cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 61 results. Next

A005493 2-Bell numbers: a(n) = number of partitions of [n+1] with a distinguished block.

Original entry on oeis.org

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 0

Views

Author

Keywords

Comments

Number of Boolean sublattices of the Boolean lattice of subsets of {1..n}.
a(n) = p(n+1) where p(x) is the unique degree n polynomial such that p(k) = A000110(k+1) for k = 0, 1, ..., n. - Michael Somos, Oct 07 2003
With offset 1, number of permutations beginning with 12 and avoiding 21-3.
Rows sums of Bell's triangle (A011971). - Jorge Coveiro, Dec 26 2004
Number of blocks in all set partitions of an (n+1)-set. Example: a(2)=10 because the set partitions of {1,2,3} are 1|2|3, 1|23, 12|3, 13|2 and 123, with a total of 10 blocks. - Emeric Deutsch, Nov 13 2006
Number of partitions of n+3 with at least one singleton and with the smallest element in a singleton equal to 2. - Olivier Gérard, Oct 29 2007
See page 29, Theorem 5.6 of my paper on the arXiv: These numbers are the dimensions of the homogeneous components of the operad called ComTrip associated with commutative triplicial algebras. (Triplicial algebras are related to even trees and also to L-algebras, see A006013.) - Philippe Leroux, Nov 17 2007
Number of set partitions of (n+2) elements where two specific elements are clustered separately. Example: a(1)=3 because 1/2/3, 1/23, 13/2 are the 3 set partitions with 1, 2 clustered separately. - Andrey Goder (andy.goder(AT)gmail.com), Dec 17 2007
Equals A008277 * [1,2,3,...], i.e., the product of the Stirling number of the second kind triangle and the natural number vector. a(n+1) = row sums of triangle A137650. - Gary W. Adamson, Jan 31 2008
Prefaced with a "1" = row sums of triangle A152433. - Gary W. Adamson, Dec 04 2008
Equals row sums of triangle A159573. - Gary W. Adamson, Apr 16 2009
Number of embedded coalitions in an (n+1)-person game. - David Yeung (wkyeung(AT)hkbu.edu.hk), May 08 2008
If prefixed with 0, gives first differences of Bell numbers A000110 (cf. A106436). - N. J. A. Sloane, Aug 29 2013
Sum_{n>=0} a(n)/n! = e^(e+1) = 41.19355567... (see A235214). Contrast with e^(e-1) = Sum_{n>=0} A000110(n)/n!. - Richard R. Forberg, Jan 05 2014

Examples

			For example, a(1) counts (12), (1)-2, 1-(2) where dashes separate blocks and the distinguished block is parenthesized.
		

References

  • Olivier Gérard and Karol A. Penson, A budget of set partition statistics, in preparation. Unpublished as of 2017.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row or column of the array A108087.
Row sums of triangle A143494. - Wolfdieter Lang, Sep 29 2011. And also of triangle A362924. - N. J. A. Sloane, Aug 10 2023

Programs

  • Maple
    with(combinat): seq(bell(n+2)-bell(n+1),n=0..22); # Emeric Deutsch, Nov 13 2006
    seq(add(binomial(n, k)*(bell(n-k)), k=1..n), n=1..23); # Zerinvary Lajos, Dec 01 2006
    A005493  := proc(n) local a,b,i;
    a := [seq(3,i=1..n)]; b := [seq(2,i=1..n)];
    2^n*exp(-x)*hypergeom(a,b,x); round(evalf(subs(x=1,%),66)) end:
    seq(A005493(n),n=0..22); # Peter Luschny, Mar 30 2011
    BT := proc(n,k) option remember; if n = 0 and k = 0 then 1
    elif k = n then BT(n-1,0) else BT(n,k+1)+BT(n-1,k) fi end:
    A005493 := n -> add(BT(n,k),k=0..n):
    seq(A005493(i),i=0..22); # Peter Luschny, Aug 04 2011
    # For Maple code for r-Bell numbers, etc., see A232472. - N. J. A. Sloane, Nov 27 2013
  • Mathematica
    a=Exp[x]-1; Rest[CoefficientList[Series[a Exp[a],{x,0,20}],x] * Table[n!,{n,0,20}]]
    a[ n_] := If[ n<0, 0, With[ {m = n+1}, m! SeriesCoefficient[ # Exp@# &[ Exp@x - 1], {x, 0, m}]]]; (* Michael Somos, Nov 16 2011 *)
    Differences[BellB[Range[30]]] (* Harvey P. Dale, Oct 16 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) + 2*x - 1), n))}; /* Michael Somos, Oct 09 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, n+=2; subst( polinterpolate( Vec( serlaplace( exp( exp( x + O(x^n)) - 1) - 1))), x, n))}; /* Michael Somos, Oct 07 2003 */
    
