cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000165 Double factorial of even numbers: (2n)!! = 2^n*n!.

Original entry on oeis.org

1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000, 1678343852714360832000, 63777066403145711616000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the size of the automorphism group of the graph (edge graph) of the n-dimensional hypercube and also of the geometric automorphism group of the hypercube (the two groups are isomorphic). This group is an extension of an elementary Abelian group (C_2)^n by S_n. (C_2 is the cyclic group with two elements and S_n is the symmetric group.) - Avi Peretz (njk(AT)netvision.net.il), Feb 21 2001
Then a(n) appears in the power series: sqrt(1+sin(y)) = Sum_{n>=0} (-1)^floor(n/2)*y^(n)/a(n) and sqrt((1+cos(y))/2) = Sum_{n>=0} (-1)^n*y^(2n)/a(2n). - Benoit Cloitre, Feb 02 2002
Appears to be the BinomialMean transform of A001907. See A075271. - John W. Layman, Sep 28 2002
Number of n X n monomial matrices with entries 0, +-1.
Also number of linear signed orders.
Define a "downgrade" to be the permutation d which places the items of a permutation p in descending order. This note concerns those permutations that are equal to their double-downgrades. The number of permutations of order 2n having this property are equinumerous with those of order 2n+1. a(n) = number of double-downgrading permutations of order 2n and 2n+1. - Eugene McDonnell (eemcd(AT)mac.com), Oct 27 2003
a(n) = (Integral_{x=0..Pi/2} cos(x)^(2*n+1) dx) where the denominators are b(n) = (2*n)!/(n!*2^n). - Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
1 + (1/2)x - (1/8)x^2 - (1/48)x^3 + (1/384)x^4 + ... = sqrt(1+sin(x)).
a(n)*(-1)^n = coefficient of the leading term of the (n+1)-th derivative of arctan(x), see Hildebrand link. - Reinhard Zumkeller, Jan 14 2006
a(n) is the Pfaffian of the skew-symmetric 2n X 2n matrix whose (i,j) entry is j for iDavid Callan, Sep 25 2006
a(n) is the number of increasing plane trees with n+1 edges. (In a plane tree, each subtree of the root is an ordered tree but the subtrees of the root may be cyclically rotated.) Increasing means the vertices are labeled 0,1,2,...,n+1 and each child has a greater label than its parent. Cf. A001147 for increasing ordered trees, A000142 for increasing unordered trees and A000111 for increasing 0-1-2 trees. - David Callan, Dec 22 2006
Hamed Hatami and Pooya Hatami prove that this is an upper bound on the cardinality of any minimal dominating set in C_{2n+1}^n, the Cartesian product of n copies of the cycle of size 2n+1, where 2n+1 is a prime. - Jonathan Vos Post, Jan 03 2007
This sequence and (1,-2,0,0,0,0,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 29 2007
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n,n+1,n+1} such that between the two occurrences of i, there is exactly one entry >i, for i=1,2,...,n. Example: a(2) = 8 counts 121323, 131232, 213123, 231213, 232131, 312132, 321312, 323121. Proof: There is always exactly one entry between the two 1s (when n>=1). Given a permutation p in A(n) (counted by a(n)), record the position i of the first 1, then delete both 1s and subtract 1 from every entry to get a permutation q in A(n-1). The mapping p -> (i,q) is a bijection from A(n) to the Cartesian product [1,2n] X A(n-1). - David Callan, Nov 29 2007
