cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0

Views

Author

Keywords

Comments

Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024

Examples

			14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
  0
  1
  2 3
  3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.

Programs

  • Haskell
    a029931 = sum . zipWith (*) [1..] . a030308_row
    -- Reinhard Zumkeller, Feb 28 2014
    
  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 0,
    ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
    seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
  • Mathematica
    a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
  • PARI
    for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022
    (C#)
    ulong A029931(ulong n) {
        ulong result = 0, counter = 1;
        while(n > 0) {
            if (n % 2 == 1)
              result += counter;
            counter++;
            n /= 2;
        }
        return result;
    } // Frank Hollstein, Jan 07 2023

Formula

a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016

Extensions

More terms from Erich Friedman

A000975 a(2n) = 2*a(2n-1), a(2n+1) = 2*a(2n)+1 (also a(n) is the n-th number without consecutive equal binary digits).

Original entry on oeis.org

0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, 1365, 2730, 5461, 10922, 21845, 43690, 87381, 174762, 349525, 699050, 1398101, 2796202, 5592405, 11184810, 22369621, 44739242, 89478485, 178956970, 357913941, 715827882, 1431655765, 2863311530, 5726623061, 11453246122
Offset: 0

Views

Author

Keywords

Comments

Might be called the "Lichtenberg sequence" after Georg Christoph Lichtenberg, who discussed it in 1769 in connection with the Chinese Rings puzzle (baguenaudier). - Andreas M. Hinz, Feb 15 2017
Number of steps to change from a binary string of n 0's to n 1's using a Gray code. - Jon Stadler (jstadler(AT)coastal.edu)
Popular puzzles such as Spin-Out and The Brain Puzzler are based on the Gray binary system and require a(n) steps to complete for some number n.
Conjecture: {a(n)} also gives all j for which A048702(j) = A000217(j); i.e., if we take the a(n)-th triangular number (a(n)^2 + a(n))/2 and multiply it by 3, we get a(n)-th even-length binary palindrome A048701(a(n)) concatenated from a(n) and its reverse. E.g., a(4) = 10, which is 1010 in binary; the tenth triangular number is 55, and 55*3 = 165 = 10100101 in binary. - Antti Karttunen, circa 1999. (This has been now proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Number of ways to tie a tie of n or fewer half turns, excluding mirror images. Also number of walks of length n or less on a triangular lattice with the following restrictions; given l, r and c as the lattice axes. 1. All steps are taken in the positive axis direction. 2. No two consecutive steps are taken on the same axis. 3. All walks begin with l. 4. All walks end with rlc or lrc. - Bill Blewett, Dec 21 2000
a(n) is the minimal number of vertices to be selected in a vertex-cover of the balanced tree B_n. - Sen-peng Eu, Jun 15 2002
A087117(a(n)) = A038374(a(n)) = 1 for n > 1; see also A090050. - Reinhard Zumkeller, Nov 20 2003
Intersection of A003754 and A003714; complement of A107907. - Reinhard Zumkeller, May 28 2005
Equivalently, numbers m whose binary representation is effectively, for some number k, both the lazy Fibonacci and the Zeckendorf representation of k (in which case k = A022290(m)). - Peter Munn, Oct 06 2022
a(n+1) gives row sums of Riordan array (1/(1-x), x(1+2x)). - Paul Barry, Jul 18 2005
Total number of initial 01's in all binary words of length n+1. Example: a(3) = 5 because the binary words of length 4 that start with 01 are (01)00, (01)(01), (01)10 and (01)11 and the total number of initial 01's is 5 (shown between parentheses). a(n) = Sum_{k >= 0} k*A119440(n+1, k). - Emeric Deutsch, May 19 2006
In Norway we call the 10-ring puzzle "strikketoy" or "knitwear" (see link). It takes 682 moves to free the two parts. - Hans Isdahl, Jan 07 2008
Equals A002450 and A020988 interlaced. - Zak Seidov, Feb 10 2008
For n > 1, let B_n = the complete binary tree with vertex set V where |V| = 2^n - 1. If VC is a minimum-size vertex cover of B_n, Sen-Peng Eu points out that a(n) = |VC|. It also follows that if IS = V\VC, a(n+1) = |IS|. - K.V.Iyer, Apr 13 2009
Starting with 1 and convolved with [1, 2, 2, 2, ...] = A000295. - Gary W. Adamson, Jun 02 2009
a(n) written in base 2 is sequence A056830(n). - Jaroslav Krizek, Aug 05 2009
This is the sequence A(0, 1; 1, 2; 1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
From Vladimir Shevelev, Jan 30 2012, Feb 13 2012: (Start)
1) Denote by {n, k} the number of permutations of 1, ..., n with the up-down index k (for definition, see comment in A203827). Then max_k{n, k} = {n, a(n)} = A000111(n).
2) a(n) is the minimal number > a(n-1) with the Hamming distance d_H(a(n-1), a(n)) = n. Thus this sequence is the Hamming analog of triangular numbers 0, 1, 3, 6, 10, ... (End)
From Hieronymus Fischer, Nov 22 2012: (Start)
Represented in binary form each term after the second one contains every previous term as a substring.
