A245192
The number of Dyck paths p(m) for m<=n, as defined by the rows of A237593, that have common subpaths of positive length with the Dyck path p(n) for the symmetric representation of sigma(n).
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 3, 3, 1, 2, 1, 2, 1, 2, 3, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 2, 3, 1, 2, 3, 4, 5, 2, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 1
Offset: 1
Path a(6) has two colors since it shares steps 5 and 6 with path a(5) which has a single color.
See also the link for a color image of paths.
-
(* path[n] computing the n-th Dyck path is defined in A237270 *)
(* coloredPathRange[] assigns the color of the first path sharing a line *)
(* colorLists[] computes the lists of colors in each path in the list *)
defaultPath[n_] := Module[{p=path[n]}, Transpose[{Transpose[{Most[p], Rest[p]}], Table[n, {Length[p]-1}]}]]
switchIf[x_,yList_] := Module[{pos=Position[Map[First, yList], First[x]]}, If[pos == {}, x, yList[[First[First[pos]]]]]]
nextColoredPath[p_,n_] := Module[{u=defaultPath[n], meet12, common1}, meet12 = Intersection[Map[First, p], Map[First, u]]; common1=Select[p, MemberQ[meet12, First[#]]&]; Map[switchIf[#, common1]&, u]]
coloredPathRange[n_] := FoldList[nextColoredPath, {{{{0,0}, {0,0}}, 0}}, Range[n]]
colorLists[pathList_] := Map[Union[Last[Transpose[#]]]&, pathList]
a[colors_] := Prepend[Map[Last[#] - First[#] + 1&, Rest[colors]], 0]
a[colorLists[coloredPathRange[90]]] (* computes the first 90 values *)
A261348
a(1)=0; a(2)=0; for n>2: a(n) = A237591(n,2) = A237593(n,2).
Original entry on oeis.org
0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 17, 16
Offset: 1
Apart from the initial two zeros the sequence can be written as an array T(j,k) with 6 columns, where row j is [j, j, j+1, j, j+1, j+1], as shown below:
1, 1, 2, 1, 2, 2;
2, 2, 3, 2, 3, 3;
3, 3, 4, 3, 4, 4;
4, 4, 5, 4, 5, 5;
5, 5, 6, 5, 6, 6;
6, 6, 7, 6, 7, 7;
7, 7, 8, 7, 8, 8;
8, 8, 9, 8, 9, 9;
9, 9, 10, 9, 10, 10;
10, 10, 11, 10, 11, 11;
11, 11, 12, 11, 12, 12;
12, 12, 13, 12, 13, 13;
13, 13, 14, 13, 14, 14;
14, 14, 15, 14, 15, 15;
15, 15, 16, 15, 16, 16;
...
Illustration of initial terms:
Row _
1 _| |0
2 _| _|0
3 _| |1|
4 _| _|1|
5 _| |2 _|
6 _| _|1| |
7 _| |2 | |
8 _| _|2 _| |
9 _| |2 | _|
10 _| _|2 | | |
11 _| |3 _| | |
12 _| _|2 | | |
13 _| |3 | _| |
14 _| _|3 _| | _|
15 _| |3 | | | |
16 _| _|3 | | | |
17 _| |4 _| _| | |
18 _| _|3 | | | |
19 _| |4 | | _| |
20 _| _|4 _| | | _|
21 _| |4 | _| | | |
22 _| _|4 | | | | |
23 _| |5 _| | | | |
24 _| _|4 | | _| | |
25 _| |5 | _| | | |
26 | |5 | | | | |
...
The figure represents the triangle A237591 in which the numbers of horizontal cells in the second geometric region gives this sequence, for n > 2.
Note that this is also the second geometric region in the front view of the stepped pyramid described in A245092. For more information see also A237593.
A293750
a(n) is the total number of line segments that belong to the Dyck paths in the diagram of the symmetries of sigma described in A236104 and A237593 after n-th stage, with a(0) = 0.
