1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1
Offset: 0
A006484
a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.
Original entry on oeis.org
0, 1, 3, 10, 30, 75, 161, 308, 540, 885, 1375, 2046, 2938, 4095, 5565, 7400, 9656, 12393, 15675, 19570, 24150, 29491, 35673, 42780, 50900, 60125, 70551, 82278, 95410, 110055, 126325, 144336, 164208, 186065, 210035, 236250, 264846, 295963, 329745, 366340
Offset: 0
Dennis S. Kluk (mathemagician(AT)ameritech.net)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(n+1)*(n^2 - 3*n + 5)/6: n in [0..50]]; // Vincenzo Librandi, May 16 2011
-
A006484:=-(1-2*z+5*z**2)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
lst={};Do[AppendTo[lst, n*(n+1)*(n^2-3*n+5)/6], {n, 0, 4!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)
Table[n(n+1) (n^2-3n+5)/6,{n,0,40}] (* Harvey P. Dale, May 29 2019 *)
-
a(n)=n*(n+1)*(n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 18 2022
A002664
a(n) = 2^n - C(n,0)- ... - C(n,4).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 7, 29, 93, 256, 638, 1486, 3302, 7099, 14913, 30827, 63019, 127858, 258096, 519252, 1042380, 2089605, 4185195, 8377705, 16764265, 33539156, 67090962, 134196874, 268411298, 536843071, 1073709893
Offset: 0
- J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, Chapter 3, pp. 76-79.
- J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. K. Guy, Letter to N. J. A. Sloane
- Ângela Mestre, José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- H. P. Robinson, Letter to N. J. A. Sloane, Mar 21 1985
- Index entries for linear recurrences with constant coefficients, signature (7,-20,30,-25,11,-2).
-
a002664 n = a002664_list !! n
a002664_list = map (sum . drop 5) a007318_tabl
-- Reinhard Zumkeller, Jun 20 2015
-
[2^n-n^4/24+n^3/12-11*n^2/24-7*n/12-1: n in [0..35]]; // Vincenzo Librandi, May 20 2011
-
a:=n->sum(binomial(n+1,2*j),j=3..n+1): seq(a(n), n=0..30); # Zerinvary Lajos, May 12 2007
A002664:=1/(2*z-1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
a=1;lst={};s1=s2=s3=s4=s5=0;Do[s1+=a;s2+=s1;s3+=s2;s4+=s3;s5+=s4;AppendTo[lst,s5];a=a*2,{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)
Table[Sum[ Binomial[n, k + 5], {k, 0, n}], {n, 0, 30}] (* Zerinvary Lajos, Jul 08 2009 *)
Table[2^n-Total[Binomial[n,Range[0,4]]],{n,0,30}] (* or *) LinearRecurrence[ {7,-20,30,-25,11,-2},{0,0,0,0,0,1},40] (* Harvey P. Dale, Sep 03 2016 *)
A158405
Triangle T(n,m) = 1+2*m of odd numbers read along rows, 0<=m
Original entry on oeis.org
1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 11, 1, 3, 5, 7, 9, 11, 13, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 17, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23
Offset: 1
The triangle contains the first n odd numbers in row n:
1;
1,3;
1,3,5;
1,3,5,7;
From _Seiichi Manyama_, Dec 02 2017: (Start)
| a(n) | | A000290(n)
-----------------------------------------------------------------
0| (= 0)
1| 1 = 1/3 * ( 3) (= 1)
2| 1 + 3 = 1/3 * ( 5 + 7) (= 4)
3| 1 + 3 + 5 = 1/3 * ( 7 + 9 + 11) (= 9)
4| 1 + 3 + 5 + 7 = 1/3 * ( 9 + 11 + 13 + 15) (= 16)
5| 1 + 3 + 5 + 7 + 9 = 1/3 * (11 + 13 + 15 + 17 + 19) (= 25)
(End)
-
a158405 n k = a158405_row n !! (k-1)
a158405_row n = a158405_tabl !! (n-1)
a158405_tabl = map reverse a099375_tabl
-- Reinhard Zumkeller, Mar 31 2012
-
Table[2 Range[1, n] - 1, {n, 12}] // Flatten (* Michael De Vlieger, Oct 01 2015 *)
-
a(n) = 2*(n-floor((-1+sqrt(8*n-7))/2)*(floor((-1+sqrt(8*n-7))/2)+1)/2)-1;
vector(100, n, a(n)) \\ Altug Alkan, Oct 01 2015
A060632
a(n) = 2^wt(floor(n/2)) (i.e., 2^A000120(floor(n/2)), or A001316(floor(n/2))).