The terms a(2) = 2 and a(3) = 5 are the only primes. Proof: For even n we get a(n) = 2*(2^(2*n) - 1)/3, which shows that a(n) is even, too, and obviously a(n) > 2 for all even n > 2. For odd n we have a(n) = (2^(n+1) - 1)/3 = (2^((n+1)/2) - 1) * (2^((n+1)/2) + 1)/3. Evidently, at least one of these factors is divisible by 3, both are greater than 6, provided n > 3. Hence it follows that a(n) is composite for all odd n > 3.
Represented as a binary number, a(n+1) has exactly n prime substrings. Proof: Evidently, a(1) = 1_2 has zero and a(2) = 10_2 has 1 prime substring. Let n > 1. Written in binary, a(n+1) is 101010101...01 (if n + 1 is odd) and is 101010101...10 (if n + 1 is even) with n + 1 digits. Only the 2- and 3-digits substrings 10_2 (=2) and 101_2 (=5) are prime substrings. All the other substrings are nonprime since every substring is a previous term and all terms unequal to 2 and 5 are nonprime. For even n + 1, the number of prime substrings equal to 2 = 10_2 is (n+1)/2, and the number of prime substrings equal to 5 = 101_2 is (n-1)/2, makes a sum of n. For odd n + 1 we get n/2 for both, the number of 2's and 5's prime substrings, in any case, the sum is n. (End)
Number of different 3-colorings for the vertices of all triangulated planar polygons on a base with n+2 vertices if the colors of the two base vertices are fixed. - Patrick Labarque, Feb 09 2013
A090079(a(n)) = a(n) and A090079(m) <> a(n) for m < a(n). - Reinhard Zumkeller, Feb 16 2013
a(n) is the number of length n binary words containing at least one 1 and ending in an even number (possibly zero) of 0's. a(3) = 5 because we have: 001, 011, 100, 101, 111. - Geoffrey Critzer, Dec 15 2013
a(n) is the number of permutations of length n+1 having exactly one descent such that the first element of the permutation is an even number. - Ran Pan, Apr 18 2015
a(n) is the sequence of the last row of the Hadamard matrix H(2^n) obtained via Sylvester's construction: H(2) = [1,1;1,-1], H(2^n) = H(2^(n-1))*H(2), where * is the Kronecker product. - William P. Orrick, Jun 28 2015
Conjectured record values of A264784: a(n) = A264784(A155051(n-1)). - Reinhard Zumkeller, Dec 04 2015. (This is proved by Paul K. Stockmeyer in his arXiv:1608.08245 paper.) - Antti Karttunen, Aug 31 2016
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016
For n > 4, a(n-2) is the second-largest number in row n of A127824. - Dmitry Kamenetsky, Feb 11 2017
Conjecture: a(n+1) is the number of compositions of n with two kinds of parts, n and n', where the order of the 1 and 1' does not matter. For n=2, a(3) = 5 compositions, enumerated as follows: 2; 2'; 1,1; 1',1 = 1',1; 1',1'. - Gregory L. Simay, Sep 02 2017
Conjecture proved by recognizing the appropriate g.f. is x/(1 - x)(1 - x)(1 - 2*x^2 - 2x^3 - ...) = x/(1 - 2*x - x^2 + 2x^3). - Gregory L. Simay, Sep 10 2017
a(n) = 2^(n-1) + 2^(n-3) + 2^(n-5) + ... a(2*k -1) = A002450(k) is the sum of the powers of 4. a(2*k) = 2*A002450(k). - Gregory L. Simay, Sep 27 2017
a(2*n) = n times the string [10] in binary representation, a(2*n+1) = n times the string [10] followed with [1] in binary representation. Example: a(7) = 85 = (1010101) in binary, a(8) = 170 = (10101010) in binary. - Ctibor O. Zizka, Nov 06 2018
Except for 0, these are the positive integers whose binary expansion has cuts-resistance 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. Cuts-resistance 2 is A329862. - Gus Wiseman, Nov 27 2019
From Markus Sigg, Sep 14 2020: (Start)
Let s(k) be the length of the Collatz orbit of k, e.g. s(1) = 1, s(2) = 2, s(3) = 5. Then s(a(n)) = n+3 for n >= 3. Proof by induction: s(a(3)) = s(5) = 6 = 3+3. For odd n >= 5 we have s(a(n)) = s(4*a(n-2)+1) = s(12*a(n-2)+4)+1 = s(3*a(n-2)+1)+3 = s(a(n-2))+2 = (n-2)+3+2 = n+3, and for even n >= 4 this gives s(a(n)) = s(2*a(n-1)) = s(a(n-1))+1 = (n-1)+3+1 = n+3.
Conjecture: For n >= 3, a(n) is the second largest natural number whose Collatz orbit has length n+3. (End)
From Gary W. Adamson, May 14 2021: (Start)
With offset 1 the sequence equals the numbers of 1's from n = 1 to 3, 3 to 7, 7 to 15, ...; of A035263; as shown below:
..1 3 7 15...
..1 0 1 1 1 0 1 0 1 0 1 1 1 0 1...
..1.....2...........5......................10...; a(n) = Sum_(k=1..2n-1)A035263(k)
.....1...........2.......................5...; as to zeros.
..1's in the Tower of Hanoi game represent CW moves On disks in the pattern:
..0, 1, 2, 0, 1, 2, ... whereas even numbered disks move in the pattern:
..0, 2, 1, 0, 2, 1, ... (End)
Except for 0, numbers that are repunits in Gray-code representation (A014550). - Amiram Eldar, May 21 2021
From Gus Wiseman, Apr 20 2023: (Start)
Also the number of nonempty subsets of {1..n} with integer median, where the median of a multiset is the middle part in the odd-length case, and the average of the two middle parts in the even-length case. For example, the a(1) = 1 through a(4) = 10 subsets are:
{1} {1} {1} {1}
{2} {2} {2}
{3} {3}
{1,3} {4}
{1,2,3} {1,3}
{2,4}
{1,2,3}
{1,2,4}
{1,3,4}
{2,3,4}
The complement is counted by A005578.
For mean instead of median we have A051293, counting empty sets A327475.
For normal multisets we have A056450, strongly normal A361202.
For partitions we have A325347, strict A359907, complement A307683.
(End)