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A005493_list, blist, b = [], [1], 1
    for _ in range(1001):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A005493_list.append(blist[-2])
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n-1) = Sum_{k=1..n} k*Stirling2(n, k) for n>=1.
E.g.f.: exp(exp(x) + 2*x - 1). First differences of Bell numbers (if offset 1). - Michael Somos, Oct 09 2002
G.f.: Sum_{k>=0} (x^k/Product_{l=1..k} (1-(l+1)x)). - Ralf Stephan, Apr 18 2004
a(n) = Sum_{i=0..n} 2^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n). - Fred Lunnon, Aug 04 2007 [Written umbrally, a(n) = (B+2)^n. - N. J. A. Sloane, Feb 07 2009]
Representation as an infinite series: a(n-1) = Sum_{k>=2} (k^n*(k-1)/k!)/exp(1), n=1, 2, ... This is a Dobinski-type summation formula. - Karol A. Penson, Mar 14 2002
Row sums of A011971 (Aitken's array, also called Bell triangle). - Philippe Deléham, Nov 15 2003
a(n) = exp(-1)*Sum_{k>=0} ((k+2)^n)/k!. - Gerald McGarvey, Jun 03 2004
Recurrence: a(n+1) = 1 + Sum_{j=1..n} (1+binomial(n, j))*a(j). - Jon Perry, Apr 25 2005
a(n) = A000296(n+3) - A000296(n+1). - Philippe Deléham, Jul 31 2005
a(n) = B(n+2) - B(n+1), where B(n) are Bell numbers (A000110). - Franklin T. Adams-Watters, Jul 13 2006
a(n) = A123158(n,2). - Philippe Deléham, Oct 06 2006
Binomial transform of Bell numbers 1, 2, 5, 15, 52, 203, 877, 4140, ... (see A000110).
Define f_1(x), f_2(x), ... such that f_1(x)=x*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - Milan Janjic, May 30 2008
Representation of numbers a(n), n=0,1..., as special values of hypergeometric function of type (n)F(n), in Maple notation: a(n)=exp(-1)*2^n*hypergeom([3,3...3],[2.2...2],1), n=0,1..., i.e., having n parameters all equal to 3 in the numerator, having n parameters all equal to 2 in the denominator and the value of the argument equal to 1. Examples: a(0)= 2^0*evalf(hypergeom([],[],1)/exp(1))=1 a(1)= 2^1*evalf(hypergeom([3],[2],1)/exp(1))=3 a(2)= 2^2*evalf(hypergeom([3,3],[2,2],1)/exp(1))=10 a(3)= 2^3*evalf(hypergeom([3,3,3],[2,2,2],1)/exp(1))=37 a(4)= 2^4*evalf(hypergeom([3,3,3,3],[2,2,2,2],1)/exp(1))=151 a(5)= 2^5*evalf(hypergeom([3,3,3,3,3],[2,2,2,2,2],1)/exp(1)) = 674. - Karol A. Penson, Sep 28 2007
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) = D^(n+1)(x*exp(x)) evaluated at x = 0, where D is the operator (1+x)*d/dx. Cf. A003128, A052852 and A009737. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Oct 11 2012 to Jan 26 2014: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x*(k+3) - x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)-x) where U(k) = 1 - x - x*(k+1)/(1 - x/U(k+1)).
G.f.: G(0)/(1-x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k+2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k+2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+3*x-1)/G(k+1) )).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-2*x-k*x)/(1-x/(x-1/G(k+1) )).
G.f.: -G(0)/x where G(k) = 1 - 1/(1-k*x-x)/(1-x/(x-1/G(k+1) )).
G.f.: 1 - 2/x + (1/x-1)*S where S = sum(k>=0, ( 1 + (1-x)/(1-x-x*k) )*(x/(1-x))^k / prod(i=0..k-1, (1-x-x*i)/(1-x) ) ).
G.f.: (1-x)/x/(G(0)-x) - 1/x where G(k) = 1 - x*(k+1)/(1 - x/G(k+1) ).
G.f.: (1/G(0) - 1)/x^3 where G(k) = 1 - x/(x - 1/(1 + 1/(x*k-1)/G(k+1) )).
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x/(1 - x*(k+1)/Q(k+1)).
G.f.: G(0)/(1-3*x), where G(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1 - x*(k+3))*(1 - x*(k+4))/G(k+1) ). (End)
a(n) ~ exp(n/LambertW(n) + 3*LambertW(n)/2 - n - 1) * n^(n + 1/2) / LambertW(n)^(n+1). - Vaclav Kotesovec, Jun 09 2020
a(0) = 1; a(n) = 2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 02 2020
a(n) ~ n^2 * Bell(n) / LambertW(n)^2 * (1 - LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
a(n) = Sum_{k=0..n} 3^k*A124323(n, k). - Mélika Tebni, Jun 02 2022

Extensions

Definition revised by David Callan, Oct 11 2005

A001861 Expansion of e.g.f. exp(2*(exp(x) - 1)).

Original entry on oeis.org

1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, 33827974, 273646526, 2326980998, 20732504062, 192982729350, 1871953992254, 18880288847750, 197601208474238, 2142184050841734, 24016181943732414, 278028611833689478, 3319156078802044158, 40811417293301014150
Offset: 0

Views

Author

Keywords

Comments

Values of Bell polynomials: ways of placing n labeled balls into n unlabeled (but 2-colored) boxes.
First column of the square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Mar 30 2007
Base matrix in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
Equals row sums of triangle A144061. - Gary W. Adamson, Sep 09 2008
Equals eigensequence of triangle A109128. - Gary W. Adamson, Apr 17 2009
Hankel transform is A108400. - Paul Barry, Apr 29 2009
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 2 labeled boxes. An example is given below. - Peter Bala, Mar 23 2013
The f-vectors of n-dimensional hypercube are given by A038207 = exp[M*B(.,2)] = exp[M*A001861(.)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). - Tom Copeland, Apr 17 2014
Moments of the Poisson distribution with mean 2. - Vladimir Reshetnikov, May 17 2016
Exponential self-convolution of Bell numbers (A000110). - Vladimir Reshetnikov, Oct 06 2016

Examples

			a(2) = 6: The six ways of putting 2 balls into bags (denoted by { }) and then into 2 labeled boxes (denoted by [ ]) are
01: [{1,2}] [ ];
02: [ ] [{1,2}];
03: [{1}] [{2}];
04: [{2}] [{1}];
05: [{1} {2}] [ ];
06: [ ] [{1} {2}].
- _Peter Bala_, Mar 23 2013
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For boxes of 1 color, see A000110, for 3 colors see A027710, for 4 colors see A078944, for 5 colors see A144180, for 6 colors see A144223, for 7 colors see A144263, for 8 colors see A221159.
First column of A078937.
Equals 2*A035009(n), n>0.
Row sums of A033306, A036073, A049020, and A144061.

