cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 290 results. Next

A031346 Multiplicative persistence: number of iterations of "multiply digits" needed to reach a number < 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 1, 2, 2, 2, 3, 2, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 1, 1, 2, 2, 3, 3, 2, 4, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 3, 3, 3, 3, 3, 3, 2
Offset: 0

Views

Author

Keywords

Examples

			For n = 999: A007954(999) = 729, A007954(729) = 126, A007954(126) = 12 and A007954(12) = 2. The fourth iteration of "multiply digits" yields a single-digit number, so a(999) = 4. - _Felix Fröhlich_, Jul 17 2016
		

References

  • M. Gardner, Fractal Music, Hypercards and More Mathematical Recreations from Scientific American, Persistence of Numbers, pp. 120-1; 186-7, W. H. Freeman NY 1992.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 35.

Crossrefs

Cf. A007954 (product of decimal digits of n).
Cf. A010888 (additive digital root of n).
Cf. A031286 (additive persistence of n).
Cf. A031347 (multiplicative digital root of n).
Cf. A263131 (ordinal transform).
Cf. A003001.

Programs

  • Magma
    f:=func; a:=[]; for n in [0..100] do s:=0; k:=n; while k ge 10 do s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 12 2020
  • Maple
    A007954 := proc(n) return mul(d, d=convert(n, base, 10)): end: A031346 := proc(n) local k,m: k:=0:m:=n: while(length(m)>1)do m:=A007954(m):k:=k+1: od: return k: end: seq(A031346(n),n=0..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Table[Length[NestWhileList[Times@@IntegerDigits[#]&,n,#>=10&]],{n,0,100}]-1 (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i])
    a(n) = my(k=n, i=0); while(#Str(k) > 1, k=a007954(k); i++); i \\ Felix Fröhlich, Jul 17 2016
    
  • Python
    from operator import mul
    from functools import reduce
    def A031346(n):
        mp = 0
        while n > 9:
            n = reduce(mul, (int(d) for d in str(n)))
            mp += 1
        return mp
    # Chai Wah Wu, Aug 23 2014
    

Formula

Probably bounded, see A003001. - Charles R Greathouse IV, Nov 15 2022

A038194 Iterated sum-of-digits of n-th prime; or digital root of n-th prime; or n-th prime modulo 9.

Original entry on oeis.org

2, 3, 5, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 8, 5, 7, 4, 8, 1, 7, 2, 8, 7, 2, 4, 8, 1, 5, 1, 5, 2, 4, 5, 7, 4, 1, 5, 2, 8, 1, 2, 4, 8, 1, 4, 7, 2, 4, 8, 5, 7, 8, 5, 2, 8, 1, 7, 2, 4, 5, 1, 5, 7, 2, 7, 4, 5, 7, 2, 8, 7, 4, 1, 5, 2, 1, 5, 4, 5, 7, 8, 1, 7, 2, 8
Offset: 1

Views

Author

Den Roussel (DenRoussel(AT)webtv.net) and Clark Kimberling

Keywords

Comments

Integers with iterated sum-of-digits 3, 6 or 9 are divisible by 3, so 3 is the only prime with iterated sum-of-digits 3 and there are no primes with iterated sum-of-digits 6 or 9.
The remaining values are very evenly distributed: these are the number of appearances in the first 1007933 primes: 1:167878; 2:168079; 4:167984; 5:168027; 7:167906; 8:168058. - Carmine Suriano, Jun 22 2015
Asymptotically, the ratios (number of primes <= n and == i mod 9)/(number of primes <= n and == j mod 9) go to 1 as n -> infinity for all i,j in {1,2,4,5,7,8} by the Prime Number Theorem for Arithmetic Progressions. For more detailed analysis, see the Granville-Martin link. - Robert Israel, Jul 08 2015

Examples

			Prime(5) = 11, 1 + 1 = 2 hence a(5) = 2.
a(297)=7 because the 297th prime is 1951 and 1+9+5+1 = 16 -> 1+6 = 7.
		

Crossrefs

Programs

Formula

a(n) = A010888(A000040(n)).
Sum_k={1..n} a(k) ~ (9/2)*n. - Amiram Eldar, Dec 11 2024

Extensions

Edited by Klaus Brockhaus, Feb 16 2002
Edited at the suggestion of R. J. Mathar by N. J. A. Sloane, May 14 2008

A017173 a(n) = 9*n + 1.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
Offset: 0

Views

Author

Keywords

Comments

Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010

Crossrefs

Cf. A093644 ((9,1) Pascal, column m=1).
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).

Programs

Formula

G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
a(n) = A016777(3*n). - Elmo R. Oliveira, Apr 12 2025

A027687 4-perfect (quadruply-perfect or sous-triple) numbers: sum of divisors of n is 4n.