Examples

			a(4)=10 since 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111 are the 10 binary strings switching 0000 to 1111.
a(3) = 1 because "lrc" is the only way to tie a tie with 3 half turns, namely, pass the business end of the tie behind the standing part to the left, bring across the front to the right, then behind to the center. The final motion of tucking the loose end down the front behind the "lr" piece is not considered a "step".
a(4) = 2 because "lrlc" is the only way to tie a tie with 4 half turns. Note that since the number of moves is even, the first step is to go to the left in front of the tie, not behind it. This knot is the standard "four in hand", the most commonly known men's tie knot. By contrast, the second most well known tie knot, the Windsor, is represented by "lcrlcrlc".
a(n) = (2^0 - 1) XOR (2^1 - 1) XOR (2^2 - 1) XOR (2^3 - 1) XOR ... XOR (2^n - 1). - _Paul D. Hanna_, Nov 05 2011
G.f. = x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 42*x^6 + 85*x^7 + 170*x^8 + ...
a(9) = 341 = 2^8 + 2^6 + 2^4 + 2^2 + 2^0 = 4^4 + 4^3 + 4^2 + 4^1 + 4^0 = A002450(5). a(10) = 682 = 2*a(9) = 2*A002450(5). - _Gregory L. Simay_, Sep 27 2017
		

References

  • Thomas Fink and Yong Mao, The 85 Ways to Tie a Tie, Broadway Books, New York (1999), p. 138.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.

Crossrefs

Partial sums of A001045.
Row sums of triangle A013580.
Equals A026644/2.
Union of the bijections A002450 and A020988. - Robert G. Wilson v, Jun 09 2014
Column k=3 of A261139.
Complement of A107907.
Row 3 of A300653.
Other sequences that relate to the binary representation of the terms: A003714, A003754, A007088, A022290, A056830, A104161, A107909.

Programs

  • GAP
    List([0..35],n->(2^(n+1)-2+(n mod 2))/3); # Muniru A Asiru, Nov 01 2018
    
  • Haskell
    a000975 n = a000975_list !! n
    a000975_list = 0 : 1 : map (+ 1)
       (zipWith (+) (tail a000975_list) (map (* 2) a000975_list))
    -- Reinhard Zumkeller, Mar 07 2012
    
  • Magma
    [(2^(n+1) - 2 + (n mod 2))/3: n in [0..40]]; // Vincenzo Librandi, Mar 18 2015
    
  • Maple
    A000975 := proc(n) option remember; if n <= 1 then n else if n mod 2 = 0 then 2*A000975(n-1) else 2*A000975(n-1)+1 fi; fi; end;
    seq(iquo(2^n,3),n=1..33); # Zerinvary Lajos, Apr 20 2008
    f:=n-> if n mod 2 = 0 then (2^n-1)/3 else (2^n-2)/3; fi; [seq(f(n),n=0..40)]; # N. J. A. Sloane, Mar 21 2017
  • Mathematica
    Array[Ceiling[2(2^# - 1)/3] &, 41, 0]
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == a[n - 1] + 2a[n - 2] + 1}, a, {n, 40}] (* or *)
    LinearRecurrence[{2, 1, -2}, {0, 1, 2}, 40] (* Harvey P. Dale, Aug 10 2013 *)
    f[n_] := Block[{exp = n - 2}, Sum[2^i, {i, exp, 0, -2}]]; Array[f, 33] (* Robert G. Wilson v, Oct 30 2015 *)
    f[s_List] := Block[{a = s[[-1]]}, Append[s, If[OddQ@ Length@ s, 2a + 1, 2a]]]; Nest[f, {0}, 32] (* Robert G. Wilson v, Jul 20 2017 *)
    NestList[2# + Boole[EvenQ[#]] &, 0, 39] (* Alonso del Arte, Sep 21 2018 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * 2^n \ 3)}; /* Michael Somos, Sep 04 2006 */
    
  • PARI
    a(n)=if(n<=0,0,bitxor(a(n-1),2^n-1)) \\ Paul D. Hanna, Nov 05 2011
    
  • PARI
    concat(0, Vec(x/(1-2*x-x^2+2*x^3) + O(x^100))) \\ Altug Alkan, Oct 30 2015
    
  • PARI
    {a(n) = (4*2^n - 3 - (-1)^n) / 6}; /* Michael Somos, Jul 23 2017 */
    
  • Python
    def a(n): return (2**(n+1) - 2 + (n%2))//3
    print([a(n) for n in range(35)]) # Michael S. Branicky, Dec 19 2021