Original entry on oeis.org
0, 2, 4, 6, 10, 12, 18, 20, 26, 30, 36, 38, 46, 48, 54, 62, 72, 74, 84, 86, 96, 104, 110, 112, 124, 130, 136, 144, 158, 160
Offset: 0
Illustration of initial terms (n = 1..6):
. _ _ _ _
. _ _ _ _ _ _ |_
. _ _ _ _ _ _| _ _ _| |_
. _ _ _ _ |_ _ _ |_ _ _ _ |_ _ |
. _ _ _ _|_ _ _|_ | _ _|_ | | _ _|_ | | |
. _ _ | _ | | _ | | | _ | | | | _ | | | | |
. | | | | | | | | | | | | | | | | | | | | |
.
. 2 4 6 10 12 18
.
Cf.
A000203,
A024916,
A196020,
A235791,
A236104,
A237048,
A237270,
A237271,
A237590,
A237591,
A237593,
A245092,
A262626,
A294723,
A294847.
A294849
a(n) is the total number of horizontal line segments that belong to the Dyck paths in the diagram of the symmetries of sigma described in A236104 and A237593 after n-th stage, with a(0) = 0.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 9, 10, 13, 15, 18, 19, 23, 24, 27, 31, 36, 37, 42, 43, 48, 52, 55, 56, 62, 65, 68, 72, 79, 80
Offset: 0
Cf.
A000203,
A196020,
A235791,
A236104,
A237048,
A237591,
A237593,
A245092,
A293750,
A294847,
A294848.
A339575
Triangle read by rows: T(n,k) is the number of cells in the k-th row of the diagram constructed in the fourth quadrant with the Dyck path described in the n-th row of A237593, 1 <= k <= n.
Original entry on oeis.org
1, 2, 2, 3, 3, 2, 4, 4, 4, 3, 5, 5, 5, 3, 3, 6, 6, 6, 6, 5, 4, 7, 7, 7, 7, 5, 4, 4, 8, 8, 8, 8, 8, 6, 5, 5, 9, 9, 9, 9, 9, 7, 7, 5, 5, 10, 10, 10, 10, 10, 10, 8, 7, 6, 6, 11, 11, 11, 11, 11, 11, 8, 7, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 10, 10, 9, 7, 7
Offset: 1
Triangle begins:
1;
2, 2;
3, 3, 2;
4, 4, 4, 3;
5, 5, 5, 3, 3;
6, 6, 6, 6, 5, 4;
7, 7, 7, 7, 5, 4, 4;
8, 8, 8, 8, 8, 6, 5, 5;
9, 9, 9, 9, 9, 7, 7, 5, 5;
10, 10, 10, 10, 10, 10, 8, 7, 6, 6;
11, 11, 11, 11, 11, 11, 8, 7, 6, 6, 6;
12, 12, 12, 12, 12, 12, 12, 10, 10, 9, 7, 7;
...
From _Omar E. Pol_, Jan 19 2022: (Start)
For n = 10 the Dyck path described in the 10th row of A237593 is as shown below in the fourth quadrant:
.
k 10th row
. . . . . . . . . . . . . X of triangle
1 . | 10
2 . | 10
3 . | 10
4 . | 10
5 . | 10
6 . _ _| 10
7 . _| 8
8 . _| 7
9 . | 6
10 . _ _ _ _ _ _| 6
.
.
-y
.
T(10,k) is the number of cells in the k-th row of the diagram.
The total number of cells in all rows of the diagram is equal to A024916(10) = 87, the same as the sum of the 10th row of triangle. (End)
A299472
a(n) is the sum of all divisors of all numbers k whose associated largest Dyck path contains the point (n,n) in the diagram of the symmetric representation of sigma(k) described in A237593, or 0 if no such k exists.
Original entry on oeis.org
1, 7, 13, 0, 20, 15, 43, 0, 66, 0, 24, 49, 59, 0, 134, 0, 60, 113, 0, 86, 0, 104, 165, 0, 48, 245, 0, 132, 0, 224, 0, 198, 0, 124, 57, 317, 0, 192, 0, 350, 0, 326, 0, 104, 211, 0, 434, 0, 216, 0, 0, 647, 0, 344, 0, 186, 331, 0, 584, 0, 270, 0, 234, 0, 672, 0, 350, 171, 0, 156, 639, 0, 672, 0, 390, 0, 368, 0, 956
Offset: 1
Cf.
A196020,
A235791,
A236104,
A237048,
A237591,
A237593,
A240542,
A245092,
A259179,
A276112,
A277437,
A279286,
A279385,
A280919,
A280223,
A282131,
A282197,
A280295,
A281012.
