cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 124 results. Next

A106566 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  14,  14,  9,  4,  1;
  0,  42,  42, 28, 14,  5, 1;
  0, 132, 132, 90, 48, 20, 6, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
    [A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106566 := proc(n,k)
        if n = 0 then
            1;
        elif k < 0 or k > n then
            0;
        else
            binomial(2*n-k-1,n-k)*k/n ;
        end if;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • PARI
    {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
    flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
    

Formula

T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022

Extensions

Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012

A003517 Number of permutations of [n+1] with exactly 1 increasing subsequence of length 3.

Original entry on oeis.org

1, 6, 27, 110, 429, 1638, 6188, 23256, 87210, 326876, 1225785, 4601610, 17298645, 65132550, 245642760, 927983760, 3511574910, 13309856820, 50528160150, 192113383644, 731508653106, 2789279908316, 10649977831752, 40715807302800, 155851062397940, 597261490737912
Offset: 2

Views

Author

Keywords

Comments

a(n-4) = number of n-th generation vertices in the tree of sequences with unit increase labeled by 5 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+3,n-2). - Emeric Deutsch, May 30 2004
a(n) = A214292(2*n,n-3) for n > 2. - Reinhard Zumkeller, Jul 12 2012
a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly once. By symmetry, it is also the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x vertically exactly once. Details can be found in Section 3.3 in Pan and Remmel's link. - Ran Pan, Feb 02 2016
a(n) is the number of permutations pi of [n+3] such that s(pi)=321456...(n+3), where s denotes West's stack-sorting map. - Colin Defant, Jan 14 2019
a(n) is also the number of permutations of [n+1] avoiding the pattern 321. For permutations avoiding any of the other permutations of [3] (that is, any of 132, 213, 231, or 312) see A002054. - N. J. A. Sloane, Nov 26 2022

Examples

			a(3)=6 because the only permutations of 1234 with exactly 1 increasing subsequence of length 3 are 1423, 4123, 1342, 2314, 2341, 3124.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

T(n, n+6) for n=0, 1, 2, ..., array T as in A047072.
See also A002054.
First differences are in A026017.
A diagonal of any of the essentially equivalent arrays: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Maple
    A003517List := proc(m) local A, P, n; A := [1]; P := [1,1,1,1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A003517List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    f[x_] = (Sqrt[1 - 4 x] - 1)^6/(64 x^4); CoefficientList[Series[f[x], {x, 0, 25}], x][[3 ;; 26]] (* Jean-François Alcover, Jul 13 2011, after g.f. *)
    Table[6 Binomial[2n+1,n-2]/(n+4),{n,2,30}] (* Harvey P. Dale, Feb 27 2012 *)
  • PARI
    a(n)=6*binomial(2*n+1,n-2)/(n+4) \\ Charles R Greathouse IV, May 18 2015
    
  • PARI
    x='x+O('x^50); Vec(x^2*((1-(1-4*x)^(1/2))/(2*x))^6) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = 6*binomial(2*n+1, n-2)/(n+4).
G.f.: x^2*C(x)^6, where C(x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
E.g.f.: exp(2*x)*(Bessel_I(2,2*x) - Bessel_I(4,2*x)). - Paul Barry, Jun 04 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n >= 5, a(n-3) = (-1)^(n-5)*coeff(charpoly(A,x),x^5). - Milan Janjic, Jul 08 2010
a(n) = Sum_{i>=1, j>=1, k>=1, i+j+k=n+1} Catalan(i)*Catalan(j)*Catalan(k). T. D. Noe, Dec 22 2010
D-finite with recurrence -(n+4)*(n-2)*a(n) + 2*n*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=2} 1/a(n) = 7/2 - 34*Pi/(27*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 828*log(phi)/(25*sqrt(5)) - 2819/450, where phi is the golden ratio (A001622). (End)
a(n) ~ 3*4^(n+1)/(n^(3/2)*sqrt(Pi)). - Stefano Spezia, Apr 17 2024
a(n) = A000108(n+3) - 4*A000108(n+2) + 3*A000108(n+1). - Taras Goy, Jul 15 2024
a(n) = 6*(2*n+1)!*(n-1)!/((2*n-4)!*(n+4)!)*A000108(n-2). - Taras Goy, Dec 21 2024

A002694 Binomial coefficients C(2n, n-2).