Formula

a(n) = ceiling(2*(2^n-1)/3).
Alternating sum transform (PSumSIGN) of {2^n - 1} (A000225).
a(n) = a(n-1) + 2*a(n-2) + 1.
a(n) = 2*2^n/3 - 1/2 - (-1)^n/6.
a(n) = Sum_{i = 0..n} A001045(i), partial sums of A001045. - Bill Blewett
a(n) = n + 2*Sum_{k = 1..n-2} a(k).
G.f.: x/((1+x)*(1-x)*(1-2*x)) = x/(1-2*x-x^2+2*x^3). - Paul Barry, Feb 11 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3). - Paul Barry, Feb 11 2003
a(n) = Sum_{k = 0..floor((n-1)/2)} 2^(n-2*k-1). - Paul Barry, Nov 11 2003
a(n+1) = Sum_{k=0..floor(n/2)} 2^(n-2*k); a(n+1) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(j+k)*2^j. - Paul Barry, Nov 12 2003
(-1)^(n+1)*a(n) = Sum_{i = 0..n} Sum_{k = 1..i} k!*k* Stirling2(i, k)*(-1)^(k-1) = (1/3)*(-2)^(n+1)-(1/6)(3*(-1)^(n+1)-1). - Mario Catalani (mario.catalani(AT)unito.it), Dec 22 2003
a(n+1) = (n!/3)*Sum_{i - (-1)^i + j = n, i = 0..n, j = 0..n} 1/(i - (-1)^i)!/j!. - Benoit Cloitre, May 24 2004
a(n) = A001045(n+1) - A059841(n). - Paul Barry, Jul 22 2004
a(n) = Sum_{k = 0..n} 2^(n-k-1)*(1-(-1)^k), row sums of A130125. - Paul Barry, Jul 28 2004
a(n) = Sum_{k = 0..n} binomial(k, n-k+1)2^(n-k); a(n) = Sum_{k = 0..floor(n/2)} binomial(n-k, k+1)2^k. - Paul Barry, Oct 07 2004
a(n) = A107909(A104161(n)); A007088(a(n)) = A056830(n). - Reinhard Zumkeller, May 28 2005
a(n) = floor(2^(n+1)/3) = ceiling(2^(n+1)/3) - 1 = A005578(n+1) - 1. - Paul Barry, Oct 08 2005
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n." (A059570) with "1-n" (A024000), treating the result as if offset was 0. - Graeme McRae, Jul 12 2006
a(n) = A081254(n) - 2^n. - Philippe Deléham, Oct 15 2006
Starting (1, 2, 5, 10, 21, 42, ...), these are the row sums of triangle A135228. - Gary W. Adamson, Nov 23 2007
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0] = [A005578(n), A001045(n), a(n-1)]. - Gary W. Adamson, Dec 25 2007
2^n = 2*A005578(n-1) + 2*A001045(n) + 2*a(n-2). - Gary W. Adamson, Dec 25 2007
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = (-1)^(n-1)*f(n,3,-2), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) + A001045(n) = A166920(n). a(n) + A001045(n+2) = A051049(n+1). - Paul Curtz, Oct 29 2009
a(n) = floor(A051049(n+1)/3). - Gary Detlefs, Dec 19 2010
a(n) = round((2^(n+2)-3)/6) = floor((2^(n+1)-1)/3) = round((2^(n+1)-2)/3); a(n) = a(n-2) + 2^(n-1), n > 1. - Mircea Merca, Dec 27 2010
a(n) = binary XOR of 2^k-1 for k=0..n. - Paul D. Hanna, Nov 05 2011
E.g.f.: 2/3*exp(2*x) - 1/2*exp(x) - 1/6*exp(-x) = 2/3*U(0); U(k) = 1 - 3/(4*(2^k) - 4*(2^k)/(1+3*(-1)^k - 24*x*(2^k)/(8*x*(2^k)*(-1)^k - (k+1)/U(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
Starting with "1" = triangle A059260 * [1, 2, 2, 2, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) = 2*(2^n - 1)/3, for even n; a(n) = (2^(n+1) - 1)/3 = (1/3)*(2^((n+1)/2) - 1)*(2^((n+1)/2) + 1), for odd n. - Hieronymus Fischer, Nov 22 2012
a(n) + a(n+1) = 2^(n+1) - 1. - Arie Bos, Apr 03 2013
G.f.: Q(0)/(3*(1-x)), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
floor(a(n+2)*3/5) = A077854(n), for n >= 0. - Armands Strazds, Sep 21 2014
a(n) = (2^(n+1) - 2 + (n mod 2))/3. - Paul Toms, Mar 18 2015
a(0) = 0, a(n) = 2*(a(n-1)) + (n mod 2). - Paul Toms, Mar 18 2015
Binary: a(n) = (a(n-1) shift left 1) + (a(n-1)) NOR (...11110). - Paul Toms, Mar 18 2015
Binary: for n > 1, a(n) = 2*a(n-1) OR a(n-2). - Stanislav Sykora, Nov 12 2015
a(n) = A266613(n) - 20*2^(n-5), for n > 2. - Andres Cicuttin, Mar 31 2016
From Michael Somos, Jul 23 2017: (Start)
a(n) = -(2^n)*a(-n) for even n; a(n) = -(2^(n+1))*a(-n) + 1 for odd n.
0 = +a(n)*(+2 +4*a(n) -4*a(n+1)) + a(n+1)*(-1 +a(n+1)) for all n in Z. (End)
G.f.: (x^1+x^3+x^5+x^7+...)/(1-2*x). - Gregory L. Simay, Sep 27 2017
a(n+1) = A051049(n) + A001045(n). - Yuchun Ji, Jul 12 2018
a(n) = A153772(n+3)/4. - Markus Sigg, Sep 14 2020
a(4*k+d) = 2^(d+1)*a(4*k-1) + a(d), a(n+4) = a(n) + 2^n*10, a(0..3) = [0,1,2,5]. So the last digit is always 0,1,2,5 repeated. - Yuchun Ji, May 22 2023

