cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A041025 Denominators of continued fraction convergents to sqrt(17).

Original entry on oeis.org

1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, 151693352, 1232221121, 10009462320, 81307919681, 660472819768, 5365090477825, 43581196642368, 354014663616769, 2875698505576520, 23359602708228929, 189752520171407952, 1541379764079492545
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A041024(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = +1, a(2*n) with b(2*n) := A041024(2*n), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = -1 (cf. Emerson reference).
Bisection: a(2*n) = T(2*n+1,sqrt(17))/sqrt(17) = A078988(n), n >= 0 and a(2*n+1) = 8*S(n-1,66), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003
Sqrt(17) = 8/2 + 8/65 + 8/(65*4289) + 8/(4289*283009) + ... . - Gary W. Adamson, Dec 26 2007
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 8's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
De Moivre's formula: a(n) = (r^n - s^n)/(r-s), for r > s, gives sequences with integers if r and s are conjugates. With r=4+sqrt(17) and s=4-sqrt(17), a(n+1)/a(n) converges to r=4+sqrt(17). - Sture Sjöstedt, Nov 11 2011
a(n) equals the number of words of length n on alphabet {0,1,...,8} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 21 2023: (Start)
Also called the 8-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 8 kinds of squares available. (End)

Crossrefs

Programs

Formula

G.f.: 1/(1 - 8*x - x^2).
a(n) = ((-i)^n)*S(n, 8*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind and i^2 = -1. See A049310.
a(n) = F(n, 8), the n-th Fibonacci polynomial evaluated at x=8. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = ((4 + sqrt(17))^n - (4 - sqrt(17))^n)/(2*sqrt(17));
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*8^(n-1-2i). (End)
Let T be the 2 X 2 matrix [0, 1; 1, 8]. Then T^n * [1, 0] = [a(n-2), a(n-1)]. - Gary W. Adamson, Dec 26 2007
a(n) = 8*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=8. - Philippe Deléham, Nov 20 2008
a(p-1) == 68^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009 [Corrected by Jason Yuen, Apr 05 2025. See A087475 for more info about this congruence.]
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = sqrt(17) - 4. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 8*x - x^2) = Sum_{n >= 0} x^n *( Product_{k = 1..n} (m*k + 8 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

A114949 a(n) = n^2 + 6.

Original entry on oeis.org

6, 7, 10, 15, 22, 31, 42, 55, 70, 87, 106, 127, 150, 175, 202, 231, 262, 295, 330, 367, 406, 447, 490, 535, 582, 631, 682, 735, 790, 847, 906, 967, 1030, 1095, 1162, 1231, 1302, 1375, 1450, 1527, 1606, 1687, 1770, 1855, 1942, 2031, 2122, 2215, 2310, 2407, 2506
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

2/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the counterclockwise Pappus chain of the arbelos with semicircle radii r, r1 = 2r/3, r2 = r - r1 = r/3. See the MathWorld link for such a Pappus chain. The clockwise chain companion has circle radii R'(n)/r = 2/A222465(n), n >= 0. - Wolfdieter Lang, Mar 01 2013

Examples

			The arbelos chain defined in a comment above has circle radii [1/3, 2/7, 1/5, 2/15, 1/11, 2/31, 1/21, 2/55, 1/35, 2/87, 1/53,...], for n >= 0. - _Wolfdieter Lang_, Mar 01 2013
		

Crossrefs

Programs

Formula

From R. J. Mathar, May 17 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(6 - 11*x + 7*x^2)/(x - 1)^3. (End)
a(n) = 2*n + a(n - 1) - 1, with n > 0, a(0)=6. - Vincenzo Librandi, Nov 13 2010
a(n) = A000290(n) + 6. - Omar E. Pol, Mar 02 2013
a(n) = ((n-2)^3 + (n-1)^3 + n^3 + (n+1)^3 + (n+2)^3)/(5*n) for n>=1. - Bruno Berselli, May 12 2014
For n >= 1, a(n) = (A016742(n) + A082044(n) - 1)/A000290(n). - Bruce J. Nicholson, Apr 19 2017
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(6)*Pi*coth(sqrt(6)*Pi))/12.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(6)*Pi*cosech(sqrt(6)*Pi))/12. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(5/6)*sinh(sqrt(5)*Pi)/sinh(sqrt(6)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(7/6)*sinh(sqrt(7)*Pi)/sinh(sqrt(6)*Pi). (End)
E.g.f.: exp(x)*(6 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.

Original entry on oeis.org

0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017

Crossrefs

A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

Formula

a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012

A132356 a(2*k) = k*(10*k+2), a(2*k+1) = 10*k^2 + 18*k + 8, with k >= 0.