Programs

  • Magma
    [&+[2^k*StirlingSecond(n, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2019
  • Maple
    A001861:=n->add(Stirling2(n,k)*2^k, k=0..n); seq(A001861(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, 2^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[Sum[StirlingS2[n, k]*2^k, {k, 0, n}], {n, 0, 21}] (* Geoffrey Critzer, Oct 06 2009 *)
    mx = 16; p = 1; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[BellB[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 06 2013 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(2*(exp(x+x*O(x^n))-1)),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2^m*x^m/prod(k=1,m,1-k*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */
    
  • PARI
    {a(n) = sum(k=0, n, 2^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
    
  • Sage
    expnums(30, 2) # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = Sum_{k=0..n} 2^k*Stirling2(n, k). - Emeric Deutsch, Oct 20 2001
a(n) = exp(-2)*Sum_{k>=1} 2^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f. satisfies 2*(x/(1-x))*A(x/(1-x)) = A(x) - 1; twice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
PE = exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1]. - Gottfried Helms, Apr 08 2007
G.f.: 1/(1-2x-2x^2/(1-3x-4x^2/(1-4x-6x^2/(1-5x-8x^2/(1-6x-10x^2/(1-... (continued fraction). - Paul Barry, Apr 29 2009
O.g.f.: Sum_{n>=0} 2^n*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Feb 15 2012
a(n) ~ exp(-2-n+n/LambertW(n/2))*n^n/LambertW(n/2)^(n+1/2). - Vaclav Kotesovec, Jan 06 2013
G.f.: (G(0) - 1)/(x-1)/2 where G(k) = 1 - 2/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: ((1+x)/Q(0)-1)/(2*x), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-2*x-x*k)*(1-3*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = Sum_{k=0..n} A033306(n,k) = Sum_{k=0..n} binomial(n,k)*Bell(k)*Bell(n-k), where Bell = A000110 (see Motzkin, p. 170). - Danny Rorabaugh, Oct 18 2015
a(0) = 1 and a(n) = 2 * Sum_{k=0..n-1} binomial(n-1,k)*a(k) for n > 0. - Seiichi Manyama, Sep 25 2017 [corrected by Ilya Gutkovskiy, Jul 12 2020]

A040027 The Gould numbers.

Original entry on oeis.org

1, 1, 3, 9, 31, 121, 523, 2469, 12611, 69161, 404663, 2512769, 16485691, 113842301, 824723643, 6249805129, 49416246911, 406754704841, 3478340425563, 30845565317189, 283187362333331, 2687568043654521, 26329932233283223, 265946395403810289, 2766211109503317451
Offset: 0

Views

Author

Keywords

Comments

Number of permutations beginning with 21 and avoiding 1-23. - Ralf Stephan, Apr 25 2004
Originally defined as main diagonal of an array of binomial recurrence coefficients (see Gould and Quaintance). Also second-from-right diagonal of triangle A121207.
Starting (1, 3, 9, 31, 121, ...) = row sums of triangle A153868. - Gary W. Adamson, Jan 03 2009
Equals eigensequence of triangle A074909 (reflected). - Gary W. Adamson, Apr 10 2009
The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m=>-1, is related to the sequence given above. For m=-1 this series dates back to Euler. We discovered that g(x=1,m) = (-1)^m * (A040027(m) - A000110(m+1) * A073003) with A073003 Gompertz's constant and A000110 the Bell numbers, see A163940; A040027(m = -1) = 0. - Johannes W. Meijer, Oct 16 2009
Compare the o.g.f. to the o.g.f. B(x) of the Bell numbers, where B(x) = 1 + x*B(x/(1-x))/(1-x). - Paul D. Hanna, Mar 23 2012
a(n) is the number of set partitions of {1,2,...,n+1} in which the last block is a singleton: the blocks are arranged in order of their least element. An example is given below. - Peter Bala, Dec 17 2014

Examples

			a(3) = 9: Arranging the blocks of the 15 set partitions of {1,2,3,4} in order of their least element we find 9 set partitions for which the last block is a singleton, namely, 123|4, 124|3, 134|2, 1|24|3, 1|23|4, 12|3|4, 13|2|4, 14|2|3, and 1|2|3|4. - _Peter Bala_, Dec 17 2014
		

Crossrefs

Left-hand border of triangle A046936. Cf. also A011971, A014619, A298804.
Cf. A153868. - Gary W. Adamson, Jan 03 2009
Cf. A074909. - Gary W. Adamson, Apr 10 2009
Row sums of A163940. - Johannes W. Meijer, Oct 16 2009
Cf. A108458 (row sums), A124496 (column 1).