Extensions

Additional comments from Barry E. Williams, Jan 10 2000

A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Numbers that are sums of distinct factorials (0! and 1! not treated as distinct).
Complement of A115945; A115944(a(n)) > 0; A115647 is a subsequence. - Reinhard Zumkeller, Feb 02 2006
A115944(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
From Tilman Piesk, Jun 04 2012: (Start)
The inversion vector (compare A007623) of finite permutation a(n) (compare A055089, A195663) has only zeros and ones. Interpreted as a binary number it is 2*n (or n when the inversion vector is defined without the leading 0).
The inversion set of finite permutation a(n) interpreted as a binary number (compare A211362) is A211364(n).
(End)

Examples

			128 is in the sequence since 5! + 3! + 2! = 128.
a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Indices of zeros in A257684.
Cf. A275736 (left inverse).
Cf. A025494, A060112 (subsequences).
Subsequence of A060132, A256450 and A275804.
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A089625 (primes), A022290 (Fibonacci), A197433 (Catalans), A276091 (n*n!), A275959 ((2n)!/2). Cf. also A276082 & A276083.

Programs

  • Haskell
    import Data.List (elemIndices)
    a059590 n = a059590_list !! n
    a059590_list = elemIndices 1 $ map a115944 [0..]
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Maple
    [seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # next Maple program:
    a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..57);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[n_] :=  Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
  • PARI
    a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0)
    msb(n) = 2^#binary(n)>>1
    {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
    
  • Python
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(facbase(k, f) for k in range(2**N))
    print(auptoN(5)) # Michael S. Branicky, Oct 15 2022

Formula

G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1). - Philippe Deléham, Oct 15 2011
From Antti Karttunen, Aug 19 2016: (Start)
a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A153880(a(n)).
a(n) = A225901(A276091(n)).
a(n) = A276075(A019565(n)).
a(A275727(n)) = A276008(n).
A275736(a(n)) = n.
A276076(a(n)) = A019565(n).
A007623(a(n)) = A007088(n).
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016

Extensions

Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016

A022342 Integers with "even" Zeckendorf expansions (do not end with ...+F_2 = ...+1) (the Fibonacci-even numbers); also, apart from first term, a(n) = Fibonacci successor to n-1.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 24, 26, 28, 29, 31, 32, 34, 36, 37, 39, 41, 42, 44, 45, 47, 49, 50, 52, 54, 55, 57, 58, 60, 62, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 1

Views

Author

Keywords

Comments

The Zeckendorf expansion of n is obtained by repeatedly subtracting the largest Fibonacci number you can until nothing remains; for example, 100 = 89 + 8 + 3.
The Fibonacci successor to n is found by replacing each F_i in the Zeckendorf expansion by F_{i+1}; for example, the successor to 100 is 144 + 13 + 5 = 162.
If k appears, k + (rank of k) does not (10 is the 7th term in the sequence but 10 + 7 = 17 is not a term of the sequence). - Benoit Cloitre, Jun 18 2002
From Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001: (Start)
a(n) = Sum_{k in A_n} F_{k+1}, where a(n)= Sum_{k in A_n} F_k is the (unique) expression of n as a sum of "noncontiguous" Fibonacci numbers (with index >= 2).
a(10^n) gives the first few digits of g = (sqrt(5)+1)/2.
The sequences given by b(n+1) = a(b(n)) obey the general recursion law of Fibonacci numbers. In particular the (sub)sequence (of a(-)) yielded by a starting value of 2=a(1), is the sequence of Fibonacci numbers >= 2. Starting points of all such subsequences are given by A035336.
a(n) = floor(phi*n+1/phi); phi = (sqrt(5)+1)/2. a(F_n)=F_{n+1} if F_n is the n-th Fibonacci number.
(End)
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an even number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is even.
The asymptotic density of this sequence is 1/phi (A094214). (End)

Examples

			The successors to 1, 2, 3, 4=3+1 are 2, 3, 5, 7=5+2.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
  • E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

Crossrefs

Positions of 0's in A003849.
Complement of A003622.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Haskell
    a022342 n = a022342_list !! (n-1)
    a022342_list = filter ((notElem 1) . a035516_row) [0..]
    -- Reinhard Zumkeller, Mar 10 2013
    
  • Magma
    [Floor(n*(Sqrt(5)+1)/2)-1: n in [1..100]]; // Vincenzo Librandi, Feb 16 2015
    
  • Maple
    A022342 := proc(n)
          local g;
          g := (1+sqrt(5))/2 ;
        floor(n*g)-1 ;
    end proc: # R. J. Mathar, Aug 04 2013
  • Mathematica
    With[{t=GoldenRatio^2},Table[Floor[n*t]-n-1,{n,70}]] (* Harvey P. Dale, Aug 08 2012 *)
  • PARI
    a(n)=floor(n*(sqrt(5)+1)/2)-1
    
  • PARI
    a(n)=(sqrtint(5*n^2)+n-2)\2 \\ Charles R Greathouse IV, Feb 27 2014
    
  • Python
    from math import isqrt
    def A022342(n): return (n+isqrt(5*n**2)>>1)-1 # Chai Wah Wu, Aug 17 2022