Original entry on oeis.org

0, 8, 12, 36, 44, 84, 96, 152, 168, 240, 260, 348, 372, 476, 504, 624, 656, 792, 828, 980, 1020, 1188, 1232, 1416, 1464, 1664, 1716, 1932, 1988, 2220, 2280, 2528, 2592, 2856, 2924, 3204, 3276, 3572, 3648, 3960, 4040, 4368, 4452, 4796, 4884, 5244, 5336, 5712
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 10*X^3 + X^2 = Y^2.
Polygonal number connection: 2*H_n + 6S_n, where H_n is the n-th hexagonal number and S_n is the n-th square number. This is the base formula that is expanded upon to achieve the full series. See contributing formula below. - William A. Tedeschi, Sep 12 2010
Equivalently, numbers of the form 2*h*(5*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... . - Bruno Berselli, Feb 02 2017

Crossrefs

Cf. numbers m such that k*m+1 is a square: A005563 (k=1), A046092 (k=2), A001082 (k=3), A002378 (k=4), A036666 (k=5), A062717 (k=6), A132354 (k=7), A000217 (k=8), A132355 (k=9), A219257 (k=11), A152749 (k=12), A219389 (k=13), A219390 (k=14), A204221 (k=15), A074378 (k=16), A219394 (k=17), A219395 (k=18), A219396 (k=19), A219190 (k=20), A219391 (k=21), A219392 (k=22), A219393 (k=23), A001318 (k=24), A219259 (k=25), A217441 (k=26), A219258 (k=27), A219191 (k=28).
Cf. A220082 (numbers k such that 10*k-1 is a square).

Programs

  • Mathematica
    CoefficientList[Series[4*x*(2*x^2 + x + 2)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,8,12,36,44},50] (* Harvey P. Dale, Dec 15 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2))) \\ G. C. Greubel, Jun 12 2017
    
  • PARI
    a(n) = n^2 + n + 6*((n+1)\2)^2 \\ Charles R Greathouse IV, Sep 11 2022

Formula

G.f.: 4*x*(2*x^2+x+2)/((1-x)^3*(1+x)^2). - R. J. Mathar, Apr 07 2008
a(n) = 10*x^2 - 2*x, where x = floor(n/2)*(-1)^n for n >= 1. - William A. Tedeschi, Sep 12 2010
a(n) = ((2*n+1-(-1)^n)*(10*(2*n+1)-2*(-1)^n))/16. - Luce ETIENNE, Sep 13 2014
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. - Chai Wah Wu, May 24 2016
Sum_{n>=1} 1/a(n) = 5/2 - sqrt(1+2/sqrt(5))*Pi/2. - Amiram Eldar, Mar 15 2022
a(n) = n^2 + n + 6*ceiling(n/2)^2. - Ridouane Oudra, Aug 06 2022

Extensions

More terms from Max Alekseyev, Nov 13 2009

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022

A086381 Numbers n such that p=n^2+2 and p+2 are primes.

Original entry on oeis.org

1, 3, 15, 33, 45, 57, 117, 147, 243, 255, 303, 375, 423, 447, 453, 477, 573, 753, 837, 897, 903, 1035, 1497, 1905, 2055, 2085, 2193, 2283, 2433, 2487, 2535, 2583, 2757, 2823, 2943, 2955, 3003, 3213, 3285, 3345, 3603, 3657, 3687, 4407, 4575, 4977, 5037, 5043, 5325, 5355, 5367, 5403, 5727
Offset: 1

Views

Author

Zak Seidov, Sep 07 2003

Keywords

Comments

The twin primes are given by A253639 and A085554. Except for the initial term, all a(n)=3 (mod 6). - M. F. Hasler, Jan 16 2015

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]|IsPrime(n^2+2) and IsPrime(n^2+4)] // Vincenzo Librandi, Dec 16 2010
    
  • PARI
    is_A086381(x)=ispseudoprime(x^2+2)&&ispseudoprime(x^2+4)
    forstep(x=1,9999,2,is_A086381(x)&&print1(x",")) \\ M. F. Hasler, Jan 16 2015

Formula

Intersection of A067201 and A007591. - M. F. Hasler, Jan 19 2015

Extensions

More terms from Vincenzo Librandi, Dec 16 2010

A132209 a(0) = 0 and a(n) = 2*n^2 + 2*n - 1, for n>=1.

Original entry on oeis.org

0, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 06 2007

Keywords

Comments

Previous name was: Sequence gives X values that satisfy the integer equation 2*X^3 + 3*X^2 = Y^2.
To find Y values: b(n) = (2*n^2 + 2*n - 1)*(2*n - 1).