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 4, 4, 8, 8, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 4, 4, 8, 8, 8, 8, 16, 16, 8, 8, 16, 16, 16, 16, 32, 32, 2, 2, 4, 4, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8, 16, 16, 4, 4, 8, 8, 8, 8, 16, 16, 8, 8, 16, 16, 16, 16, 32
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Apr 15 2001
a(3) = 2 because in S_3 there are two conjugacy classes with odd number of elements, the trivial conjugacy class and the conjugacy class of transpositions consisting of 3 elements: (12),(13),(23).
From _Omar E. Pol_, Oct 12 2011 (Start):
Written as a triangle:
1,
1,
2,2,
2,2,4,4,
2,2,4,4,4,4,8,8,
2,2,4,4,4,4,8,8,4,4,8,8,8,8,16,16,
2,2,4,4,4,4,8,8,4,4,8,8,8,8,16,16,4,4,8,8,8,8,16,16,8,...
(End)
- I. G. MacDonald: Symmetric functions and Hall polynomials Oxford: Clarendon Press, 1979. Page 21.
- Indranil Ghosh, Table of n, a(n) for n = 0..65536 (terms 0..1000 from Harry J. Smith)
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Christina Talar Bekaroğlu, Analyzing Dynamics of Larger than Life: Impacts of Rule Parameters on the Evolution of a Bug's Geometry, Master's thesis, Calif. State Univ. Northridge (2023). See p. 92.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to toothpick sequences
-
a000120:=func< n | &+Intseq(n, 2) >; [ 2^a000120(Floor(n/2)): n in [0..100] ]; // Klaus Brockhaus, Oct 15 2010
-
A060632 := proc(n) local k; add(binomial(n,2*k) mod 2, k=0..floor(n/2)); end: seq(A060632(n),n=0..94); # edited by Johannes W. Meijer, May 28 2011
A060632 := n -> 2^add(i, i = convert(iquo(n,2), base, 2)); # Peter Luschny, Jun 30 2011
A060632 := n -> igcd(2^n, n! / iquo(n,2)!^2); # Peter Luschny, Jun 30 2011
-
a[n_] := 2^DigitCount[Floor[n/2], 2, 1]; Table[a[n], {n, 0, 94}] (* Jean-François Alcover, Feb 25 2014 *)
-
for (n=0, 1000, write("b060632.txt", n, " ", sum(k=0, floor(n/2), binomial(n, 2*k) % 2)) ) \\ Harry J. Smith, Sep 14 2009
-
a(n)=2^hammingweight(n\2) \\ Charles R Greathouse IV, Feb 06 2017
-
def A060632(n):
return 2**bin(n/2)[2:].count("1") # Indranil Ghosh, Feb 06 2017
A002624
Expansion of (1-x)^(-3) * (1-x^2)^(-2).
Original entry on oeis.org
1, 3, 8, 16, 30, 50, 80, 120, 175, 245, 336, 448, 588, 756, 960, 1200, 1485, 1815, 2200, 2640, 3146, 3718, 4368, 5096, 5915, 6825, 7840, 8960, 10200, 11560, 13056, 14688, 16473, 18411, 20520, 22800, 25270, 27930, 30800, 33880, 37191, 40733, 44528
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Steven Edwards and William Griffiths, Generalizations of Delannoy and cross polytope numbers, Fib. Q., Vol. 55, No. 4 (2017), pp. 356-366.
- E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
- E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 20.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 204
- Antal Pinter, Numerical solution of the k=3 Queens problem, 2011, Q(n) at p.8.
- Antal Pinter, Software utility for enumerating positions of non-attacking and attacking chess pieces , Backtrack_V7Pro
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
-
[( (n+1)^4 +10*(n+1)^3 +32*(n+1)^2 +32*(n+1) +(6*(n+1) +15)*((n+1) mod 2) )/96 : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011
-
A002624:=-1/(z+1)**2/(z-1)**5; # Simon Plouffe in his 1992 dissertation
-
f[n_] := Block[{m = n - 1}, (m^4 + 10m^3 + 32m^2 + 32m + (6m + 15)Mod[m, 2])/96]; Table[ f[n], {n, 2, 45}]
(* Or *) CoefficientList[ Series[1/((1 - x)^3 (1 - x^2)^2), {x, 0, 44}], x] (* Robert G. Wilson v, Feb 26 2005 *)
-
Vec(1/(1-x)^3/(1-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Apr 19 2012
-
a(n)=(n^4 + 14*n^3 + 68*n^2 + 136*n - n%2*(6*n + 21))/96 + 1 \\ Charles R Greathouse IV, Feb 18 2016
Comments