Original entry on oeis.org

1, 6, 28, 120, 495, 2002, 8008, 31824, 125970, 497420, 1961256, 7726160, 30421755, 119759850, 471435600, 1855967520, 7307872110, 28781143380, 113380261800, 446775310800, 1761039350070, 6943526580276, 27385657281648, 108043253365600
Offset: 2

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=2. Example: For n=3 there are 6 paths EEENNN, EENENN, EENNEN, EENNNE, ENEENN and NEEENN. - Herbert Kociemba, May 23 2004
Number of dissections of a convex (n+3)-gon by noncrossing diagonals into several regions, exactly n-2 of which are triangular. Example: a(3)=6 because the convex hexagon ABCDEF is dissected by any of the diagonals AC, BD, CE, DF, EA, FB into regions containing exactly 1 triangle. - Emeric Deutsch, May 31 2004
Number of UUU's (triple rises), where U=(1,1), in all Dyck paths of semilength n+1. Example: a(3)=6 because we have UD(UUU)DDD, (UUU)DDDUD, (UUU)DUDDD, (UUU)DDUDD and (U[UU)U]DDDD, the triple rises being shown between parentheses. - Emeric Deutsch, Jun 03 2004
Inverse binomial transform of A026389. - Ross La Haye, Mar 05 2005
Sum of the jump-lengths of all full binary trees with n internal nodes. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given full binary tree is called the jump-length. - Emeric Deutsch, Jan 18 2007
a(n) = number of convex polyominoes (A005436) of perimeter 2n+4 that are directed but not parallelogram polyominoes, because the directed convex polyominoes are counted by the central binomial coefficient binomial(2n,n) and the subset of parallelogram polyominoes is counted by the Catalan number C(n+1) = binomial(2n+2,n+1)/(n+2) and a(n) = binomial(2n,n) - C(n+1). - David Callan, Nov 29 2007
a(n) = number of DUU's in all Dyck paths of semilength n+1. Example: a(3)=6 because we have UU(DUU)DDD, U(DUU)UDDD, U(DUU)DUDD, UDU(DUU)DD, U(DUU)DDUD, UUD(DUU)DD, the DUU's being shown between parentheses and no other Dyck path of semilength 4 contains a DUU. - David Callan, Jul 25 2008
C(2n,n-m) is the number of Dyck-type walks such that their graphs have one marked edge passed 2m times and the other edges are passed 2 times counting "there and back" directions. - Oleksiy Khorunzhiy, Jan 09 2015
Number of paths in the half-plane x >= 0, from (0,0) to (2n,4), and consisting of steps U=(1,1) and D=(1,-1). For example, for n=3, we have the 6 paths: UUUUUD, UUUUDU, UUUDUU, UUDUUU, UDUUUU, DUUUUU, DUUUUU. - José Luis Ramírez Ramírez, Apr 19 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006659.
Diagonal 5 of triangle A100257.
Cf. binomial(k*n, n-k): A000027 (k=1), this sequence (k=2), A004321 (k=3), A004334 (k=4), A004347 (k=5), A004361 (k=6), A004375 (k=7), A004389 (k=8), A281580 (k=9).
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A003516 (m = 5), A002696 (m = 6), A030053 - A030056, A004310 - A004318.

Programs

  • GAP
    List([2..30], n-> Binomial(2*n,n-2)); # G. C. Greubel, Mar 21 2019
  • Haskell
    a002694 n = a007318' (2 * n) (n - 2)  -- Reinhard Zumkeller, Jun 18 2012
    
  • Magma
    [Binomial(2*n, n-2): n in [2..30]]; // Vincenzo Librandi, Apr 20 2015
    
  • Maple
    a:=n->sum(binomial(n,j-1)*binomial(n,j+1),j=1..n): seq(a(n), n=2..25); # Zerinvary Lajos, Nov 26 2006
  • Mathematica
    CoefficientList[ Series[ 16/(((Sqrt[1 - 4 x] + 1)^4)*Sqrt[1 - 4 x]), {x, 0, 23}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    Table[Binomial[2n,n-2],{n,2,30}] (* Harvey P. Dale, Jun 12 2014 *)
  • PARI
    {a(n) = binomial(2*n,n-2)}; \\ G. C. Greubel, Mar 21 2019
    