Formula

a(n) = floor(n*phi^2) - n - 1 = floor(n*phi) - 1 = A000201(n) - 1, where phi is the golden ratio.
a(n) = A003622(n) - n. - Philippe Deléham, May 03 2004
a(n+1) = A022290(2*A003714(n)). - R. J. Mathar, Jan 31 2015
For n > 1: A035612(a(n)) > 1. - Reinhard Zumkeller, Feb 03 2015
a(n) = A000201(n) - 1. First differences are given in A014675 (or A001468, ignoring its first term). - M. F. Hasler, Oct 13 2017
a(n) = a(n-1) + 1 + A005614(n-2) for n > 1; also a(n) = a(n-1) + A014675(n-2) = a(n-1) + A001468(n-1). - A.H.M. Smeets, Apr 26 2024

Extensions

Name edited by Peter Munn, Dec 07 2021

A089625 Replace 2^k in binary expansion of n with (k+1)-st prime.

Original entry on oeis.org

2, 3, 5, 5, 7, 8, 10, 7, 9, 10, 12, 12, 14, 15, 17, 11, 13, 14, 16, 16, 18, 19, 21, 18, 20, 21, 23, 23, 25, 26, 28, 13, 15, 16, 18, 18, 20, 21, 23, 20, 22, 23, 25, 25, 27, 28, 30, 24, 26, 27, 29, 29, 31, 32, 34, 31, 33, 34, 36, 36, 38, 39, 41, 17, 19, 20, 22, 22, 24, 25, 27
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 31 2003

Keywords

Examples

			n=25 -> '11001': a(25) = 1*11 + 1*7 + 0*5 + 0*3 + 1*2 = 20.
This sequence regarded as a triangle with rows of lengths  1, 2, 4, 8, 16, ...:
  2
  3, 5
  5, 7, 8, 10
  7, 9, 10, 12, 12, 14, 15, 17
  11, 13, 14, 16, 16, 18, 19, 21, 18, 20, 21, 23, 23, 25, 26, 28
  ... - _Philippe Deléham_, Jun 07 2015
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (natural numbers), A059590 (factorials), A022290 (Fibonacci).

Programs

  • Haskell
    a089625 n = f n 0 a000040_list where
       f 0 y _      = y
       f x y (p:ps) = f x' (y + p * r) ps where (x',r) = divMod x 2
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    f:= proc(n) local L,j;
      L:= convert(n,base,2);
      add(L[i]*ithprime(i),i=1..nops(L))
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 08 2015
  • Mathematica
    a[n_] := With[{bb = IntegerDigits[n, 2]}, bb.Prime[Range[Length[bb], 1, -1]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 27 2021 *)
  • PARI
    a(n)=my(v=Vecrev(binary(n)),s,i);forprime(p=2,prime(#v),s+=v[i++]*p);s \\ Charles R Greathouse IV, Sep 23 2012
    
  • Python
    from sympy import nextprime
    def A089625(n):
        c, p = 0, 2
        while n:
            if n&1:
                c += p
            n >>=1
            p = nextprime(p)
        return c # Chai Wah Wu, Aug 09 2023

Formula

a(n) = Sum_{i=0..L(n)-1} b(i)*prime(i+1) where L=A070939 and b is defined by n = Sum_{i=0..L(n)-1} b(i)*2^i.
G.f.: 1/(1-x) * Sum_{k>=0} prime(k+1)*x^2^k/(1+x^2^k).
a(A000079(n)) = A000040(n+1).
a(A000225(n)) = A007504(n).
A000586(n) > 0 iff n = a(m) for some m.
a(n) = n for n = 9, 10, or 12.
a(n) = Sum_{k>=0} A030308(n,k)*A000040(k+1). - Philippe Deléham, Oct 15 2011
log n log log n << a(n) << log^2 n log log n. - Charles R Greathouse IV, Sep 23 2012
For n >= 8, a(n) <= m*(m+1)*(log(m)+log(log(m)))/2 where m = ceiling(log_2(n)). - Robert Israel, Jun 08 2015
a(n) = A001414(A019565(n)) = A008472(A019565(n)) for n>=1. - Flávio V. Fernandes, Feb 24 2025

A197433 Sum of distinct Catalan numbers: a(n) = Sum_{k>=0} A030308(n,k)*C(k+1) where C(n) is the n-th Catalan number (A000108). (C(0) and C(1) not treated as distinct.)

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 14, 15, 16, 17, 19, 20, 21, 22, 42, 43, 44, 45, 47, 48, 49, 50, 56, 57, 58, 59, 61, 62, 63, 64, 132, 133, 134, 135, 137, 138, 139, 140, 146, 147, 148, 149, 151, 152, 153, 154, 174, 175, 176, 177, 179, 180, 181, 182, 188, 189, 190, 191, 193, 194, 195, 196
Offset: 0

Views

Author

Philippe Deléham, Oct 15 2011

Keywords

Comments

Replace 2^k with A000108(k+1) in binary expansion of n.
From Antti Karttunen, Jun 22 2014: (Start)
On the other hand, A244158 is similar, but replaces 10^k with A000108(k+1) in decimal expansion of n.
This sequence gives all k such that A014418(k) = A239903(k), which are precisely all nonnegative integers k whose representations in those two number systems contain no digits larger than 1. From this also follows that this is a subsequence of A244155.
(End)

Crossrefs

Characteristic function: A176137.
Subsequence of A244155.
Cf. also A060112.
Other sequences that are built by replacing 2^k in binary representation with other numbers: A022290 (Fibonacci), A029931 (natural numbers), A059590 (factorials), A089625 (primes), A197354 (odd numbers).