A299482
Numbers m such that in the diagram of the symmetric representation of sigma(k) described in A237593 there is no Dyck path that contains the point (m,m), where both k and m are positive integers.
Original entry on oeis.org
4, 8, 10, 14, 16, 19, 21, 24, 27, 29, 31, 33, 37, 39, 41, 43, 46, 48, 50, 51, 53, 55, 58, 60, 62, 64, 66, 69, 72, 74, 76, 78, 80, 82, 83, 84, 87, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 114, 116, 119, 121, 123, 124, 125, 127, 129, 131, 133, 135, 138, 141, 143, 145, 147, 149, 151, 153
Offset: 1
-
a240542[n_] := Sum[(-1)^(k+1)*Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}]
a299482[n_] := Module[{t=Table[0, n], k=1, d=1}, While[d<=n, t[[d]]+=1; d=a240542[++k]]; Flatten[Position[t, 0]]]
a299482[153] (* Hartmut F. W. Hoft, Aug 07 2020 *)
A358492
Irregular triangle read by rows: T(n,k) is one half of the number of line segments of length 1 in the k-th antidiagonal of the Dyck path described in the n-th row of A237593.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 3, 4, 2, 1, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 3, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 2, 1, 1, 1, 1, 1, 1, 5, 4, 2, 2
Offset: 1
Triangle begins (first 19 rows):
1;
1, 1;
1, 2;
1, 1, 2;
1, 2, 2;
1, 1, 1, 3;
1, 1, 3, 2;
1, 1, 1, 3, 2;
1, 1, 1, 3, 3;
1, 1, 1, 1, 4, 2;
1, 1, 1, 4, 2, 2;
1, 1, 1, 1, 1, 3, 4;
1, 1, 1, 1, 3, 4, 2;
1, 1, 1, 1, 2, 4, 2, 2;
1, 1, 1, 1, 1, 3, 5, 2;
1, 1, 1, 1, 1, 1, 3, 5, 2;
1, 1, 1, 1, 1, 3, 5, 2, 2;
1, 1, 1, 1, 1, 1, 1, 5, 4, 2;
1, 1, 1, 1, 1, 1, 5, 4, 2, 2;
...
For n = 10 the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6]. When that row is interpreted as a symmetric Dyck path in the fourth quadrant using 20 line segments of length 1 the Dyck path looks like this:
.
|
|
|
|
|
_ _|
_|
_|
|
_ _ _ _ _ _|
.
The numbers of line segments of length 1 in the successive antidiagonals are respectively [2, 2, 2, 2, 8, 4] so the 10th row of triangle is [1, 1, 1, 1, 4, 2].
A000384
Hexagonal numbers: a(n) = n*(2*n-1).
Original entry on oeis.org
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 3003, 3160, 3321, 3486, 3655, 3828, 4005, 4186, 4371, 4560
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 38.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 53-54, 129-130, 132.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 21.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 122-123.
- Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
- C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
- Elena Deza and Michel Deza, Figurate Numbers: presentation of a book, 3rd Montreal-Toronto Workshop in Number Theory, October 7-9, 2011.
- Anicius Manlius Severinus Boethius, De institutione arithmetica, Book 2, section 15.
- Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, The Ramanujan Journal, October 2011, 26:109. DOI: 10.1007/s11139-011-9325-y.
- Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 41.
- Paul Cooijmans, Odds.
- Tom Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras.
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 33.
- Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 340.
- Milan Janjic, Two Enumerative Functions.
- Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
- Peter D. Loly and Ian D. Cameron, Frierson's 1907 Parameterization of Compound Magic Squares Extended to Orders 3^L, L = 1, 2, 3, ..., with Information Entropy, arXiv:2008.11020 [math.HO], 2020.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Omar E. Pol, Illustration of initial terms of A000217, A000290, A000326, A000384, A000566, A000567.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4, example 4.6.
- Leo Tavares, Illustration: Rectangles.
- A. J. Turner and J. F. Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.
- Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Dominating Set.
- Eric Weisstein's World of Mathematics, Hexagonal Number.
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008), pp. 45-52.
- Index to sequences related to polygonal numbers.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
a(n)=
A093561(n+1, 2), (4, 1)-Pascal column.
