is A124010.
a(n) is the number of divisors of n in A130091.
Factorizations with distinct multiplicities are A255231.
The largest of the counted divisors is A327498.
Factorizations using the counted divisors are A327523.

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, Length@ Union@ # == Length@ # &@ FactorInteger[#][[All, -1]] &], {n, 105}] (* Michael De Vlieger, May 28 2017 *)
  • PARI
    no_repeated_exponents(n) = { my(es = factor(n)[, 2]); if(length(Set(es)) == length(es),1,0); }
    A181796(n) = sumdiv(n,d,no_repeated_exponents(d)); \\ Antti Karttunen, May 27 2017
    
  • Python
    from sympy import factorint, divisors
    def ok(n):
        f=factorint(n)
        ex=[f[i] for i in f]
        for i in ex:
            if ex.count(i)>1: return 0
        return 1
    def a(n): return sum([1 for i in divisors(n) if ok(i)]) # Indranil Ghosh, May 27 2017

Formula

a(A000079(n)) = a(A002110(n)) = n+1.
a(A006939(n)) = A000110(n+1).
a(A181555(n)) = A002720(n).

A006862 Euclid numbers: 1 + product of the first n primes.

Original entry on oeis.org

2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, 6469693231, 200560490131, 7420738134811, 304250263527211, 13082761331670031, 614889782588491411, 32589158477190044731, 1922760350154212639071, 117288381359406970983271, 7858321551080267055879091
Offset: 0

Views

Author

Keywords

Comments

It is an open question whether all terms of this sequence are squarefree.
a(n) is the smallest x > 1 such that x^prime(n) == 1 (mod prime(i)) i=1,2,3,...,n-1. - Benoit Cloitre, May 30 2002
Numbers n such that n/phi(n-1) is a record. - Arkadiusz Wesolowski, Nov 22 2012
Nyblom (theorem 2.3) proves that this sequence contains no proper powers, e.g., is a subsequence of A007916. - Charles R Greathouse IV, Mar 02 2016
It is an open question if there are an infinite number of prime Euclid numbers. - Mike Winkler, Feb 05 2017
These numbers are not pairwise relatively prime; the first example is gcd(a(7), a(17)) = 277. Also gcd(a(47), a(131)) = 1051, which is probably the second example (wrt. greater index which is here 131). It is easy to find other primes like 277 and 1051. - Jeppe Stig Nielsen, Mar 24 2017
Subsequence of A048103. Proof: For all primes p, when i >= A000720(p), neither p itself nor p^p divides a(i), but neither does p^p divide a(i) when i < A000720(p), as p^p > 1 + A034386(p). - Antti Karttunen, Nov 17 2024

Examples

			It is a universal convention that an empty product is 1 (just as an empty sum is 0), and since this sequence has offset 0, the first term is 1+1 = 2. - _N. J. A. Sloane_, Dec 02 2015
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 134.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Properties of numbers, Arizona State University Special Collections, 1973.
  • I. Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991, sections 5.1 and 5.2.
  • S. Wagon, Mathematica in Action, Freeman, NY, 1991, p. 35.

Crossrefs

Cf. A005867, A007916, A014545, A018239 (primes in sequence), A034386, A057588, A377871.
Subsequence of A048103.

Programs

  • Magma
    [2] cat [&*PrimesUpTo(p)+1: p in PrimesUpTo(70)]; // Vincenzo Librandi, Dec 03 2015
    
  • Maple
    with(numtheory): A006862 := proc(n) local i; if n=0 then 2 else 1+product('ithprime(i)','i'=1..n); fi; end;
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 2,
          1+ithprime(n)*(a(n-1)-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 06 2021
  • Mathematica
    Table[Product[Prime[k], {k, 1, n}] + 1, {n, 1, 18}]
    1 + FoldList[Times, 1, Prime@ Range@ 19] (* Harvey P. Dale, Dec 02 2015 and modified by Robert G. Wilson v, Mar 25 2017 *)
  • PARI
    a(n)=my(v=primes(n)); prod(i=1,#v,v[i])+1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import primorial
    def A006862(n):
        if n == 0: return 2
        else: return 1 + primorial(n) # Karl-Heinz Hofmann, Aug 21 2024

Formula

a(n) = A002110(n) + 1.
For n >= 1, a(n) = A057588(n) + 2. - Antti Karttunen, Nov 17 2024

A100953 Number of partitions of n into relatively prime parts such that multiplicities of parts are also relatively prime.

Original entry on oeis.org

1, 1, 0, 1, 2, 5, 5, 13, 14, 25, 28, 54, 54, 99, 105, 160, 192, 295, 315, 488, 546, 760, 890, 1253, 1404, 1945, 2234, 2953, 3459, 4563, 5186, 6840, 7909, 10029, 11716, 14843, 17123, 21635, 25035, 30981, 36098, 44581, 51370, 63259, 73223, 88739, 103048, 124752
Offset: 0

Views

Author

Vladeta Jovovic, Jan 11 2005

Keywords

Crossrefs

Programs

  • Maple
    read transforms : a000837 := [] : b000837 := fopen("b000837.txt",READ) : bfil := readline(b000837) : while StringTools[WordCount](bfil) > 0 do b := sscanf( bfil,"%d %d") ; a000837 := [op(a000837),op(2,b)] ; bfil := readline(b000837) ; od: fclose(b000837) ; a000837 := subsop(1=NULL,a000837) : a := MOBIUS(a000837) : for n from 1 to 120 do printf("%d, ",op(n,a)) ; od: # R. J. Mathar, Mar 12 2008
    # second Maple program:
    with(numtheory): with(combinat):
    b:= proc(n) option remember; `if`(n=0, 1, add(
           mobius(n/d)*numbpart(d), d=divisors(n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           mobius(n/d)*b(d), d=divisors(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 19 2017
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#===1,GCD@@Length/@Split[#]===1]&]],{n,20}] (* Gus Wiseman, Dec 19 2017 *)
    b[n_] := b[n] = If[n==0, 1, Sum[
         MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]];
    a[n_] := a[n] = If[n==0, 1, Sum[
         MoebiusMu[n/d]*b[d], {d, Divisors[n]}]];
    a /@ Range[0, 60] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

Moebius transform of A000837.

Extensions

More terms from David Wasserman and R. J. Mathar, Mar 04 2008
a(0)=1 prepended by Alois P. Heinz, Dec 19 2017
Previous Showing 31-40 of 282 results. Next