Programs

  • Mathematica
    nmax = 63;
    a[n_] := If[n == 0, 0, SeriesCoefficient[(1/(1-x))*Sum[CatalanNumber[k+1]* x^(2^k)/(1 + x^(2^k)), {k, 0, Log[2, n] // Ceiling}], {x, 0, n}]];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 18 2021, after Ilya Gutkovskiy *)

Formula

For all n, A244230(a(n)) = n. - Antti Karttunen, Jul 18 2014
G.f.: (1/(1 - x))*Sum_{k>=0} Catalan number(k+1)*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jul 23 2017

Extensions

Name clarified by Antti Karttunen, Jul 18 2014

A356771 a(n) is the sum of the Fibonacci numbers in common in the Zeckendorf and dual Zeckendorf representations of n.

Original entry on oeis.org

0, 1, 2, 0, 4, 0, 1, 7, 0, 1, 2, 3, 12, 0, 1, 2, 0, 4, 5, 6, 20, 0, 1, 2, 3, 4, 0, 1, 7, 8, 9, 10, 11, 33, 0, 1, 2, 0, 4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 13, 17, 18, 19, 54, 0, 1, 2, 3, 4, 0, 1, 7, 8, 9, 10, 11, 12, 0, 1, 2, 0, 4, 5, 6, 20, 21, 22, 23, 24
Offset: 0

Views

Author

Rémy Sigrist, Aug 27 2022

Keywords

Comments

The Zeckendorf and dual Zeckendorf representations both express a number n as a sum of distinct positive Fibonacci numbers; these distinct Fibonacci numbers can be encoded in binary (see A022290 for the decoding function):
- in the Zeckendorf representation (or greedy Fibonacci representation):
- Fibonacci numbers are as big as possible (see A035517),
- and the corresponding binary encoding, A003714(n),
cannot have two consecutive 1's;
- in the dual Zeckendorf representation (or lazy Fibonacci representation):
- Fibonacci numbers are as small as possible (see A112309),
- and the corresponding binary encoding, A003754(n+1),
cannot have two consecutive nonleading 0's.
See A356326 for a similar sequence.

Examples

			For n = 28:
- using F(k) = A000045(k),
- the Zeckendorf representation of 28 is F(8) + F(5) + F(3),
- the dual Zeckendorf representation of 28 is F(7) + F(6) + F(5) + F(3),
- F(5) and F(3) appear in both representations,
- so a(28) = F(5) + F(3) = 7.
		

Crossrefs

Programs

  • PARI
    \\ See Links section.

Formula

a(n) = A022290(A003714(n) AND A003754(n+1)) (where AND denotes the bitwise AND operator).
a(n) = 0 iff n belongs to A331467.
a(n) = n iff n belongs to A000071.

A048757 Sum_{i=0..2n} (C(2n,i) mod 2)*Fibonacci(i+2) = Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2i+2).

Original entry on oeis.org

1, 4, 9, 33, 56, 203, 441, 1596, 2585, 9353, 20304, 73461, 124033, 448756, 974169, 3524577, 5702888, 20633243, 44791065, 162055596, 273617239, 989956471, 2149017696, 7775219067, 12591974497, 45558191716, 98898651657
Offset: 0

Views

Author

Antti Karttunen, Jul 13 1999

Keywords

Comments

The history of 1-D CA Rule 90 starting from the seed pattern 1 interpreted as Zeckendorffian expansion.
Also, product of distinct terms of A001566 and appropriate Fibonacci or Lucas numbers: a(n) = FL(n+2)Product(L(2^i)^bit(n,i),i=0..) Here L(2^i) = A001566 and FL(n) = n-th Fibonacci number if n even, n-th Lucas number if n odd. bit(n,i) is the i-th digit (0 or 1) in the binary expansion of n, with the least significant digit being bit(n,0).

Examples

			1 = Fib(2) = 1;
101 = Fib(4) + Fib(2) = 3 + 1 = 4;
10001 = Fib(6) + Fib(2) = 8 + 1 = 9;
1010101 = Fib(8) + Fib(6) + Fib(4) + Fib(2) = 21 + 8 + 3 + 1 = 33; etc.
		

Crossrefs

a(n) = A022290(A038183(n)) = A022290(A048723(5, n)) = A003622(A051656(n)) = A075148(n, 2)*A050613(n). Third row of A050609, third column of A050610.
Cf. A054433.

Programs

  • Mathematica
    Table[Sum[Mod[Binomial[2n, i], 2] Fibonacci[i + 2], {i, 0, 2n}], {n, 0, 19}] (* Alonso del Arte, Apr 27 2014 *)

A062877 0 and numbers representable as a sum of distinct odd-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 13, 14, 15, 16, 18, 19, 20, 21, 34, 35, 36, 37, 39, 40, 41, 42, 47, 48, 49, 50, 52, 53, 54, 55, 89, 90, 91, 92, 94, 95, 96, 97, 102, 103, 104, 105, 107, 108, 109, 110, 123, 124, 125, 126, 128, 129, 130, 131, 136, 137, 138, 139, 141, 142, 143, 144
Offset: 0

Views

Author

Antti Karttunen, Jun 26 2001

Keywords

Examples

			F_1 = 1,
F_3 = 2,
F_1 + F_3 = 3,
F_5 = 5,
F_5 + F_1 = 6,
F_5 + F_3 = 7,
F_5 + F_3 + F_1 = 8,
F_7 = 13, ...
		