  • Sage
    [binomial(2*n,n-2) for n in (2..30)] # G. C. Greubel, Mar 21 2019
    

Formula

a(n) = A067310(n, 1) as this is number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 1 simple intersection. - Henry Bottomley, Oct 07 2002
E.g.f.: exp(2*x) * BesselI(2, 2*x). - Vladeta Jovovic, Aug 21 2003
G.f.: (1-sqrt(1-4*z))^4/(16*z^2*sqrt(1-4*z)). - Emeric Deutsch, Jan 28 2004
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+2). - Paul Barry, Sep 20 2004
D-finite with recurrence: -(n-2)*(n+2)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
G.f.: z^2*C(z)^4/(1-2*z*C(z)), where C(z) is the g.f. of Catalan numbers. - José Luis Ramírez Ramírez, Apr 19 2015
a(n) = Sum_{k=1..n} binomial(2*n-k,n-k-1). - Vladimir Kruchinin, Oct 22 2016
G.f.: x^2* 2F1(5/2,3;5;4*x). - R. J. Mathar, Jan 27 2020
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = 23/6 - 13*Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 106*log(phi)/(5*sqrt(5)) - 37/10, where phi is the golden ratio (A001622). (End)
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * (x^2 - 4*x + 2)/sqrt(x*(4 - x)).
G.f. x^2 * B(x) * C(x)^4, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

A000344 a(n) = 5*binomial(2n, n-2)/(n+3).

Original entry on oeis.org

1, 5, 20, 75, 275, 1001, 3640, 13260, 48450, 177650, 653752, 2414425, 8947575, 33266625, 124062000, 463991880, 1739969550, 6541168950, 24647883000, 93078189750, 352207870014, 1335293573130, 5071418015120, 19293438101000, 73514652074500, 280531912316292
Offset: 2

Views

Author

Keywords

Comments

a(n-3) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 4 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=2. Example: For n=3 there are the 5 paths EENENN, EENNEN, EENNNE, ENEENN, NEEENN. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+2,n-2). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^2 + 5*x^3 + 20*x^4 + 75*x^5 + 275*x^6 + 1001*x^7 + 3640*x^8 + ...
		

References

  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

T(n, n+5) for n=0, 1, 2, ..., array T as in A047072.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • GAP
    List([2..30],n->5*Binomial(2*n,n-2)/(n+3)); # Muniru A Asiru, Aug 09 2018
  • Magma
    [5*Binomial(2*n,n-2)/(n+3): n in [2..30]]; // Vincenzo Librandi, May 03 2011
    
  • Maple
    A000344List := proc(m) local A, P, n; A := [1]; P := [1,1,1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A000344List(27); # Peter Luschny, Mar 26 2022
  • Mathematica
    Table[5 Binomial[2n,n-2]/(n+3),{n,2,40}] (* or *) CoefficientList[Series[ (1-Sqrt[1-4 x]+x (-5+3 Sqrt[1-4 x]-(-5+Sqrt[1-4 x]) x))/(2 x^5), {x,0,38}],x]  (* Harvey P. Dale, May 01 2011 *)
    a[ n_] := If[ n < 0, 0, 5 Binomial[2 n, n - 2] / (n + 3)]; (* Michael Somos, May 28 2014 *)
  • PARI
    a(n)=5*binomial(2*n,n-2)/(n+3) \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

Integral representation as n-th moment of a function on [0, 4]: a(n) = Integral_{x=0..4} x^n*((1/2)/Pi*x^(3/2)*(x^2-3*x+1)*(4-x)^(1/2)) dx, n >= 0, for which offset=0. - Karol A. Penson, Oct 11 2001
Expansion of x^2*C^5, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers (A000108). - Herbert Kociemba, May 02 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=4, a(n-2)=(-1)^(n-4)*coeff(charpoly(A,x),x^4). - Milan Janjic, Jul 08 2010
a(n) = A000108(n+2) - 3*A000108(n+1)+ A000108(n). - David Scambler, May 20 2012
D-finite with recurrence: (n+3)*(n-2)*a(n) = 2*n*(2n-1)*a(n-1). - R. J. Mathar, Jun 27 2012
a(n) = A214292(2*n-1,n-3) for n > 2. - Reinhard Zumkeller, Jul 12 2012
0 = a(n)*(-528*a(n+1) + 9162*a(n+2) - 9295*a(n+3) + 1859*a(n+4)) + a(n+1)*(-1650*a(n+1) - 762*a(n+2) + 4188*a(n+3) - 946*a(n+4)) + a(n+2)*(-1050*a(n+2) - 126*a(n+3) + 84*a(n+4)) for all n in Z. - Michael Somos, May 28 2014
0 = a(n)*(a(n)*(+16*a(n+1) + 6*a(n+2)) + a(n+1)*(+66*a(n+1) - 105*a(n+2) + 40*a(n+3)) + a(n+2)*(-69*a(n+2) + 15*a(n+3))) +a(n+1)*(a(n+1)*(50*a(n+1) + 42*a(n+2) - 28*a(n+3)) +a(n+2)*(+12*a(n+2))) for all n in Z. - Michael Somos, May 28 2014
0 = a(n)^2*(-16*a(n+1)^2 - 38*a(n+1)*a(n+2) - 12*a(n+2)^2) + a(n)*a(n+1)*(-66*a(n+1)^2 + 149*a(n+1)*a(n+2) - 23*a(n+2)^2) + a(n+1)^2*(-50*a(n+1)^2 + 2*a(n+2)^2) for all n in Z. - Michael Somos, May 28 2014
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (x*(2 + x) * BesselI(0, 2*x) - (2+x+x^2) * BesselI(1, 2*x)) * exp(2*x)/x^2.
a(n) ~ 5*4^n/(sqrt(Pi)*n^(3/2)). (End)
a(n) = (1/(n+1))*Sum_{i=0..n-2} (-1)^(n+i)*(n-i+1)*binomial(2n+2,i), n >= 2. - Taras Goy, Aug 09 2018
G.f.: x^2* 2F1(5/2,3;6;4*x) . - R. J. Mathar, Jan 27 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=2} 1/a(n) = 14/5 - 38*Pi/(45*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 1956*log(phi)/(125*sqrt(5)) - 316/125, where phi is the golden ratio (A001622). (End)
a(n) = 5*(2*n)!*(n-1)!/((2*n-4)!*(n+3)!)*A000108(n-2). - Taras Goy, Jul 15 2024
a(n) = Sum_{i+j+k+l+m = n-2} C(i)C(j)C(k)C(l)C(m), where C(s) = A000108(s). (Fifth convolution of Catalan numbers). - Taras Goy, Dec 21 2024