Original entry on oeis.org

30240, 32760, 2178540, 23569920, 45532800, 142990848, 1379454720, 43861478400, 66433720320, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408
Offset: 1

Views

Author

Jean-Yves Perrier (nperrj(AT)ascom.ch)

Keywords

Comments

It is conjectured that there are only finitely many terms. - N. J. A. Sloane, Jul 22 2012
Odd perfect number (unlikely to exist) and infinitely many Mersenne primes will make the sequence infinite - take the product of the OPN and coprime EPNs.
Conjecture: A010888(a(n)) divides a(n). Tested for n up to 36 incl. - Ivan N. Ianakiev, Oct 31 2013
From Farideh Firoozbakht, Dec 26 2014: (Start)
Theorem: If k>1 and p=a(n)/2^(k-2)+1 is prime then for each positive integer m, 2^(k-1)*p^m is a solution to the equation sigma(phi(x))=2*x-2^k, which implies the equation has infinitely many solutions.
Proof: sigma(phi(2^(k-1)*p^m)) = sigma(2^(k-2)*(p-1)*p^(m-1)) = sigma(2^(k-2)*(p-1))*sigma(p^(m-1)) = sigma(a(n))*(p^m-1)/(p-1) = 4*a(n)*(p^m-1)/(p-1) = 2^k*(p^m-1) = 2*(2^(k-1)*p^m)-2^k.
It seems that for all such equations there exist such an infinite set of solutions. So I conjecture that the sequence is infinite! (End)
If 3 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k)=4. - Michel Marcus, Nov 22 2015

Examples

			From _Daniel Forgues_, May 09 2010: (Start)
30240 = 2^5*3^3*5*7
sigma(30240) = (2^6-1)/1*(3^4-1)/2*(5^2-1)/4*(7^2-1)/6
= (63)*(40)*(6)*(8)
= (7*3^2)*(2^3*5)*(2*3)*(2^3)
= 2^7*3^3*5*7
= (2^2) * (2^5*3^3*5*7)
= 4 * 30240 (End)
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 143.

Crossrefs

Programs

Extensions

4 more terms from Labos Elemer

A002413 Heptagonal (or 7-gonal) pyramidal numbers: a(n) = n*(n+1)*(5*n-2)/6.

Original entry on oeis.org

0, 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, 2380, 2920, 3536, 4233, 5016, 5890, 6860, 7931, 9108, 10396, 11800, 13325, 14976, 16758, 18676, 20735, 22940, 25296, 27808, 30481, 33320, 36330, 39516, 42883, 46436, 50180, 54120
Offset: 0

Views

Author

Keywords

Comments

The partial sums of A000566. - R. J. Mathar, Mar 19 2008
A002413(n + 1) is the number of 4-tuples (w, x, y, z) having all terms in {0, ..., n} and w = floor((x + y + z)/2). - Clark Kimberling, May 28 2012
From Ant King, Oct 25 2012: (Start)
For n > 0, the digital roots of this sequence A010888(A002413(n)) form the purely periodic 27-cycle {1, 8, 8, 6, 7, 7, 2, 6, 6, 7, 5, 5, 3, 4, 4, 8, 3, 3, 4, 2, 2, 9, 1, 1, 5, 9, 9}.
For n > 0, the units' digits of this sequence A010879(A002413(n)) form the purely periodic 20-cycle {1, 8, 6, 0, 5, 6, 8, 6, 5, 0, 6, 8, 1, 0, 0, 6, 3, 6, 0, 0}.
(End)

Examples

			For n=7, a(7) = 7*1 + 6*6 + 5*11 + 4*16 + 3*21 + 2*26 + 1*31 = 308. - _Bruno Berselli_, Feb 10 2014
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093562 ((5, 1) Pascal, column m = 3).
Cf. similar sequences listed in A237616.