Row sums of A028338. - Paul Barry, Feb 07 2009
a(n) is the number of ways to seat n married couples in a row so that everyone is next to their spouse. Compare A007060. - Geoffrey Critzer, Mar 29 2009
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 2, 8, 48, ...) dot (1, -3, 5, -7, 9, ...).
Example: a(4) = 384 = (1, 1, 2, 8, 48) dot (1, -3, 5, -7, 9) = (1, -3, 10, -56, 432). (End)
exp(x/2) = Sum_{n>=0} x^n/a(n). - Jaume Oliver Lafont, Sep 07 2009
Assuming n starts at 0, a(n) appears to be the number of Gray codes on n bits. It certainly is the number of Gray codes on n bits isomorphic to the canonical one. Proof: There are 2^n different starting positions for each code. Also, each code has a particular pattern of bit positions that are flipped (for instance, 1 2 1 3 1 2 1 for n=3), and these bit position patterns can be permuted in n! ways. - D. J. Schreffler (ds1404(AT)txstate.edu), Jul 18 2010
E.g.f. of 0,1,2,8,... is x/(1-2x/(2-2x/(3-8x/(4-8x/(5-18x/(6-18x/(7-... (continued fraction). - Paul Barry, Jan 17 2011
Number of increasing 2-colored trees with choice of two colors for each edge. In general, if we replace 2 with k we get the number of increasing k-colored trees. For example, for k=3 we get the triple factorial numbers. - Wenjin Woan, May 31 2011
a(n) = row sums of triangle A193229. - Gary W. Adamson, Jul 18 2011
Also the number of permutations of 2n (or of 2n+1) that are equal to their reverse-complements. (See the Egge reference.) Note that the double-downgrade described in the preceding comment (McDonnell) is equivalent to the reverse-complement. - Justin M. Troyka, Aug 11 2011
The e.g.f. can be used to form a generator, [1/(1-2x)] d/dx, for A000108, so a(n) can be applied to A145271 to generate the Catalan numbers. - Tom Copeland, Oct 01 2011
The e.g.f. of 1/a(n) is BesselI(0,sqrt(2*x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
a(n) = order of the largest imprimitive group of degree 2n with n systems of imprimitivity (see [Miller], p. 203). - L. Edson Jeffery, Feb 05 2012
Row sums of triangle A208057. - Gary W. Adamson, Feb 22 2012
a(n) is the number of ways to designate a subset of elements in each n-permutation. a(n) = A000142(n) + A001563(n) + A001804(n) + A001805(n) + A001806(n) + A001807(n) + A035038(n) * n!. - Geoffrey Critzer, Nov 08 2012
For n>1, a(n) is the order of the Coxeter groups (also called Weyl groups) of types B_n and C_n. - Tom Edgar, Nov 05 2013
For m>0, k*a(m-1) is the m-th cumulant of the chi-squared probability distribution for k degrees of freedom. - Stanislav Sykora, Jun 27 2014
a(n) with 0 prepended is the binomial transform of A120765. - Vladimir Reshetnikov, Oct 28 2015
Exponential self-convolution of A001147. - Vladimir Reshetnikov, Oct 08 2016
Also the order of the automorphism group of the n-ladder rung graph. - Eric W. Weisstein, Jul 22 2017
a(n) is the order of the group O_n(Z) = {A in M_n(Z): A*A^T = I_n}, the group of n X n orthogonal matrices over the integers. - Jianing Song, Mar 29 2021
a(n) is the number of ways to tile a (3n,3n)-benzel or a (3n+1,3n+2)-benzel using left stones and two kinds of bones; see Defant et al., below. - James Propp, Jul 22 2023
a(n) is the number of labeled histories for a labeled topology with the modified lodgepole shape and n+1 cherry nodes. - Noah A Rosenberg, Jan 16 2025