A008315 Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 15, 104
Offset: 0

Views

Author

Keywords

Comments

There are several versions of a Catalan triangle: see A009766, A008315, A028364, A053121.
Number of standard tableaux of shape (n-k,k) (0<=k<=floor(n/2)). Example: T(4,1)=3 because in th top row we can have 124, 134, or 123 (but not 234). - Emeric Deutsch, May 23 2004
T(n,k) is the number of n-digit binary words (length n sequences on {0,1}) containing k 1's such that no initial segment of the sequence has more 1's than 0's. - Geoffrey Critzer, Jul 31 2009
T(n,k) is the number of dispersed Dyck paths (i.e. Motzkin paths with no (1,0) steps at positive heights) of length n and having k (1,1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, May 30 2011
T(n,k) is the number of length n left factors of Dyck paths having k (1,-1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), we have UUUUD, UUUDU, UUDUU, and UDUUU. There is a simple bijection between length n left factors of Dyck paths and dispersed Dyck paths of length n, that takes D steps into D steps. - Emeric Deutsch, Jun 19 2011
Triangle, with zeros omitted, given by (1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...) DELTA (0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
T(n,k) are rational multiples of A055151(n,k). - Peter Luschny, Oct 16 2015
T(2*n,n) = Sum_{k>=0} T(n,k)^2 = A000108(n), T(2*n+1,n) = A000108(n+1). - Michael Somos, Jun 08 2020

Examples

			Triangle begins:
  1;
  1;
  1, 1;
  1, 2;
  1, 3,  2;
  1, 4,  5;
  1, 5,  9,  5;
  1, 6, 14, 14;
  1, 7, 20, 28, 14;
  ...
T(5,2) = 5 because there are 5 such sequences: {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1}, {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}. - _Geoffrey Critzer_, Jul 31 2009
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.

Crossrefs

T(2n, n) = A000108 (Catalan numbers), row sums = A001405 (central binomial coefficients).
This is also the positive half of the triangle in A008482. - Michael Somos
This is another reading (by shallow diagonals) of the triangle A009766, i.e. A008315[n] = A009766[A056536[n]].

Programs

  • Haskell
    a008315 n k = a008315_tabf !! n !! k
    a008315_row n = a008315_tabf !! n
    a008315_tabf = map reverse a008313_tabf
    -- Reinhard Zumkeller, Nov 14 2013
  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, n-2*k):
    seq(seq(T(n, k), k=0..n/2), n=0..16);  # Alois P. Heinz, Oct 14 2022
  • Mathematica
    Table[Binomial[k, i]*(k - 2 i + 1)/(k - i + 1), {k, 0, 20}, {i, 0, Floor[k/2]}] // Grid (* Geoffrey Critzer, Jul 31 2009 *)
  • PARI
    {T(n, k) = if( k<0 || k>n\2, 0, if( n==0, 1, T(n-1, k-1) + T(n-1, k)))}; /* Michael Somos, Aug 17 1999 */
    