Cf.
A002939 (twice a(n): sums of Pythagorean triples (X, Y, Z=Y+1)).
-
a000384 n = n * (2 * n - 1)
a000384_list = scanl (+) 0 a016813_list
-- Reinhard Zumkeller, Dec 16 2012
-
A000384:=n->n*(2*n-1); seq(A000384(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
-
Table[n*(2 n - 1), {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 6}, 50] (* Harvey P. Dale, Sep 10 2015 *)
Join[{0}, Accumulate[Range[1, 312, 4]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[6], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[6, Range[0, 20]] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[x*(1 + 3*x)/(1 - x)^3 , {x, 0, 100}], x] (* Stefano Spezia, Sep 02 2018 *)
-
a(n)=n*(2*n-1)
-
a(n) = binomial(2*n,2) \\ Altug Alkan, Oct 06 2015
-
# Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 4, y + 4
A000384 = aList()
print([next(A000384) for i in range(49)]) # Peter Luschny, Aug 04 2019
A001227
Number of odd divisors of n.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1
G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From _Omar E. Pol_, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
Diagram
n a(n) _
1 1 _|1|
2 1 _|1 _|
3 2 _|1 |1|
4 1 _|1 _| |
5 2 _|1 |1 _|
6 2 _|1 _| |1|
7 2 _|1 |1 | |
8 1 _|1 _| _| |
9 3 _|1 |1 |1 _|
10 2 _|1 _| | |1|
11 2 _|1 |1 _| | |
12 2 |1 | |1 | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
- B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
- Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
- P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- K. S. Brown's Mathpages, Partitions into Consecutive Integers.
- Atli Fannar Franklín, Pattern avoidance enumerated by inversions, arXiv:2410.07467 [math.CO], 2024. See pp. 2, 18.
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- A. Heiligenbrunner, Sum of adjacent numbers (in German).
- Christian Kassel and Christophe Reutenauer, Pairs of intertwined integer sequences, arXiv:2507.15780 [math.NT], 2025. See p. 11.
- Gerzson Kéri, The factorization of compressed Chebyshev polynomials and other polynomials related to multiple-angle formulas, Annales Univ. Sci. Budapest (Hungary, 2022) Sect. Comp., Vol. 53, 93-108.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function tau_o(n).
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976.
- N. J. A. Sloane, Transforms.
- T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2 (1999), Article 99.1.6.
- Eric Weisstein's World of Mathematics, Binomial Number and Odd Divisor Function.
- Eric Weisstein's World of Mathematics, q-Polygamma Function.
- Index entries for "core" sequences.
- Index entries for sequences mentioned by Glaisher.
Cf.
A000005,
A000079,
A000593,
A010054 (char. func.),
A038547 (positions of first appearances),
A050999,
A051000,
A051001,
A051002,
A051731,
A054844,
A069283,
A069288,
A109814,
A115369,
A118235,
A118236,
A125911,
A136655,
A183063,
A183064,
A237593,
A247795,
A272887,
A273401,
A279387,
A286001.
-
a001227 = sum . a247795_row
-- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
-
[NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
-
for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
A001227 := proc(n) local a,d;
a := 1 ;
for d in ifactors(n)[2] do
if op(1,d) > 2 then
a := a*(op(2,d)+1) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Jun 18 2015
-
f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
Table[Total[Mod[Divisors[n], 2]],{n,105}] (* Zak Seidov, Apr 16 2010 *)
f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
a[ n_] := Sum[ Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
Count[Divisors[#],?OddQ]&/@Range[110] (* _Harvey P. Dale, Feb 15 2015 *)
(* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
(* cl = current level, cs = current subparts count *)
a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]Hartmut F. W. Hoft, Dec 16 2016 *)
a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
-
{a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
-
{a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
-
a(n)=numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Mar 16 2011
-
a(n)=sum(k=1,round(solve(x=1,n,x*(x+1)/2-n)),(k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
-
a(n)=sumdivmult(n,d,d%2) \\ Charles R Greathouse IV, Aug 29 2013
-
from functools import reduce
from operator import mul
from sympy import factorint
def A001227(n): return reduce(mul,(q+1 for p, q in factorint(n).items() if p > 2),1) # Chai Wah Wu, Mar 08 2021
-
def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
[A001227(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
Comments