Examples

			The following permutations and their reversals are all of the permutations of order 5 having the double-downgrade property:
  0 1 2 3 4
  0 3 2 1 4
  1 0 2 4 3
  1 4 2 0 3
G.f. = 1 + 2*x + 8*x^2 + 48*x^3 + 384*x^4 + 3840*x^5 + 46080*x^6 + 645120*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142 (n!), A001147 ((2n-1)!!), A032184 (2^n*(n-1)!).
This sequence gives the row sums in A060187, and (-1)^n*a(n) the alternating row sums in A039757.
Also row sums in A028338.
Column k=2 of A329070.

Programs

  • Haskell
    a000165 n = product [2, 4 .. 2 * n]  -- Reinhard Zumkeller, Mar 28 2015
    
  • Magma
    [2^n*Factorial(n): n in [0..35]]; // Vincenzo Librandi, Apr 22 2011
    
  • Magma
    I:=[2,8]; [1] cat [n le 2 select I[n]  else (3*n-1)*Self(n-1)-2*(n-1)^2*Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Feb 19 2015
    
  • Maple
    A000165 := proc(n) option remember; if n <= 1 then 1 else n*A000165(n-2); fi; end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 0)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..17); # Zerinvary Lajos, Mar 26 2008
    G(x):=(1-2*x)^(-1): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..17); # Zerinvary Lajos, Apr 03 2009
    A000165 := proc(n) doublefactorial(2*n) ; end proc; seq(A000165(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
  • Mathematica
    Table[(2 n)!!, {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    (2 Range[0, 30])!! (* Harvey P. Dale, Jan 23 2015 *)
    RecurrenceTable[{a[n] == 2 n*a[n-1], a[0] == 1}, a, {n,0,30}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    a(n)=n!<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = prod( k=1, n, 2*k)}; /* Michael Somos, Jan 04 2013 */
    
  • Python
    from math import factorial
    def A000165(n): return factorial(n)<Chai Wah Wu, Jan 24 2023
    
  • SageMath
    [2^n*factorial(n) for n in range(31)] # G. C. Greubel, Jul 21 2024

Formula

E.g.f.: 1/(1-2*x).
a(n) = A001044(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (2*i+2) = 2^n*Pochhammer(1,n). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
D-finite with recurrence a(n) = 2*n * a(n-1), n>0, a(0)=1. - Paul Barry, Aug 26 2004
This is the binomial mean transform of A001907. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(n) = Integral_{x>=0} x^n*exp(-x/2)/2 dx. - Paul Barry, Jan 28 2008
G.f.: 1/(1-2x/(1-2x/(1-4x/(1-4x/(1-6x/(1-6x/(1-.... (continued fraction). - Paul Barry, Feb 07 2009
a(n) = A006882(2*n). - R. J. Mathar, Oct 20 2009
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = a production matrix (twice Pascal's triangle deleting the first "2", with the rest zeros; cf. A028326):
2, 2, 0, 0, 0, 0, ...
2, 4, 2, 0, 0, 0, ...
2, 6, 6, 2, 0, 0, ...
2, 8, 12, 8, 2, 0, ...
2, 10, 20, 20, 10, 2, ...
... (End)
From Sergei N. Gladkovskii, Apr 11 2013, May 01 2013, May 24 2013, Sep 30 2013, Oct 27 2013: (Start)
Continued fractions:
G.f.: 1 + x*(Q(0) - 1)/(x+1) where Q(k) = 1 + (2*k+2)/(1-x/(x+1/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + 2*k*x - 2*x*(k+1)/Q(k+1).
G.f.: G(0)/2 where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - x*(4*k+2) - 4*x^2*(k+1)^2/Q(k+1).
G.f.: R(0) where R(k) = 1 - x*(2*k+2)/(x*(2*k+2)-1/(1-x*(2*k+2)/(x*(2*k+2) -1/R(k+1)))). (End)
a(n) = (2n-2)*a(n-2) + (2n-1)*a(n-1), n>1. - Ivan N. Ianakiev, Aug 06 2013
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 1)*a(n-1) - 2*(n - 1)^2*a(n-2) with a(1) = 2 and a(2) = 8.
The sequence b(n) = A068102(n) also satisfies this second-order recurrence. This leads to the generalized continued fraction expansion lim_{n -> oo} b(n)/a(n) = log(2) = 1/(2 - 2/(5 - 8/(8 - 18/(11 - ... - 2*(n - 1)^2/((3*n - 1) - ... ))))). (End)
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(e) (A019774).
Sum_{n>=0} (-1)^n/a(n) = 1/sqrt(e) (A092605). (End)
Limit_{n->oo} a(n)^4 / (n * A134372(n)) = Pi. - Daniel Suteu, Apr 09 2022
a(n) = 1/([x^n] hypergeom([1], [1], x/2)). - Peter Luschny, Sep 13 2024
a(n) = Sum_{k=0..n} k!*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jul 13 2025

A056545 a(n) = 4*n*a(n-1) + 1 with a(0)=1.