Formula

T(n, 0) = 1 if n >= 0; T(2*k, k) = T(2*k-1, k-1) if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) if k=1, 2, ..., floor(n/2). - Michael Somos, Aug 17 1999
T(n, k) = binomial(n, k) - binomial(n, k-1). - Michael Somos, Aug 17 1999
Rows of Catalan triangle A008313 read backwards. Sum_{k>=0} T(n, k)^2 = A000108(n); A000108 : Catalan numbers. - Philippe Deléham, Feb 15 2004
T(n,k) = C(n,k)*(n-2*k+1)/(n-k+1). - Geoffrey Critzer, Jul 31 2009
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 12 2011

Extensions

Expanded description from Clark Kimberling, Jun 15 1997

A059365 Another version of the Catalan triangle: T(r,s) = binomial(2*r-s-1,r-1) - binomial(2*r-s-1,r), r>=0, 0 <= s <= r.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44
Offset: 0

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Triangle starts
  0;
  0,    1;
  0,    1,    1;
  0,    2,    2,    1;
  0,    5,    5,    3,    1;
  0,   14,   14,    9,    4,    1;
  0,   42,   42,   28,   14,    5,   1;
  0,  132,  132,   90,   48,   20,   6,   1;
  0,  429,  429,  297,  165,   75,  27,   7,  1;
  0, 1430, 1430, 1001,  572,  275, 110,  35,  8, 1;
  0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1;
  ...
		

Crossrefs

See also the triangle in A009766. First 2 diagonals both give A000108, next give A000245, A002057.
The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Essentially the same as A033184.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A053121, A059365, A099039, A106566, A130020, A047072, A171567, A181645.

Programs

  • Magma
    /* as triangle */ [[[0] cat [Binomial(2*r-s-1, r-1)- Binomial(2*r-s-1, r): s in [1..r]]: r in [0..10]]]; // Vincenzo Librandi, Jan 09 2017
  • Mathematica
    Table[Binomial[2*r - s - 1, r - 1] - Binomial[2*r - s - 1, r], {r, 0, 10}, {s, 0, r}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
  • PARI
    tabl(nn) = { print(0); for (r=1, nn, for (s=0, r, print1(binomial(2*r-s-1,r-1)-binomial(2*r-s-1,r), ", ");); print(););}  \\ Michel Marcus, Nov 01 2013
    

Formula

Essentially the same triangle as [0, 1, 1, 1, 1, 1, 1, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938, but the first term is T(0,0) = 0.

A000588 a(n) = 7*binomial(2n,n-3)/(n+4).

Original entry on oeis.org

0, 0, 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, 2187185, 8351070, 31865925, 121580760, 463991880, 1771605360, 6768687870, 25880277150, 99035193894, 379300783092, 1453986335186, 5578559816632, 21422369201800, 82336410323440, 316729578421620
Offset: 0

Views

Author

Keywords

Comments

a(n-5) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 6 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=3. Example: For n=3 there is only one path EEENNN. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+3,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 7*x^4 + 35*x^5 + 154*x^6 + 637*x^7 + 2548*x^8 + 9996*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026014.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    a[n_] := 7*Binomial[2n, n-3]/(n + 4); Table[a[n],{n,0,27}] (* James C. McMahon, Dec 05 2023 *)
  • PARI
    A000588(n)=7*binomial(2*n,n-3)/(n+4) \\ M. F. Hasler, Aug 25 2012
    
  • PARI
    my(x='x+O('x^50)); concat([0, 0, 0], Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^7)) \\ Altug Alkan, Nov 01 2015

Formula

Expansion of x^3*C^7, where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. for the Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=6, a(n-3)=(-1)^(n-6)*coeff(charpoly(A,x),x^6). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/6)*x^3*1F1(7/2; 8; 4*x).
a(n) ~ 7*4^n/(sqrt(Pi)*n^(3/2)). (End)
0 = a(n)*(+1456*a(n+1) - 87310*a(n+2) + 132834*a(n+3) - 68068*a(n+4) + 9724*a(n+5)) + a(n+1)*(+8918*a(n+1) - 39623*a(n+2) + 51726*a(n+3) - 299*a(n+4) - 1573*a(n+5)) + a(n+2)*(-24696*a(n+2) - 1512*a(n+3) + 1008*a(n+4)) for all n in Z. - Michael Somos, Jan 22 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 27/14 - 26*Pi/(63*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 11364*log(phi)/(175*sqrt(5)) - 4583/350, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^(n)*W(x)dx, n>=0, where W(x) = sqrt(4/x - 1)*(x^3 - 5*x^2 + 6*x - 1)/(2*Pi). The function W(x) for x->0 tends to -infinity (which is its absolute minimum), and W(4) = 0. W(x) is a signed function on the interval x = (0, 4) where it has two maxima separated by one local minimum. - Karol A. Penson, Jun 17 2024
D-finite with recurrence -(n+4)*(n-3)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 30 2024
a(n) = A000108(n+3) - 5*A000108(n+2) + 6*A000108(n+1) - A000108(n). - Taras Goy, Dec 21 2024