Programs

Formula

a(n) = n*(n + 1)*(5*n - 2)/6.
G.f.: x*(1 + 4*x)/(1 - x)^4. [Suggested by Simon Plouffe in his 1992 dissertation.]
From Ant King, Oct 25 2012: (Start)
a(n) = a(n - 1) + n*(5*n - 3)/2.
a(n) = 3*a(n - 1) - 3*a(n - 2) + a(n - 3) + 5.
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4)
a(n) = (n + 1)*(2*A000566(n) + n)/6 = (5*n - 2)*A000217(n)/3.
a(n) = A000292(n) + 4*A000292(n - 1)
a(n) = A002412(n) + A000292(n - 1)
a(n) = A000217(n) + 5*A000292(n - 1)
a(n) = binomial(n + 2, 3) + 4*binomial(n + 1, 3) = (5*n - 2) * binomial(n + 1, 2)/3.
Sum_{n >= 1} 1/a(n) = 15*(log(3125) + sqrt(5)*log((3 - sqrt(5))/2) - 2*Pi*sqrt(5*(5 - 2*sqrt(5)))/5 - 8/5)/28 = 1.207293...
(End)
a(n) = Sum_{i=0..n-1} (n-i)*(5*i+1). - Bruno Berselli, Feb 10 2014
a(n) = A080851(5,n-1). - R. J. Mathar, Jul 28 2016
E.g.f.: x*(6 + 18*x + 5*x^2)*exp(x)/6. - Ilya Gutkovskiy, May 12 2017
a(n) = Sum_{i=0..n-1} (n+2*i)*(n-i). - Leonid Bedratyuk, Jul 09 2024

Extensions

More terms from James Sellers, Dec 23 1999
a(0)=0 prepended by Max Alekseyev, Nov 23 2011

A010878 a(n) = n mod 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5
Offset: 0

Views

Author

Keywords

Comments

Periodic with period of length 9. The digital root of n (A010888) is a very similar sequence.
The rightmost digit in the base-9 representation of n. Also, the equivalent value of the two rightmost digits in the base-3 representation of n. - Hieronymus Fischer, Jun 11 2007

Crossrefs

Partial sums: A130487. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486.

Programs

Formula

Complex representation: a(n)=(1/9)*(1-r^n)*sum{1<=k<9, k*product{1<=m<9,m<>k, (1-r^(n-m))}} where r=exp(2*pi/9*i) and i=sqrt(-1). Trigonometric representation: a(n)=(256/9)^2*(sin(n*pi/9))^2*sum{1<=k<9, k*product{1<=m<9,m<>k, (sin((n-m)*pi/9))^2}}. G.f.: g(x)=(sum{1<=k<9, k*x^k})/(1-x^9). Also: g(x)=x(8x^9-9x^8+1)/((1-x^9)(1-x)^2). - Hieronymus Fischer, May 31 2007
a(n) = n mod 3 + 3*(floor(n/3)mod 3) = A010872(n) + 3*A010872(A002264(n)). - Hieronymus Fischer, Jun 11 2007
a(n) = floor(12345678/999999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor(1513361/96855122*9^(n+1)) mod 9. - Hieronymus Fischer, Jan 04 2013

A017209 a(n) = 9*n + 4.

Original entry on oeis.org

4, 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130, 139, 148, 157, 166, 175, 184, 193, 202, 211, 220, 229, 238, 247, 256, 265, 274, 283, 292, 301, 310, 319, 328, 337, 346, 355, 364, 373, 382, 391, 400, 409, 418, 427, 436, 445, 454, 463, 472, 481
Offset: 0

Views

Author

Keywords

Comments

Numbers whose digital root is 4. - L. Edson Jeffery, Nov 26 2016

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section D5.

Crossrefs

Programs

Formula

G.f.: (4 + 5*x)/(x - 1)^2. - R. J. Mathar, Jul 14 2016
A010888(a(n)) = 4. - L. Edson Jeffery, Nov 26 2016
E.g.f.: exp(x)*(4 + 9*x). - Stefano Spezia, Dec 25 2022

A004090 Sum of digits of Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 4, 3, 7, 10, 17, 9, 8, 17, 7, 24, 22, 19, 14, 24, 20, 17, 28, 27, 19, 19, 29, 21, 23, 17, 31, 30, 34, 37, 35, 27, 35, 44, 43, 24, 31, 46, 41, 33, 29, 35, 37, 54, 55, 46, 29, 48, 41, 53, 58, 48, 52, 73, 44, 54, 53, 62, 61, 51, 67, 73, 59
Offset: 0

Views

Author

Keywords

Comments

a(n) and Fibonacci(n) are congruent modulo 9 which implies that (a(n) mod 9) is equal to (Fibonacci(n) mod 9) A007887(n). Thus (a(n) mod 9) is periodic with Pisano period A001175(9) = 24. - Hieronymus Fischer, Jun 25 2007
It appears that a(n) - n stays negative for n > 5832, which explains why A020995 is finite. - T. D. Noe, Mar 19 2012

Crossrefs

Cf. A000045 (Fibonacci), A007953 (digit sum), A030132 (digital root of A45), A010888 (digital root), A246558, A261587, A068500.

Programs

Formula

a(n) = Fibonacci(n) - 9*Sum_{k>0} floor(Fibonacci(n)/10^k). - Hieronymus Fischer, Jun 25 2007
a(n) = A007953(A000045(n)). - Reinhard Zumkeller, Nov 17 2014
A010888(a(n)) = A030132(n) == a(n) (mod 9). - M. F. Hasler, Jul 07 2025

A153130 Period 6: repeat [1, 2, 4, 8, 7, 5].