Original entry on oeis.org

1, 5, 41, 493, 7889, 157781, 3786745, 106028861, 3392923553, 122145247909, 4885809916361, 214975636319885, 10318830543354481, 536579188254433013, 30048434542248248729, 1802906072534894923741, 115385988642233275119425
Offset: 0

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Comments

For positive n, a(n) equals 4^n times the permanent of the n X n matrix with (5/4)'s along the main diagonal and 1's everywhere else. - John M. Campbell, Jul 10 2011

Examples

			a(2) = 4*2*a(1) + 1 = 8*5 + 1 = 41.
		

Crossrefs

Cf. A000522, A010844, A010845, A056546, A056547, A001907 for analogs. A056545/(A000142*A000302) is an increasingly good approximation to 4th root of e.

Programs

  • Mathematica
    Round@Table[Exp[1/4] 4^n Gamma[n + 1, 1/4], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster; Vladimir Reshetnikov, Oct 14 2016 *)
    nxt[{n_,a_}]:={n+1,4a(n+1)+1}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Mar 19 2019 *)

Formula

a(n) = floor(e^(1/4)*4^n*n!).
From Philippe Deléham, Mar 14 2004: (Start)
a(n) = n!*Sum_{k=0..n} 4^(n-k)/k!.
E.g.f.: exp(x)/(1 - 4*x). (End)
a(n) = Sum_{k=0..n} P(n, k)*4^k. - Ross La Haye, Aug 29 2005
a(n) = hypergeometric_U(1, n+2 , 1/4)/4. - Peter Luschny, Nov 26 2014
a(n) = exp(1/4)*4^n*Gamma(n+1, 1/4). a(n) ~ sqrt(2*Pi)*4^n*n^(n+1/2)*exp(1/4-n). - Vladimir Reshetnikov, Oct 14 2016
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x = 0..inf} (4*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 4*x) satisfies the differential equation (1 - 4*x)*y' = (5 - 4*x)*y.
a(n) = (4*n + 1)*a(n-1) - 4*(n - 1)*a(n-2).
The sequence b(n) := 4^n*n! also satisfies the same recurrence with b(0) = 1, b(1) = 4. This leads to the continued fraction representation a(n) = 4^n*n!*( 1 + 1/(4 - 4/(9 - 8/(13 - ... - (4*n - 4)/(4*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/4) = 1 + 1/(4 - 4/(9 - 8/(13 - ... - (4*n - 4)/((4*n + 1) - ... )))). Cf. A010844. (End)

Extensions

More terms from James Sellers, Jul 04 2000

A320032 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(-x)/(1 - k*x).

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 1, -1, 1, 2, 5, 2, 1, 1, 3, 13, 29, 9, -1, 1, 4, 25, 116, 233, 44, 1, 1, 5, 41, 299, 1393, 2329, 265, -1, 1, 6, 61, 614, 4785, 20894, 27949, 1854, 1, 1, 7, 85, 1097, 12281, 95699, 376093, 391285, 14833, -1, 1, 8, 113, 1784, 26329, 307024, 2296777, 7897952, 6260561, 133496, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2018

Keywords

Comments

For n > 0 and k > 0, A(n,k) gives the number of derangements of the generalized symmetric group S(k,n), which is the wreath product of Z_k by S_n. - Peter Kagey, Apr 07 2020