Extensions

More terms from N. J. A. Sloane, Jul 13 2010

A059481 Triangle read by rows. T(n, k) = binomial(n+k-1, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378
Offset: 0

Views

Author

Fabian Rothelius, Feb 04 2001

Keywords

Comments

T(n,k) is the number of ways to distribute k identical objects in n distinct containers; containers may be left empty.
T(n,k) is the number of nondecreasing functions f from {1,...,k} to {1,...,n}. - Dennis P. Walsh, Apr 07 2011
Coefficients of Faber polynomials for function x^2/(x-1). - Michael Somos, Sep 09 2003
Consider k-fold Cartesian products CP(n,k) of the vector A(n)=[1,2,3,...,n].
An element of CP(n,k) is a n-tuple T_t of the form T_t=[i_1,i_2,i_3,...,i_k] with t=1,...,n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j > i_(j+1), T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j > i_(j+1)).
The indicator function which tests on i_j = i_(j+1) generates A158497, which contains further examples of this type of counting.
Triangle of the numbers of combinations of k elements with repetitions from n elements {1,2,...,n} (when every element i, i=1,...,n, appears in a k-combination either 0, or 1, or 2, ..., or k times). - Vladimir Shevelev, Jun 19 2012
G.f. for Faber polynomials is -log(-t*x-(1-sqrt(1-4*t))/2+1)=sum(n>0, T(n,k)*t^k/n). - Vladimir Kruchinin, Jul 04 2013
Values of complete homogeneous symmetric polynomials with all arguments equal to 1, or, equivalently, the number of monomials of degree k in n variables. - Tom Copeland, Apr 07 2014
Row k >= 0 of the infinite square array A[k,n] = C(n,k), n >= 0, would start with k zeros in front of the first nonzero element C(k,k) = 1; this here is the triangle obtained by taking the first k+1 nonzero terms C(k .. 2k, k) of rows k = 0, 1, 2, ... of that array. - M. F. Hasler, Mar 05 2017

Examples

			The triangle T(n,k), n >= 0, 0 <= k <= n, begins
  1      A000217
  1 1   /     A000292
  1 2  3    /    A000332
  1 3  6  10    /    A000389
  1 4 10  20  35    /     A000579
  1 5 15  35  70 126     /
  1 6 21  56 126 252  462
  1 7 28  84 210 462  924 1716
  1 8 36 120 330 792 1716 3432 6435
.
T(3,2)=6 considers the CP with the 3^2=9 elements (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3), and does not count the 3 of them which are (2,1),(3,1) and (3,2).
T(3,3) = 10 because the ways to distribute the 3 objects into the three containers are: (3,0,0) (0,3,0) (0,0,3) (2,1,0) (1,2,0) (2,0,1) (1,0,2) (0,1,2) (0,2,1) (1,1,1), for a total of 10 possibilities.
T(3,3)=10 since (x^2/(x-1))^3 = (x+1+1/x+O(1/x^2))^3 = x^3+3x^2+6x+10+O(x).
T(4,2)=10 since there are 10 nondecreasing functions f from {1,2} to {1,2,3,4}. Using <f(1),f(2)> to denote such a function, the ten functions are <1,1>, <1,2>, <1,3>, <1,4>, <2,2>, <2,3>, <2,4>, <3,3>, <3,4>, and <4,4>. - _Dennis P. Walsh_, Apr 07 2011
T(4,0) + T(4,1) + T(4,2) + T(4,3) = 1 + 4 + 10 + 20 = 35 = T(4,4). - _Jonathan Sondow_, Jun 28 2014
From _Paul Curtz_, Jun 18 2018: (Start)
Consider the array
2,    1,    1,    1,    1,    1,     ... = A054977(n)
1,    1/2,  1/3,  1/4,  1/5,  1/6,   ... = 1/(n+1) = 1/A000027(n)
1/3,  1/6,  1/10, 1/15, 1/21, 1/28,  ... = 2/((n+2)*(n+3)) = 1/A000217(n+2)
1/10, 1/20, 1/35, 1/56, 1/84, 1/120, ... = 6/((n+3)*(n+4)*(n+5)) =1/A000292(n+2) (see the triangle T(n,k)).
Every row is an autosequence of the second kind. (See OEIS Wiki, Autosequence.)
By decreasing antidiagonals the denominator of the array is a(n).
Successive vertical denominators: A088218(n), A000984(n), A001700(n), A001791(n+1), A002054(n), A002694(n).
Successive diagonal denominators: A165817(n), A005809(n), A045721(n), A025174(n+1), A004319(n). (End)
Without the first row (2, 1, 1, 1, ... ), the array leads to A165257(n) instead of a(n). - _Paul Curtz_, Jun 19 2018
		

References

  • R. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley, 4th edition, chapter 1.4.