Crossrefs

Programs

  • Magma
    [0] cat [2*n^2+2*n-1: n in [1..50]]; // Vincenzo Librandi, Sep 22 2015
    
  • Mathematica
    Join[{0}, LinearRecurrence[{3, -3, 1}, {3, 11, 23}, 40]] (* Vincenzo Librandi, Sep 22 2015 *)
  • PARI
    for(n=0,50, print1(if(n==0, 0, 2*n^2 + 2*n -1), ", ")) \\ G. C. Greubel, Jul 13 2017

Formula

a(n) = 2*n^2 + 2*n - 1 for n>=1.
G.f.: x*(1+x)*(3-x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
E.g.f.: 1 + (2*x^2 + 4*x -1)*exp(x). - G. C. Greubel, Jul 13 2017
From Amiram Eldar, Mar 07 2021: (Start)
Sum_{n>=1} 1/a(n) = 1 + sqrt(3)*Pi*tan(sqrt(3)*Pi/2)/6.
Product_{n>=1} (1 + 1/a(n)) = -Pi*sec(sqrt(3)*Pi/2)/2.
Product_{n>=1} (1 - 1/a(n)) = cos(sqrt(5)*Pi/2)*sec(sqrt(3)*Pi/2)/2. (End)

Extensions

Edited by the Associate Editors of the OEIS, Nov 15 2009
More terms from Vincenzo Librandi, Sep 22 2015
Shorter name (using formula given) from Joerg Arndt, Sep 27 2015

A098077 a(n) = n^2*(n+1)*(2*n+1)/3.

Original entry on oeis.org

2, 20, 84, 240, 550, 1092, 1960, 3264, 5130, 7700, 11132, 15600, 21294, 28420, 37200, 47872, 60690, 75924, 93860, 114800, 139062, 166980, 198904, 235200, 276250, 322452, 374220, 431984, 496190, 567300, 645792, 732160, 826914, 930580, 1043700
Offset: 1

Views

Author

Alexander Adamchuk, Oct 24 2004

Keywords

Comments

Sum of all matrix elements M(i,j) = i^2 + j^2 (i,j = 1,...,n).
From Torlach Rush, Jan 05 2020: (Start)
a(n) = n * A006331(n).
tr(M(n)) = A006331(n).
The sum of the antidiagonal of M(n) equals tr(M(n)).
M(n) = M(n)' (Symmetric).
M(1,) = M(,1) = A002522(n), n > 0.
M(2,) = M(,2) = A087475(n), n > 0.
M(3,) = M(,3) = A189834(n), n > 0.
M(4,) = M(,4) = A241751(n), n > 0.
(End)
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and p+q. - Wesley Ivan Hurt, Apr 15 2018

Examples

			a(2) = (1^2 + 1^2) + (1^2 + 2^2) + (2^2 + 1^2) + (2^2 + 2^2) = 2 + 5 + 5 + 8 = 20.
		

Crossrefs

Programs

  • Magma
    [n^2*(n+1)*(2*n+1)/3: n in [1..40]]; // G. C. Greubel, Apr 09 2023
    
  • Mathematica
    Table[ Sum[i^2 + j^2, {i, n}, {j, n}], {n, 35}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {2, 20, 84, 240, 550}, 40] (* Vincenzo Librandi, Apr 16 2018 *)
  • PARI
    a(n)=n^2*(n+1)*(2*n+1)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [n^2*(n+1)*(2*n+1)/3 for n in range(1,41)] # G. C. Greubel, Apr 09 2023

Formula

a(n) = Sum_{j=1..n} Sum_{i=1..n} (i^2 + j^2).
G.f.: 2*x*(1 + 5*x + 2*x^2)/(1-x)^5. - Colin Barker, May 04 2012
E.g.f.: (1/3)*exp(x)*x*(6 + 24*x + 15*x^2 + 2*x^3) . - Stefano Spezia, Jan 06 2020
a(n) = a(n-1) + (8*n^3 - 3*n^2 + n)/3. - Torlach Rush, Jan 07 2020
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/2 + 24*log(2) - 21.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/4 - 6*Pi - 6*log(2) + 21. (End)
From G. C. Greubel, Apr 09 2023: (Start)
a(n) = (1/4)*A100431(n-1).
a(n) = 2*A108678(n-1). (End)

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
New definition from Ralf Stephan, Dec 01 2004

A189834 a(n) = n^2 + 9.

Original entry on oeis.org

9, 10, 13, 18, 25, 34, 45, 58, 73, 90, 109, 130, 153, 178, 205, 234, 265, 298, 333, 370, 409, 450, 493, 538, 585, 634, 685, 738, 793, 850, 909, 970, 1033, 1098, 1165, 1234, 1305, 1378, 1453, 1530, 1609, 1690, 1773, 1858, 1945
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A154533(n+1). - R. J. Mathar, May 16 2011
G.f.: ( -9+17*x-10*x^2 ) / (x-1)^3 . - R. J. Mathar, Aug 31 2011
E.g.f.: (9 + x + x^2)*exp(x). - G. C. Greubel, Jan 13 2018
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/18.
Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/18. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (2/3)*sqrt(2)*sinh(2*sqrt(2)*Pi)/sinh(3*Pi).
Product_{n>=0} (1 + 1/a(n)) = (sqrt(10)/3)*sinh(sqrt(10)*Pi)/sinh(3*Pi). (End)
Previous Showing 11-20 of 40 results. Next