Examples

			E.g.f. of column k: A_k(x) = 1 + (k - 1)*x/1! + (2*k^2 - 2*k + 1)*x^2/2! + (6*k^3 - 6*k^2 + 3*k - 1)*x^3/3! + (24*k^4 - 24*k^3 + 12*k^2 - 4*k + 1)*x^4/4! + ...
Square array begins:
   1,   1,     1,      1,      1,       1,  ...
  -1,   0,     1,      2,      3,       4,  ...
   1,   1,     5,     13,     25,      41,  ...
  -1,   2,    29,    116,    299,     614,  ...
   1,   9,   233,   1393,   4785,   12281,  ...
  -1,  44,  2329,  20894,  95699,  307024,  ...
		

Crossrefs

Columns k=0..5 give A033999, A000166, A000354, A000180, A001907, A001908.
Main diagonal gives A319392.
Cf. A320031.

Programs

  • Maple
    A:= proc(n, k) option remember;
         `if`(n=0, 1, k*n*A(n-1, k)+(-1)^n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 07 2020
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[-x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, (-1)^n HypergeometricPFQ[{1, -n}, {}, k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(-x)/(1 - k*x).
A(n,k) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j!*k^j.
A(n,k) = (-1)^n*2F0(1,-n; ; k).

A319392 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*k!*n^k.

Original entry on oeis.org

1, 0, 5, 116, 4785, 307024, 28435285, 3598112580, 596971515329, 125802906617600, 32834740225688901, 10399056510149276980, 3929349957207906673585, 1746371472945523953503376, 901944505258819679842017365, 535692457387043907059336566724, 362573376628272441934460817960705
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 18 2018

Keywords

Crossrefs

Main diagonal of A320032.

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n=0, 1, k*n*b(n-1, k)+(-1)^n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..17);  # Alois P. Heinz, May 07 2020
  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] k! n^k, {k, 0, n}], {n, 16}]]
    Table[n! SeriesCoefficient[Exp[-x]/(1 - n x), {x, 0, n}], {n, 0, 16}]
    Table[(-1)^n HypergeometricPFQ[{1, -n}, {}, n], {n, 0, 16}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*k!*n^k); \\ Michel Marcus, Sep 18 2018

Formula

a(n) = n! * [x^n] exp(-x)/(1 - n*x).
a(n) = exp(-1/n)*n^n*Gamma(n+1,-1/n) for n > 0, where Gamma(a,x) is the incomplete gamma function.
a(n) ~ n! * n^n. - Vaclav Kotesovec, Jun 09 2019

A277393 a(n) = Integral_{x=0..infinity} H_n(x) * exp(-x), where H_n(x) is n-th Hermite polynomial.

Original entry on oeis.org

1, 2, 6, 36, 300, 3000, 35880, 502320, 8038800, 144698400, 2893937760, 63666630720, 1527999802560, 39727994866560, 1112383838966400, 33371515168992000, 1067888485926662400, 36308208521506521600, 1307095506756591552000, 49669629256750478976000
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 12 2016

Keywords

Comments

Hermite polynomials can be generalized to non-integer or even complex indexes using their representation as a contour integral (or as a solution to a differential equation), in which case the first formula for a(n) and the functional relation (recurrence) given below remain valid for all complex n.
This is using the "physicist's" version of Hermite polynomials. - Robert Israel, Oct 14 2016

References

  • George E. Andrews, Richard Askey, Ranjan Roy, Special Functions, Cambridge University Press (p.278 for Hermite polynomials).