Programs

  • Haskell
    a040027 n = head $ a046936_row (n + 1)  -- Reinhard Zumkeller, Jan 01 2014
    
  • Maple
    A040027 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            add(binomial(n,k-1)*procname(n-k),k=1..n) ;
        end if;
    end proc: # Johannes W. Meijer, Oct 16 2009
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 1]*a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 22}]  (* Jean-François Alcover, Jul 02 2013 *)
    Rest[CoefficientList[Assuming[Element[x, Reals], Series[E^E^x*(ExpIntegralEi[-E^x] - ExpIntegralEi[-1]), {x, 0, 20}]], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 28 2014 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+x*subst(A,x,x/(1-x+x*O(x^n)))/(1-x)^2);polcoeff(A,n)} /* Paul D. Hanna, Mar 23 2012 */
    
  • Python
    # The function Gould_diag is defined in A121207.
    A040027_list = lambda size: Gould_diag(2, size)
    print(A040027_list(24)) # Peter Luschny, Apr 24 2016

Formula

a(n) = b(n-2), n>1, b(n) = Sum_{k = 1..n} binomial(n, k-1)*b(n-k), b(0) = 1. - Vladeta Jovovic, Apr 28 2001
E.g.f. satisfies A'(x) = exp(x)*A(x)+1. - N. J. A. Sloane
With offset 0, e.g.f.: x + exp(exp(x)) * Integral_{t=0..x} t*exp(-exp(t)+t) dt (fits the recurrence up to n=215). - Ralf Stephan, Apr 25 2004
Recurrence: a(0)=1, a(1)=1, for n > 1, a(n) = n + Sum_{j=1..n-1} binomial(n, j+1)*a(j). - Jon Perry, Apr 26 2005
O.g.f. satisfies: A(x) = 1 + x*A( x/(1-x) ) / (1-x)^2. - Paul D. Hanna, Mar 23 2012
From Peter Bala, Dec 17 2014: (Start)
Starting from A(x) = 1 + O(x) (big Oh notation) we can get a series expansion for the o.g.f. by repeatedly applying the above functional equation of Hanna: A(x) = 1 + O(x) = 1 + x/(1-x)^2 + O(x^2) = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x)^2) + O(x^3) = ... = 1 + x/(1-x)^2 + x^2/((1-x)*(1-2*x)^2) + x^3/((1-x)*(1-2*x)*(1-3*x)^2) + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)^2) + ....
a(n) = Sum_{k = 0..n} ( Sum_{j = k..n} Stirling2(j,k)*k^(n-j) ).
Row sums of A108458. First column of A124496. (End)
Conjecture: a(n) = Sum_{k = 0..n} A058006(k)*A048993(n+1, k+1) - Velin Yanev, Aug 31 2021

Extensions

Entry revised by N. J. A. Sloane, Dec 11 2006
Gould reference updated by Johannes W. Meijer, Aug 02 2009
Don Knuth, Jan 29 2018, suggested that this sequence should be named after H. W. Gould. - N. J. A. Sloane, Jan 30 2018

A027710 Number of ways of placing n labeled balls into n unlabeled (but 3-colored) boxes.

Original entry on oeis.org

1, 3, 12, 57, 309, 1866, 12351, 88563, 681870, 5597643, 48718569, 447428856, 4318854429, 43666895343, 461101962108, 5072054649573, 57986312752497, 687610920335610, 8442056059773267, 107135148331162767, 1403300026585387686, 18946012544520590991
Offset: 0

Views

Author

George Yuhasz (gyuhasz(AT)vt.edu) and John W. Layman

Keywords

Comments

Binomial transform of this sequence is A078940 and a(n+1) = 3*A078940(n). - Paul D. Hanna, Dec 08 2003
First column of the cube of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Mar 30 2007. Base matrix in A011971, second power in A078937, third power in A078938, fourth power in A078939.
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 3 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
          1, m*b(n-1, m)+3*b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..27);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    colors=3; Array[ bell, 25 ]; For[ x=1, x<=25, x++, bell[ x ]=0 ]; bell[ 1 ]=colors;
    Print[ "1 ", colors ]; For[ n=2, n<=25, n++, bell[ n ]=colors*bell[ n-1 ];
    For[ i=1, n-i>1, i++, bell[ n-i ]=bell[ n-i ]*(n-i)+colors*bell[ n-i-1 ] ];
    bellsum=0; For[ t=0, tVaclav Kotesovec, Mar 12 2014 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(3*(exp(x+x*O(x^n))-1)),n))
    
  • Sage
    from sage.combinat.expnums import expnums2
    expnums(22, 3) # Zerinvary Lajos, Jun 26 2008

Formula

E.g.f.: exp {3(e^x-1)}. - Michael Somos, Oct 18 2002
a(n) = exp(-3)*Sum_{k>=0} 3^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f.: 3*(x/(1-x))*A(x/(1-x)) = A(x) - 1; thrice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
a(n) = Sum_{k = 0..n} 3^k*A048993(n, k); A048993: Stirling2 numbers. - Philippe Deléham, May 09 2004
PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,1 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,1]. - Gottfried Helms, Apr 08 2007
G.f.: (G(0) - 1)/(x-1)/3 where G(k) = 1 - 3/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: T(0)/(1-3*x), where T(k) = 1 - 3*x^2*(k+1)/( 3*x^2*(k+1) - (1-3*x-x*k)*(1-4*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) ~ n^n * exp(n/LambertW(n/3)-3-n) / (sqrt(1+LambertW(n/3)) * LambertW(n/3)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 3^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019

Extensions

Entry revised by N. J. A. Sloane, Apr 25 2007

A078944 First column of A078939, the fourth power of lower triangular matrix A056857.