Crossrefs

Columns: T(n,1) = A000027(n), n >= 1. T(n,2) = A000217(n) = A161680(n+1), n >= 2. T(n,3) = A000292(n), n >= 3. T(n,4) = A000332(n+3), n >= 4. T(n,5) = A000389(n+4), n >= 5. T(n,6) = A000579(n+5), n >=6. T(n,k) = A001405(n+k-1) for k <= n <= k+2. [Corrected and extended by M. F. Hasler, Mar 05 2017]
Rows: T(5,k) = A000332(k+4). T(6,k) = A000389(k+5). T(7,k) = A000579(k+6).
Diagonals: T(n,n) = A001700(n-1). T(n,n-1) = A000984(n-1).
T(n,k) = A046899(n-1,k). - R. J. Mathar, Mar 26 2009
Take Pascal's triangle A007318, delete entries to the right of a vertical line just right of center, then scan the diagonals.
For a signed version of this triangle see A027555.
Row sums give A000984.
Cf. A007318, A158497, A100100 (mirrored), A009766.

Programs

  • GAP
    Flat(List([0..10], n->List([0..n], k->Binomial(n+k-1, k)))); # Stefano Spezia, Oct 30 2018
    
  • Haskell
    a059481 n k = a059481_tabl !! n !! n
    a059481_row n = a059481_tabl !! n
    a059481_tabl = map reverse a100100_tabl
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Magma
    &cat [[&*[ Binomial(n+k-1,k)]: k in [0..n]]: n in [0..30] ]; // Vincenzo Librandi, Apr 08 2011
    
  • Maple
    for n from 0 to 10 do for k from 0 to n do print(binomial(n+k-1,k)) ; od: od: # R. J. Mathar, Mar 31 2009
  • Mathematica
    t[n_, k_] := Binomial[n+k-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 09 2013 *)
    (* The combinatorial objects defined in the first comment can, for n >= 1, be generated by: *) r[n_, k_] := FrobeniusSolve[ConstantArray[1,n],k]; (* Peter Luschny, Jan 24 2019 *)
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 0 thru n do disp(sjoin(makelist(binomial(i+j-1, j), j, 0, i), " ")); display_triangle(10); /* triangle output */ /* Stefano Spezia, Oct 30 2018 */
    
  • PARI
    {T(n, k) = binomial( n+k-1, k)}; \\ Michael Somos, Sep 09 2003, edited by M. F. Hasler, Mar 05 2017
    
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( Pol(((1 / (x - x^2) + x * O(x^n))^n + O(x)) * x^n), k))}; /* Michael Somos, Sep 09 2003 */
    
  • Sage
    [[binomial(n+k-1,k) for k in range(n+1)] for n in range(11)] # G. C. Greubel, Nov 21 2018

Formula

T(n,0) + T(n,1) + . . . + T(n,n-1) = T(n,n). - Jonathan Sondow, Jun 28 2014
From Peter Bala, Jul 21 2015: (Start)
T(n, k) = Sum_{j = k..n} (-1)^(k+j)*binomial(2*n,n+j)*binomial(n+j-1,j)* binomial(j,k) (gives the correct value T(n,k) = 0 for k > n).
O.g.f.: 1/2*( x*(2*x - 1)/(sqrt(1 - 4*t*x)*(1 - x - t)) + (1 + 2*x)/sqrt(1 - 4*t*x) + (1 - t)/(1 - x - t) ) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ....
n-th row polynomial R(n,t) = [x^n] ( (1 + x)^2/(1 + x(1 - t)) )^n.
exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (1 + t)*x + (1 + 2*t + 2*t^2)*x^2 + (1 + 3*t + 5*t^2 + 5*t^3)*x^3 + ... is the o.g.f for A009766. (End)
a(n) = abs(A027555(n)). - M. F. Hasler, Mar 05 2017
For n >= k > 0, T(n, k) = Sum_{j=1..n} binomial(k + j - 2, k - 1) = Sum_{j=1..n} A007318(k + j - 2, k - 1). - Stefano Spezia, Oct 30 2018
T(n, k) = RisingFactorial(n, k) / k!. - Peter Luschny, Nov 24 2023