Crossrefs

Programs

  • Maple
    a := proc(n) 4^x*sqrt(Pi)*exp(-1/4)*(GAMMA(1+x/2, -1/4)/((-1)^(x/2)*GAMMA((1-x)/2)) + x*GAMMA((x+1)/2, -1/4)/(2*(-1)^((x-1)/2)*GAMMA(1-x/2))); simplify(limit (%,x=n)) end: seq(a(n),n=0..9); # Peter Luschny, Oct 14 2016
    a := n -> (cos(Pi*n/2)*GAMMA((n+1)/2)*GAMMA(n/2+1, -1/4) + I*sin(Pi*n/2)*GAMMA(n/2+1)*GAMMA((n+1)/2, -1/4))/(sqrt(Pi)*exp(1/4)*(I/4)^n): seq(a(n), n=0..20); # Vladimir Reshetnikov, Oct 14 2016
    f:= n -> int(orthopoly[H](n,t)*exp(-t),t=0..infinity):
    map(f, [$0..30]); # Robert Israel, Oct 14 2016
  • Mathematica
    FunctionExpand@Table[4^n Sqrt[Pi] Exp[-1/4] (Gamma[n/2 + 1, -1/4]/((-1)^(n/2) Gamma[(1 - n)/2]) + n  Gamma[(n + 1)/2, -1/4]/(2 (-1)^((n - 1)/2) Gamma[1 - n/2])), {n, 0, 20}]
    Table[Integrate[HermiteH[n, x]*Exp[-x], {x, 0, Infinity}], {n, 0, 10}] (* G. C. Greubel, Oct 13 2016 *)
    FunctionExpand@Table[2^n*(n!/Floor[n/2]!)*Gamma[Ceiling[(n+1)/2],-1/4]*Exp[-1/4], {n,0,19}] (* Peter Luschny, Oct 17 2016 *)
  • Sage
    def A():
        yield 1
        yield 2
        n, a, h, i = 2, 6, -2, 2
        while True:
            yield a
            n += 1
            a *= n << 1
            if is_even(n):
                i += 4
                h *= -i
                a += h
    H = A(); print([next(H) for  in range(20)]) # _Peter Luschny, Oct 16 2016

Formula

a(n) = 4^n*sqrt(Pi)*exp(-1/4)*(Gamma(1+n/2, -1/4)/((-1)^(n/2)*Gamma((1-n)/2)) + n*Gamma((n+1)/2, -1/4)/(2*(-1)^((n-1)/2)*Gamma(1-n/2))), assuming that 1/Gamma(z) is an entire function of z having zeros at nonpositive integer arguments.
Recurrence: 2*((n+1)*a(n) + 2*n*(n-1)*a(n-2)) = 2*n*a(n-1) + a(n+1).
E.g.f.: exp(-x^2)/(1-2*x).
a(n)/n! ~ exp(-1/4) * 2^n. - Vaclav Kotesovec, Oct 14 2016
a(2*n) = 2^n*(2*n-1)!!*A001907(n), a(2*n+1) = 2^(n+1)*(2*n+1)!!*A001907(n). - Vladimir Reshetnikov, Oct 14 2016
From Peter Luschny, Oct 17 2016: (Start)
a(n) = 2^n*(n!/floor(n/2)!)*Gamma(ceiling((n+1)/2),-1/4)*exp(-1/4).
The swinging factorial A056040(n) divides a(n).
Recurrence: If n is odd then a(n) = a(n-1)*n*2 else a(n) = a(n-1)*n*2 + (-1)^[n/2]* n!/[n/2]!. See the Sage implementation. (End)

A337154 a(n) = 4^n * (n!)^2 * Sum_{k=0..n} 1 / ((-4)^k * (k!)^2).

Original entry on oeis.org

1, 3, 49, 1763, 112833, 11283299, 1624795057, 318459831171, 81525716779777, 26414332236647747, 10565732894659098801, 5113814721015003819683, 2945557279304642200137409, 1991196720809938127292888483, 1561098229114991491797624570673, 1404988406203492342617862113605699
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[4^n n!^2 Sum[1/((-4)^k k!^2), {k, 0, n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[BesselJ[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = 4^n * (n!)^2 * sum(k=0, n, 1 / ((-4)^k * (k!)^2)); \\ Michel Marcus, Jan 28 2021

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselJ(0,2*sqrt(x)) / (1 - 4*x).
a(0) = 1; a(n) = 4 * n^2 * a(n-1) + (-1)^n.