Crossrefs

A062878 gives the positions of A050614(n) in this sequence. A062879 is bisection.
A036796(n) - 1.
Cf. A022290 (even-indexed Fibonaccis), A054204.

Programs

  • Maple
    with(combinat); [seq(A062877(j),j=0..265)]; A062877 := n -> add((floor(n/(2^i)) mod 2)*fibonacci((2*i)+1),i=0..floor_log_2(n+1));
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # alternative
    isA062877 := proc(n)
        local fset,fidx,ps ;
        if n = 0 then
            return true;
        end if;
        fset := {} ;
        for fidx from 1 by 2 do
            if combinat[fibonacci](fidx) >n then
                break;
            end if;
            fset := fset union {combinat[fibonacci](fidx)} ;
        end do:
        for ps in combinat[powerset](fset) do
            if n = add(fidx,fidx=ps) then
                return true;
            end if;
        end do:
        return false;
    end proc: # R. J. Mathar, Aug 22 2016
  • Mathematica
    Take[Union[Total/@Subsets[Fibonacci[Range[1,20,2]]]],70](* Harvey P. Dale, Dec 21 2013 *)
  • PARI
    my(m=Mod('x,'x^2-3*'x+1)); a(n) = subst(lift(subst(Pol(binary(n)), 'x,m)), 'x,2); \\ Kevin Ryde, Nov 25 2020

A356874 Write n as Sum_{i in S} 2^(i-1), where S is a set of positive integers, then a(n) = Sum_{i in S} F_i, where F_i is the i-th Fibonacci number, A000045(i).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 8, 9, 8, 9, 9, 10, 10, 11, 11, 12, 8, 9, 9, 10, 10, 11, 11, 12, 11, 12, 12, 13, 13, 14, 14, 15, 13, 14, 14, 15, 15, 16, 16, 17, 16, 17, 17, 18, 18, 19, 19, 20, 13, 14, 14, 15, 15, 16, 16, 17, 16, 17, 17, 18, 18, 19, 19, 20
Offset: 0

Views

Author

Peter Munn, Sep 02 2022

Keywords

Comments

This sequence looks on the Fibonacci sequence terms (from F_1 onwards) as an ordered set, considering F_1 and F_2 as distinct members mapped to the same integer value, namely 1. We run through all finite subsets, adding up the integer values from each subset (see table in the examples). In consequence, a number, k, occurs exactly A000121(k) times.
The definition is effectively an amendment of the definition of A022290 so that a(n) is a sum of Fibonacci terms starting with F_1 rather than F_2. If we took this a further step so that a(n) was a sum of Fibonacci terms starting with F_0, we would get this sequence with each term duplicated, that is 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, ... .
Doubling n increments the indices of the Fibonacci terms that sum to a(n), so a(2n) is in this sense a Fibonacci successor to a(n). When n is even, this sense matches the meaning of successor as used in A022342; however, for odd n, the generated successor of a(n) is A000201(a(n)) -- note, in this respect, that A000201 is a column in the extended Wythoff array (A287870).

Examples

			n = 13: 13 = 8 + 4 + 1 = 2^(4-1) + 2^(3-1) + 2^(1-1); so a(n) = F_4 + F_3 + F_1 = 3 + 2 + 1 = 6.
Table showing initial terms with Fibonacci subsets:
  n   Fibonacci subset                           a(n)
  0  { }     (empty set)     ->  0              =  0
  1  { F_1 }                 ->  1              =  1
  2  {      F_2 }            ->  0 + 1          =  1
  3  { F_1, F_2 }            ->  1 + 1          =  2
  4  {           F_3 }       ->  0 + 0 + 2      =  2
  5  { F_1,      F_3 }       ->  1 + 0 + 2      =  3
  6  {      F_2, F_3 }       ->  0 + 1 + 2      =  3
  7  { F_1, F_2, F_3 }       ->  1 + 1 + 2      =  4
  8  {                F_4 }  ->  0 + 0 + 0 + 3  =  3
  9  { F_1,           F_4 }  ->  1 + 0 + 0 + 3  =  4
		

Crossrefs

Even bisection: A022290.

Programs

  • Mathematica
    a[n_] := Module[{d = IntegerDigits[n, 2], nd}, nd = Length[d]; Total[d * Fibonacci[Range[nd, 1, -1]]]]; Array[a, 100, 0] (* Amiram Eldar, Aug 08 2023 *)
  • PARI
    a(n) = if(n==0,0,if(n%2==1,a(n-1)+1,a(n/2)+a(n\4))); \\ Peter Munn, Sep 06 2022

Formula

a(2n) = a(n) + a(floor(n/2)); a(2n+1) = a(2n) + 1.
a(2^k) = A000045(k+1).
For k >= 1, 2^k < n < 2^(k+1), a(n) = a(n - 2^k) + a(2^k).
a(2n) = A022290(n).
a(4n) = A022342(a(2n)+1).
a(4n+2) = A000201(a(2n+1)).
Previous Showing 11-20 of 40 results. Next