Original entry on oeis.org

1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5
Offset: 0

Views

Author

Paul Curtz, Dec 19 2008

Keywords

Comments

Digital root of 2^n.
A regular version of Pitoun's sequence: a(n) = A029898(n+1).
Also obtained from permutations of A141425, A020806, A070366, A153110, A153990, A154127, A154687, or A154815.
This sequence and its (again period 6) repeated differences produce the table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, -1, -2, -4, 1, 2, 4, -1, -2, ...
1, 2, -5, -1, -2, 5, 1, 2, -5, -1, -2, ...
1, -7, 4, -1, 7, -4, 1, -7, 4, -1, 7, ...
-8, 11, -5, 8,-11, 5, -8, 11, -5, 8,-11, ...
19,-16, 13,-19, 16,-13, 19,-16, 13,-19, 16, ...
-35, 29,-32, 35,-29, 32,-35, 29,-32, 35,-29, ...
64,-61, 67,-64, 61,-67, 64,-61, 67,-64, 61, ...
If each entry of this table is read modulo 9 we obtain the very regular table:
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, ...
Also the decimal expansion of the constant 125/1001. - R. J. Mathar, Jan 23 2009
Digital root of the powers of any number congruent to 2 mod 9. - Alonso del Arte, Jan 26 2014

References

  • Cecil Balmond, Number 9: The Search for the Sigma Code. Munich, New York: Prestel (1998): 203.

Crossrefs

Cf. digital roots of powers of c mod 9: c = 4, A100402; c = 5, A070366; c = 7, A070403; c = 8, A010689.

Programs

Formula

a(n) + a(n+3) = 9 = A010734(n).
G.f.: (1+x+2x^2+5x^3)/((1-x)(1+x)(1-x+x^2)). - R. J. Mathar, Jan 23 2009
a(n) = A082365(n) mod 9. - Paul Curtz, Mar 31 2009
a(n) = -1/2*cos(Pi*n) - 3*cos(1/3*Pi*n) - 3^(1/2)*sin(1/3*Pi*n) + 9/2. - Leonid Bedratyuk, May 13 2012
a(n) = A010888(A004000(n+1)). - Ivan N. Ianakiev, Nov 27 2014
From Wesley Ivan Hurt, Apr 20 2015: (Start)
a(n) = a(n-6) for n>5.
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (2+3*(n-1 mod 3))*(n mod 2) + (1+3*(-n mod 3))*(n-1 mod 2). (End)
a(n) = 2^n mod 9. - Nikita Sadkov, Oct 06 2018
From Stefano Spezia, Mar 20 2025: (Start)
E.g.f.: 4*cosh(x) - exp(x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 5*sinh(x).
a(n) = A007953(2*a(n-1)) = A010888(2*a(n-1)). (End)

Extensions

Edited by R. J. Mathar, Apr 09 2009

A031286 Additive persistence: number of summations of digits needed to obtain a single digit (the additive digital root).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010888 (additive digital root of n).
Cf. A031347 (multiplicative digital root of n).
Cf. A031346 (multiplicative persistence of n).
Cf. also A006050, A045646.
Cf. Numbers with additive persistence k: A304366 (k=1), A304367 (k=2), A304368 (k=3), A304373 (k=4). - Jaroslav Krizek, May 28 2018

Programs

  • Maple
    read("transforms") ;
    A031286 := proc(n)
        local a,nper;
        nper := n ;
        a := 0 ;
        while nper > 9 do
            nper := digsum(nper) ;
            a := a+1 ;
        end do:
        a ;
    end proc:
    seq(A031286(n),n=0..80) ; # R. J. Mathar, Jan 02 2018
  • Mathematica
    lst = {}; Do[s = 0; While[n > 9, s++; n = Plus @@ IntegerDigits[n]]; AppendTo[lst, s], {n, 0, 98}]; lst (* Arkadiusz Wesolowski, Oct 17 2012 *)
  • PARI
    dsum(n)=my(s);while(n,s+=n%10;n\=10);s
    a(n)=my(s);while(n>9,s++;n=dsum(n));s \\ Charles R Greathouse IV, Sep 13 2012
    
  • Python
    def A031286(n):
        ap = 0
        while n > 9:
            n = sum(int(d) for d in str(n))
            ap += 1
        return ap
    # Chai Wah Wu, Aug 23 2014

Extensions

Corrected by Reinhard Zumkeller, Feb 05 2009
Previous Showing 31-40 of 290 results. Next