A337553 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (4*k-3) * a(n-k).

Original entry on oeis.org

1, 1, 7, 45, 439, 5157, 73455, 1217101, 23066311, 491680437, 11645898655, 303422639517, 8624098330359, 265546702327813, 8805478883825359, 312844282877905389, 11855836533424581415, 477380986427269453653, 20352680600044759742463, 915923521948522369041469
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] (4 k - 3) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[1/(Exp[x] (3 - 4 x) - 2), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    seq(n)={Vec(serlaplace(1 / (exp(x + O(x*x^n)) * (3 - 4*x) - 2)))} \\ Andrew Howroyd, Aug 31 2020

Formula

E.g.f.: 1 / (exp(x) * (3 - 4*x) - 2).
a(n) ~ n! * c * 2^(2*n+1) / ((1-c) * (3 - 4*c)^(n+1)), where c = -LambertW(-exp(-3/4)/2). - Vaclav Kotesovec, Aug 31 2020

A375612 Triangle read by rows: T(n, k) = n! * 4^k * hypergeom([-k], [-n], -1/4).

Original entry on oeis.org

1, 1, 3, 2, 7, 25, 6, 22, 81, 299, 24, 90, 338, 1271, 4785, 120, 456, 1734, 6598, 25121, 95699, 720, 2760, 10584, 40602, 155810, 598119, 2296777, 5040, 19440, 75000, 289416, 1117062, 4312438, 16651633, 64309755, 40320, 156240, 605520, 2347080, 9098904, 35278554, 136801778, 530555479, 2057912161
Offset: 0

Views

Author

Detlef Meya, Aug 21 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1, 3;
[2] 2, 7, 25;
[3] 6, 22, 81, 299;
[4] 24, 90, 338, 1271, 4785;
[5] 120, 456, 1734, 6598, 25121, 95699;
[6] 720, 2760, 10584, 40602, 155810, 598119, 2296777;
[7] 5040, 19440, 75000, 289416, 1117062, 4312438, 16651633, 64309755;
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-1)^k*Sum[(-4)^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

T(n, k) = (-1)^k*Sum_{j=0..k} (-4)^(k - j)*binomial(k, k - j)*(n - j)!.

A296660 Expansion of the e.g.f. exp(-2*x)/(1-4*x).

Original entry on oeis.org

1, 2, 20, 232, 3728, 74528, 1788736, 50084480, 1602703616, 57697329664, 2307893187584, 101547300251648, 4874270412083200, 253462061428318208, 14193875439985836032, 851632526399150129152, 54504481689545608331264, 3706304754889101366394880
Offset: 0

Views

Author

Emanuele Munarini, Dec 18 2017

Keywords

Comments

Binomial self-convolution of sequence A296618.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[-2x]/(1-4x),{x,0,12}],x]Range[0,12]!
    Table[Sum[Binomial[n, k] 4^k k! (-2)^(n-k), {k, 0, n}], {n, 0, 12}]
  • Maxima
    makelist(sum(binomial(n,k)*4^k*k!*(-2)^(n-k),k,0,n),n,0,12);
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(exp(-2*x)/(1-4*x))) \\ Altug Alkan, Dec 18 2017

Formula

E.g.f.: exp(-2*x)/(1-4*x).
a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*(-2)^(n-k).
Sum_{k=0..n} binomial(n,k)*2^(n-k)*a(k) = 4^n n!.
a(n+1)-4*(n+1)*a(n) = (-2)^(n+1).
D-finite with recurrence a(n+2)-(4*n+6)*a(n+1)-8*(n+1)*a(n) = 0.
From Vaclav Kotesovec, Dec 18 2017: (Start)
a(n) = exp(-1/2) * 4^n * Gamma(n + 1, -1/2).
a(n) ~ n! * exp(-1/2) * 4^n. (End)
Showing 1-9 of 9 results.