Extensions

Offset changed from 1 to 0 by R. J. Mathar, Jan 15 2013
Edited by M. F. Hasler, Mar 05 2017

A028364 Triangle T(n,m) = Sum_{k=0..m} Catalan(n-k)*Catalan(k).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 9, 14, 14, 19, 23, 28, 42, 42, 56, 66, 76, 90, 132, 132, 174, 202, 227, 255, 297, 429, 429, 561, 645, 715, 785, 869, 1001, 1430, 1430, 1859, 2123, 2333, 2529, 2739, 3003, 3432, 4862, 4862, 6292, 7150, 7810, 8398, 8986, 9646, 10504, 11934, 16796
Offset: 0

Views

Author

Keywords

Comments

There are several versions of a Catalan triangle: see A009766, A008315, A028364.
The subtriangle [1], [2, 3], [5, 7, 9], ..., namely T(N,M-1), for N >= 1, M=1..N, appears as one-point function in the totally asymmetric exclusion process for the parameters alpha=1=beta. See the Derrida et al. and Liggett references given under A067323, where these triangle entries are called T_{N,N+M-1} for the given alpha and beta values. See the row reversed triangle A067323.
Consider a Dyck path as a path with steps N=(0,1) and E=(1,0) from (0,0) to (n,n) that stays weakly above y=x. T(n,m) is the number of Dyck paths of semilength n+1 where the (m+1)st north step is followed by an east step. - Lara Pudwell, Apr 12 2023

Examples

			Triangle begins
   1;
   1,  2;
   2,  3,  5;
   5,  7,  9, 14;
  14, 19, 23, 28, 42;
		

Crossrefs

Cf. A000108 (column 0 and main diagonal), A001700 (row sums), A065097 (T(2*n-1, n-1)), A201205 (central terms).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b((n+1)$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    t[n_, k_] = Sum[CatalanNumber[n-j]*CatalanNumber[j], {j, 0, k}]; Flatten[Table[t[n, k], {n, 0, 8}, {k, 0, n}]] (* Jean-François Alcover, Jul 22 2011 *)

Formula

T(n,k) = Sum_{j>=0} A039598(k,j)*A039599(n-k,j). - Philippe Deléham, Feb 18 2004
Sum_{k>=0} T(n,k) = A001700(n). T(n,k) = A067323(n,n-k), n >= k >= 0, otherwise 0. - Philippe Deléham, May 26 2005
G.f. for column sequences m >= 0: (-(c(m,x)-1)/x+c(m,x)*c(x))/x^m with the g.f. c(x) of A000108 (Catalan) and c(m,x):=sum(C(k)*x^k,k=0..m) with C(n):=A000108(n). - Wolfdieter Lang, Mar 24 2006
G.f. for column sequences m >= 0 (without leading zeros): c(x)*Sum_{k=0..m} C(m,k)*c(x)^k with the g.f. c(x) of A000108 (Catalan) and C(n,m) is the Catalan triangle A033184(n,m). - Wolfdieter Lang, Mar 24 2006
T(n,n) = T(n,k) + T(n,n-1-k) = A000108(n+1), n > 0, k = 0..floor((n+1)/2). - Yuchun Ji, Jan 09 2019
G.f. for triangle: Sum_{n>=0, m>=0} T(n, m)*x^n*y^m = (c(x)-c(xy))/(x(1-y)c(x)) with the g.f. c(x) of A000108 (Catalan). - Lara Pudwell, Apr 12 2023

A001392 a(n) = 9*binomial(2n,n-4)/(n+5).

Original entry on oeis.org

1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, 6216210, 24582285, 96768360, 379629720, 1485507600, 5801732460, 22626756594, 88152205554, 343176898988, 1335293573130, 5193831553416, 20198233818840, 78542105700240, 305417807763705
Offset: 4

Views

Author

Keywords

Comments

Number of n-th generation vertices in the tree of sequences with unit increase labeled by 8 (cf. Zoran Sunic reference) - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=4. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+4,n-4). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^4 + 9*x^5 + 54*x^6 + 273*x^7 + 1260*x^8 + 5508*x^9 + 23256*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026015.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

Formula

Expansion of x^4*C^9, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=8, a(n-4)=(-1)^(n-8)*coeff(charpoly(A,x),x^8). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jun 20 2013
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/24)*x^4*1F1(9/2; 10; 4*x).
a(n) ~ 9*4^n/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 158*Pi/(81*sqrt(3)) - 649/270.
Sum_{n>=4} (-1)^n/a(n) = 52076*log(phi)/(225*sqrt(5)) - 22007/450, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Harvey P. Dale, Mar 03 2011
Previous Showing 31-40 of 124 results. Next