Original entry on oeis.org

1, 4, 20, 116, 756, 5428, 42356, 355636, 3188340, 30333492, 304716148, 3218555700, 35618229364, 411717043252, 4957730174836, 62045057731892, 805323357485684, 10820999695801908, 150271018666120564, 2153476417340487476
Offset: 0

Views

Author

Paul D. Hanna, Dec 18 2002

Keywords

Comments

Also, the number of ways of placing n labeled balls into n unlabeled (but 4-colored) boxes. Binomial transform of this sequence is A078945 and a(n+1) = 4*A078945(n). - Paul D. Hanna, Dec 08 2003
First column of PE^4, where PE is given in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 4 labeled boxes. - Peter Bala, Mar 23 2013
Exponential self-convolution of A001861. - Vladimir Reshetnikov, Oct 06 2016

Crossrefs

Programs

  • Maple
    A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A078944 := proc(n) A078939(n+1,0) ; end: seq(A078944(n),n=0..25) ; # R. J. Mathar, May 30 2008
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0, 4^m,
          add(b(n-1, max(m, j)), j=1..m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Table[n!, {n, 0, 20}]CoefficientList[Series[E^(4E^x-4), {x, 0, 20}], x]
    Table[BellB[n,4],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
    With[{nn=20},CoefficientList[Series[Exp[4(Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 03 2022 *)
  • Sage
    expnums(20, 4) # Zerinvary Lajos, Jun 26 2008

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,1 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,1]. - Gottfried Helms, Apr 08 2007
E.g.f.: exp(4*(exp(x)-1)).
a(n) = exp(-4)*Sum_{k>=0} 4^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f.: 4*(x/(1-x))*A(x/(1-x)) = A(x) - 1; four times the binomial transform equals this sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
a(n) = Sum_{k = 0..n} 4^k*A048993(n, k); A048993: Stirling2 numbers. - Philippe Deléham, May 09 2004
G.f.: (G(0) - 1)/(x-1)/4 where G(k) = 1 - 4/(1-k*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: T(0)/(1-4*x), where T(k) = 1 - 4*x^2*(k+1)/(4*x^2*(k+1) - (1-(k+4)*x)*(1-(k+5)*x)/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 28 2013
a(n) ~ n^n * exp(n/LambertW(n/4)-4-n) / (sqrt(1+LambertW(n/4)) * LambertW(n/4)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 4^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019

Extensions

More terms from R. J. Mathar, May 30 2008
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar

A056857 Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 75, 50, 20, 5, 1, 203, 312, 225, 100, 30, 6, 1, 877, 1421, 1092, 525, 175, 42, 7, 1, 4140, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 21147, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 115975, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1

Views

Author

Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000

Keywords

Comments

Number of successive equalities s_i = s_{i+1} in a set partition {s_1, ..., s_n} of {1, ..., n}, where s_i is the subset containing i, s(1) = 1 and s(i) <= 1 + max of previous s(j)'s.
T(n,c) = number of set partitions of the set {1,2,...,n} in which the size of the block containing the element 1 is k+1. Example: T(4,2)=3 because we have 123|4, 124|3 and 134|2. - Emeric Deutsch, Nov 10 2006
Let P be the lower-triangular Pascal-matrix (A007318), Then this is exp(P) / exp(1). - Gottfried Helms, Mar 30 2007. [This comment was erroneously attached to A011971, but really belongs here. - N. J. A. Sloane, May 02 2015]
From David Pasino (davepasino(AT)yahoo.com), Apr 15 2009: (Start)
As an infinite lower-triangular matrix (with offset 0 rather than 1, so the entries would be B(n - c)*binomial(n, c), B() a Bell number, rather than B(n - 1 - c)*binomial(n - 1, c) as below), this array is S P S^-1 where P is the Pascal matrix A007318, S is the Stirling2 matrix A048993, and S^-1 is the Stirling1 matrix A048994.
Also, S P S^-1 = (1/e)*exp(P). (End)
Exponential Riordan array [exp(exp(x)-1), x]. Equal to A007318*A124323. - Paul Barry, Apr 23 2009
Equal to A049020*A048994 as infinite lower triangular matrices. - Philippe Deléham, Nov 19 2011
Build a superset Q[n] of set partitions of {1,2,...,n} by distinguishing "some" (possibly none or all) of the singletons. Indexed from n >= 0, 0 <= k <= n, T(n,k) is the number of elements in Q[n] that have exactly k distinguished singletons. A singleton is a subset containing one element. T(3,1) = 6 because we have {{1}'{2,3}}, {{1,2}{3}'}, {{1,3}{2}'}, {{1}'{2}{3}}, {{1}{2}'{3}}, {{1}{2}{3}'}. - Geoffrey Critzer, Nov 10 2012
Let Bell(n,x) denote the n-th Bell polynomial, the n-th row polynomial of A048993. Then this is the triangle of connection constants when expressing the basis polynomials Bell(n,x + 1) in terms of the basis polynomials Bell(n,x). For example, row 3 is (5, 6, 3, 1) and 5 + 6*Bell(1,x) + 3*Bell(2,x) + Bell(3,x) = 5 + 6*x + 3*(x + x^2) + (x + 3*x^2 + x^3) = 5 + 10*x + 6*x^2 + x^3 = (x + 1) + 3*(x + 1)^2 + (x + 1)^3 = Bell(3,x + 1). - Peter Bala, Sep 17 2013

Examples

			For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 successive equality, at i = 4.
Triangle begins:
    1;
    1,   1;
    2,   2,   1;
    5,   6,   3,   1;
   15,  20,  12,   4,   1;
   52,  75,  50,  20,   5,   1;
  203, 312, 225, 100,  30,   6,   1;
  ...
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  3,  3,  1,  1;
  1,  4,  6,  4,  1,  1;
  1,  5, 10, 10,  5,  1,  1;
  1,  6, 15, 20, 15,  6,  1,  1;
  1,  7, 21, 35, 35, 21,  7,  1,  1;
  1,  8, 28, 56, 70, 56, 28,  8,  1,  1; ... (End)
		

References

  • W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]

Crossrefs

Cf. Bell numbers A000110 (column c=0), A052889 (c=1), A105479 (c=2), A105480 (c=3).
Cf. A056858-A056863. Essentially same as A056860, where the rows are read from right to left.
Cf. also A007318, A005493, A270953.
See A259691 for another version.
T(2n+1,n+1) gives A124102.
T(2n,n) gives A297926.

Programs

  • Maple
    with(combinat): A056857:=(n,c)->binomial(n-1,c)*bell(n-1-c): for n from 1 to 11 do seq(A056857(n,c),c=0..n-1) od; # yields sequence in triangular form; Emeric Deutsch, Nov 10 2006
    with(linalg): # Yields sequence in matrix form:
    A056857_matrix := n -> subs(exp(1)=1, exponential(exponential(
    matrix(n,n,[seq(seq(`if`(j=k+1,j,0),k=0..n-1),j=0..n-1)])))):
    A056857_matrix(8); # Peter Luschny, Apr 18 2011
  • Mathematica
    t[n_, k_] := BellB[n-1-k]*Binomial[n-1, k]; Flatten[ Table[t[n, k], {n, 1, 11}, {k, 0, n-1}]](* Jean-François Alcover, Apr 25 2012, after Emeric Deutsch *)
  • PARI
    B(n) = sum(k=0, n, stirling(n, k, 2));
    tabl(nn)={for(n=1, nn, for(k=0, n - 1, print1(B(n - 1 - k) * binomial(n - 1, k),", ");); print(););};
    tabl(12); \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import bell, binomial
    for n in range(1,12):
        print([bell(n - 1 - k) * binomial(n - 1, k) for k in range(n)]) # Indranil Ghosh, Mar 19 2017
    
  • SageMath
    def a(n): return (-1)^n / factorial(n)
    @cached_function
    def p(n, m):
        R = PolynomialRing(QQ, "x")
        if n == 0: return R(a(m))
        return R((m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1))
    for n in range(11): print(p(n, 0).list())  # Peter Luschny, Jun 18 2023

Formula

T(n,c) = B(n-1-c)*binomial(n-1, c), where T(n,c) is the number of set partitions of {1, ..., n} that have c successive equalities and B() is a Bell number.
E.g.f.: exp(exp(x)+x*y-1). - Vladeta Jovovic, Feb 13 2003
G.f.: 1/(1-xy-x-x^2/(1-xy-2x-2x^2/(1-xy-3x-3x^2/(1-xy-4x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
Considered as triangle T(n,k), 0 <= k <= n: T(n,k) = A007318(n,k)*A000110(n-k) and Sum_{k=0..n} T(n,k)*x^k = A000296(n), A000110(n), A000110(n+1), A005493(n), A005494(n), A045379(n) for x = -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Dec 13 2009
Let R(n,x) denote the n-th row polynomial of the triangle. Then A000110(n+j) = Bell(n+j,1) = Sum_{k = 1..n} R(j,k)*Stirling2(n,k) (Spivey). - Peter Bala, Sep 17 2013

Extensions

More terms from David Wasserman, Apr 22 2002

A055248 Triangle of partial row sums of triangle A007318(n,m) (Pascal's triangle). Triangle A008949 read backwards. Riordan (1/(1-2x), x/(1-x)).

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 11, 5, 1, 32, 31, 26, 16, 6, 1, 64, 63, 57, 42, 22, 7, 1, 128, 127, 120, 99, 64, 29, 8, 1, 256, 255, 247, 219, 163, 93, 37, 9, 1, 512, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1024, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (also given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-2*z)*(1-x*z/(1-z))).
Binomial transform of the all 1's triangle: as a Riordan array, it factors to give (1/(1-x),x/(1-x))(1/(1-x),x). Viewed as a number square read by antidiagonals, it has T(n,k) = Sum_{j=0..n} binomial(n+k,n-j) and is then the binomial transform of the Whitney square A004070. - Paul Barry, Feb 03 2005
Riordan array (1/(1-2x), x/(1-x)). Antidiagonal sums are A027934(n+1), n >= 0. - Paul Barry, Jan 30 2005; edited by Wolfdieter Lang, Jan 09 2015
Eigensequence of the triangle = A005493: (1, 3, 10, 37, 151, 674, ...); row sums of triangles A011971 and A159573. - Gary W. Adamson, Apr 16 2009
Read as a square array, this is the generalized Riordan array ( 1/(1 - 2*x), 1/(1 - x) ) as defined in the Bala link (p. 5), which factorizes as ( 1/(1 - x), x/(1 - x) )*( 1/(1 - x), x )*( 1, 1 + x ) = P*U*transpose(P), where P denotes Pascal's triangle, A007318, and U is the lower unit triangular array with 1's on or below the main diagonal. - Peter Bala, Jan 13 2016

Examples

			The triangle a(n,m) begins:
n\m    0    1    2   3   4   5   6   7  8  9 10 ...
0:     1
1:     2    1
2:     4    3    1
3:     8    7    4   1
4:    16   15   11   5   1
5:    32   31   26  16   6   1
6:    64   63   57  42  22   7   1
7:   128  127  120  99  64  29   8   1
8:   256  255  247 219 163  93  37   9  1
9:   512  511  502 466 382 256 130  46 10  1
10: 1024 1023 1013 968 848 638 386 176 56 11  1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
Fourth row polynomial (n=3): p(3,x)= 8 + 7*x + 4*x^2 + x^3.
The matrix inverse starts
   1;
  -2,   1;
   2,  -3,   1;
  -2,   5,  -4,    1;
   2,  -7,   9,   -5,    1;
  -2,   9, -16,   14,   -6,    1;
   2, -11,  25,-  30,   20,   -7,    1;
  -2,  13, -36,   55,  -50,   27,   -8,    1;
   2, -15,  49,  -91,  105,  -77,   35,   -9,  1;
  -2,  17, -64,  140, -196,  182, -112,   44, -10,   1;
   2, -19,  81, -204,  336, -378,  294, -156,  54, -11, 1;
   ...
which may be related to A029653. - _R. J. Mathar_, Mar 29 2013
From _Peter Bala_, Dec 23 2014: (Start)
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1      \ /1        \ /1       \       /1       \
|2 1     ||0 1       ||0 1      |      |2  1     |
|4 3 1   ||0 2 1     ||0 0 1    |... = |4  5 1   |
|8 7 4 1 ||0 4 3 1   ||0 0 2 1  |      |8 19 9 1 |
|...     ||0 8 7 4 1 ||0 0 4 3 1|      |...      |
|...     ||...       ||...      |      |         |
= A143494. (End)
Matrix factorization of square array as P*U*transpose(P):
/1      \ /1        \ /1 1 1 1 ...\    /1  1  1  1 ...\
|1 1     ||1 1       ||0 1 2 3 ... |   |2  3  4  5 ... |
|1 2 1   ||1 1 1     ||0 0 1 3 ... | = |4  7 11 16 ... |
|1 3 3 1 ||1 1 1 1   ||0 0 0 1 ... |   |8 15 26 42 ... |
|...     ||...       ||...         |   |...            |
- _Peter Bala_, Jan 13 2016
		

Crossrefs

Column sequences: A000079 (powers of 2, m=0), A000225 (m=1), A000295 (m=2), A002662 (m=3), A002663 (m=4), A002664 (m=5), A035038 (m=6), A035039 (m=7), A035040 (m=8), A035041 (m=9), A035042 (m=10).
Row sums: A001792(n) = A055249(n, 0).
Alternating row sums: A011782.
Cf. A011971, A159573. - Gary W. Adamson, Apr 16 2009

Programs

  • Haskell
    a055248 n k = a055248_tabl !! n !! k
    a055248_row n = a055248_tabl !! n
    a055248_tabl = map reverse a008949_tabl
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    T := (n,k) -> 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n + 1], [n-k + 2], 1/2).
    seq(seq(simplify(T(n,k)), k=0..n),n=0..10); # Peter Luschny, Oct 10 2019
  • Mathematica
    a[n_, m_] := Sum[ Binomial[n, m + j], {j, 0, n}]; Table[a[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Paul Barry *)
    T[n_, k_] := Binomial[n, k] * Hypergeometric2F1[1, k - n, k + 1, -1];
    Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* Peter Luschny, Oct 06 2023 *)

Formula

a(n, m) = A008949(n, n-m), if n > m >= 0.
a(n, m) = Sum_{k=m..n} A007318(n, k) (partial row sums in columns m).
Column m recursion: a(n, m) = Sum_{j=m..n-1} a(j, m) + A007318(n, m) if n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (1/(1-2*x))*(x/(1-x))^m, m >= 0.
a(n, m) = Sum_{j=0..n} binomial(n, m+j). - Paul Barry, Feb 03 2005
Inverse binomial transform (by columns) of A112626. - Ross La Haye, Dec 31 2006
T(2n,n) = A032443(n). - Philippe Deléham, Sep 16 2009
From Peter Bala, Dec 23 2014: (Start)
Exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(8 + 7*x + 4*x^2/2! + x^3/3!) = 8 + 15*x + 26*x^2/2! + 42*x^3/3! + 64*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143494 (but with a different offset). See the Example section. Cf. A106516. (End)
a(n,m) = Sum_{p=m..n} 2^(n-p)*binomial(p-1,m-1), n >= m >= 0, else 0. - Wolfdieter Lang, Jan 09 2015
T(n, k) = 2^n - (1/2)*binomial(n, k-1)*hypergeom([1, n+1], [n-k+2], 1/2). - Peter Luschny, Oct 10 2019
T(n, k) = binomial(n, k)*hypergeom([1, k - n], [k + 1], -1). - Peter Luschny, Oct 06 2023
n-th row polynomial R(n, x) = (2^n - x*(1 + x)^n)/(1 - x). These polynomials can be used to find series acceleration formulas for the constants log(2) and Pi. - Peter Bala, Mar 03 2025

A030237 Catalan's triangle with right border removed (n > 0, 0 <= k < n).

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 9, 14, 1, 5, 14, 28, 42, 1, 6, 20, 48, 90, 132, 1, 7, 27, 75, 165, 297, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 1, 11, 65, 273, 910, 2548, 6188, 13260, 25194, 41990, 58786
Offset: 1

Keywords

Comments

This triangle appears in the totally asymmetric exclusion process as Y(alpha=1,beta=1,n,m), written in the Derrida et al. reference as Y_n(m) for alpha=1, beta=1. - Wolfdieter Lang, Jan 13 2006

Examples

			Triangle begins as:
  1;
  1, 2;
  1, 3,  5;
  1, 4,  9,  14;
  1, 5, 14,  28,  42;
  1, 6, 20,  48,  90,  132;
  1, 7, 27,  75, 165,  297,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862;
		

Crossrefs

Alternate versions of (essentially) the same Catalan triangle: A009766, A033184, A047072, A059365, A099039, A106566, A130020.
Row sums give A071724.

Programs

  • Haskell
    a030237 n k = a030237_tabl !! n !! k
    a030237_row n = a030237_tabl !! n
    a030237_tabl = map init $ tail a009766_tabl
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [(n-k+1)*Binomial(n+k, k)/(n+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Mar 17 2021
  • Maple
    A030237 := proc(n,m)
        (n-m+1)*binomial(n+m,m)/(n+1) ;
    end proc: # R. J. Mathar, May 31 2016
    # Compare the analogue algorithm for the Bell numbers in A011971.
    CatalanTriangle := proc(len) local P, T, n; P := [1]; T := [[1]];
    for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), P[-1]]);
    T := [op(T), P] od; T end: CatalanTriangle(6):
    ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
    # Alternative:
    ogf := n -> (1 - 2*x)/(1 - x)^(n + 2):
    ser := n -> series(ogf(n), x, n):
    row := n -> seq(coeff(ser(n), x, k), k = 0..n-1):
    seq(row(n), n = 1..11); # Peter Luschny, Mar 27 2022
  • Mathematica
    T[n_, k_]:= T[n, k] = Which[k==0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1]];
    Table[T[n, k], {n,1,12}, {k,0,n-1}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    T(n,k) = (n-k+1)*binomial(n+k, k)/(n+1) \\ Andrew Howroyd, Feb 23 2018
    
  • Sage
    flatten([[(n-k+1)*binomial(n+k, k)/(n+1) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 17 2021
    

Formula

T(n, k) = (n-k+1)*binomial(n+k, k)/(n+1).
Sum_{k=0..n-1} T(n,k) = A000245(n). - G. C. Greubel, Mar 17 2021
T(n, k) = [x^k] ((1 - 2*x)/(1 - x)^(n + 2)). - Peter Luschny, Mar 27 2022

Extensions

Missing a(8) = T(7,0) = 1 inserted by Reinhard Zumkeller, Jul 12 2012

A078937 Square of lower triangular matrix of A056857 (successive equalities in set partitions of n).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 22, 18, 6, 1, 94, 88, 36, 8, 1, 454, 470, 220, 60, 10, 1, 2430, 2724, 1410, 440, 90, 12, 1, 14214, 17010, 9534, 3290, 770, 126, 14, 1, 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1, 610182, 809262, 511704, 204120, 57204, 11844, 1848, 216, 18, 1
Offset: 0

Author

Paul D. Hanna, Dec 18 2002

Keywords

Comments

First column gives A001861 (values of Bell polynomials); row sums gives A035009 (STIRLING transform of powers of 2);
Square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Apr 08 2007. Base matrix in A011971 and in A056857, second power in this entry, third power in A078938, fourth power in A078939
Riordan array [exp(2*exp(x)-2),x], whose production matrix has e.g.f. exp(x*t)(t+2*exp(x)). [Paul Barry, Nov 26 2008]

Examples

			[0] 1;
[1] 2, 1;
[2] 6, 4, 1;
[3] 22, 18, 6, 1;
[4] 94, 88, 36, 8, 1;
[5] 454, 470, 220, 60, 10, 1;
[6] 2430, 2724, 1410, 440, 90, 12, 1;
[7] 14214, 17010, 9534, 3290, 770, 126, 14, 1;
[8] 89918, 113712, 68040, 25424, 6580, 1232, 168, 16, 1;
		

Programs

  • Maple
    # Computes triangle as a matrix M(dim, p).
    # A023531 (p=0), A056857 (p=1), this sequence (p=2), A078938 (p=3), ...
    with(LinearAlgebra): M := (n, p) -> local j,k; MatrixPower(subs(exp(1) = 1,
    MatrixExponential(MatrixExponential(Matrix(n, n, [seq(seq(`if`(j = k + 1, j, 0),
    k = 0..n-1), j = 0..n-1)])))), p): M(8, 2);  # Peter Luschny, Mar 28 2024
  • PARI
    k=9; m=matpascal(k)-matid(k+1); pe=matid(k+1)+sum(j=1,k,m^j/j!); A=pe^2; A /* Gottfried Helms, Apr 08 2007; amended by Georg Fischer Mar 28 2024 */

Formula

PE=exp(matpascal(5))/exp(1); A = PE^2; a(n)=A[n,column] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1] - Gottfried Helms, Apr 08 2007
Exponential function of 2*Pascal's triangle (taken as a lower triangular matrix) divided by e^2: [A078937] = (1/e^2)*exp(2*[A007318]) = [A056857]^2.

Extensions

Entry revised by N. J. A. Sloane, Apr 25 2007
a(38) corrected by Georg Fischer, Mar 28 2024

A078938 Cube of lower triangular matrix of A056857 (successive equalities in set partitions of n).

Original entry on oeis.org

1, 3, 1, 12, 6, 1, 57, 36, 9, 1, 309, 228, 72, 12, 1, 1866, 1545, 570, 120, 15, 1, 12351, 11196, 4635, 1140, 180, 18, 1, 88563, 86457, 39186, 10815, 1995, 252, 21, 1, 681870, 708504, 345828, 104496, 21630, 3192, 336, 24, 1, 5597643, 6136830, 3188268
Offset: 0

Author

Paul D. Hanna, Dec 18 2002

Keywords

Comments

Cube of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Apr 08 2007. Base matrix in A011971, second power in A129321, third power in this entry, fourth power in A078939
First column gives A027710. Row sums give A078940.
Riordan array [exp(3*exp(x)-3),x], whose production matrix has e.g.f. exp(x*t)(t+3*exp(x)). [From Paul Barry, Nov 26 2008]

Examples

			Rows:
1,
3,1,
12,6,1,
57,36,9,1,
309,228,72,12,1,
1866,1545,570,120,15,1,
12351,11196,4635,1140,180,18,1,
...
		

Programs

  • PARI
    m=matpascal(5)-matid(6); pe=matid(6)+m/1! + m^2/2!+m^3/3!+m^4/4!+m^5/5! ; A = pe^3 - Gottfried Helms, Apr 08 2007

Formula

PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,sequentially read ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,sequentially read] - Gottfried Helms, Apr 08 2007
Exponential function of 3*Pascal's triangle (taken as a lower triangular matrix) divided by e^3: [A078938] = (1/e^3)*exp(3*[A007318]) = [A056857]^3.

Extensions

Entry revised by N. J. A. Sloane, Apr 25 2007
Previous Showing 21-30 of 61 results. Next