cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A375863 a(1) = 0 and a(n) = A050603(n-1)^2 for n > 0. Lexicographically earliest nonnegative sequence of integers such that the Gilbreath transform of a(1..n) gives floor(log_2(n)).

Original entry on oeis.org

0, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 25, 25, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 36, 36, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 25
Offset: 1

Views

Author

Thomas Scheuerle, Sep 02 2024

Keywords

Examples

			The first row is the sequence itself. The rows below are the absolute differences
of each previous row:
0, 1, 1, 4, 4, 1, 1, 9, 9, 1, 1, 4, 4, 1, 1, 16, 16, ...
 1, 0, 3, 0, 3, 0, 8, 0, 8, 0, 3, 0, 3, 0, 15, 0, ...
  1, 3, 3, 3, 3, 8, 8, 8, 8, 3, 3, 3, 3, 15, 15, ...
   2, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 12, 0, ...
    2, 0, 0, 5, 5, 0, 0, 5, 5, 0, 0, 12, 12, ...
     2, 0, 5, 0, 5, 0, 5, 0, 5, 0, 12, 0, ...
      2, 5, 5, 5, 5, 5, 5, 5, 5, 12, 12, ...
       3, 0, 0, 0, 0, 0, 0, 0, 7, 0, ...
        3, 0, 0, 0, 0, 0, 0, 7, 7, ...
         3, 0, 0, 0, 0, 0, 7, 0, ...
          3, 0, 0, 0, 0, 7, 7, ...
           3, 0, 0, 0, 7, 0, ...
            3, 0, 0, 7, 7, ...
             3, 0, 7, 0, ...
              3, 7, 7, ...
               4, 0, ...
                4, ...
The main diagonal is floor(log_2(n)), where n = 1 in the first row and n = 2 in the second etc. .
		

Crossrefs

Cf. A050603, A039963 (Gilbreath transform of floor(log_2(n))).

Programs

  • PARI
    a(n) = if(n == 1, 0,valuation(n-(n-2)%2, 2)^2)

A007814 Exponent of highest power of 2 dividing n, a.k.a. the binary carry sequence, the ruler sequence, or the 2-adic valuation of n.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
Offset: 1

Views

Author

John Tromp, Dec 11 1996

Keywords

Comments

This sequence is an exception to my usual rule that when every other term of a sequence is 0 then those 0's should be omitted. In this case we would get A001511. - N. J. A. Sloane
To construct the sequence: start with 0,1, concatenate to get 0,1,0,1. Add + 1 to last term gives 0,1,0,2. Concatenate those 4 terms to get 0,1,0,2,0,1,0,2. Add + 1 to last term etc. - Benoit Cloitre, Mar 06 2003
The sequence is invariant under the following two transformations: increment every element by one (1, 2, 1, 3, 1, 2, 1, 4, ...), put a zero in front and between adjacent elements (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...). The intermediate result is A001511. - Ralf Hinze (ralf(AT)informatik.uni-bonn.de), Aug 26 2003
Fixed point of the morphism 0->01, 1->02, 2->03, 3->04, ..., n->0(n+1), ..., starting from a(1) = 0. - Philippe Deléham, Mar 15 2004
Fixed point of the morphism 0->010, 1->2, 2->3, ..., n->(n+1), .... - Joerg Arndt, Apr 29 2014
a(n) is also the number of times to repeat a step on an even number in the hailstone sequence referenced in the Collatz conjecture. - Alex T. Flood (whiteangelsgrace(AT)gmail.com), Sep 22 2006
Let F(n) be the n-th Fermat number (A000215). Then F(a(r-1)) divides F(n)+2^k for r = k mod 2^n and r != 1. - T. D. Noe, Jul 12 2007
The following relation holds: 2^A007814(n)*(2*A025480(n-1)+1) = A001477(n) = n. (See functions hd, tl and cons in [Paul Tarau 2009].)
a(n) is the number of 0's at the end of n when n is written in base 2.
a(n+1) is the number of 1's at the end of n when n is written in base 2. - M. F. Hasler, Aug 25 2012
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 0). That is, A003188(n) XOR A003188(n+1) == 2^A007814(n). - Russ Cox, Dec 04 2010
The sequence is squarefree (in the sense of not containing any subsequence of the form XX) [Allouche and Shallit]. Of course it contains individual terms that are squares (such as 4). - Comment expanded by N. J. A. Sloane, Jan 28 2019
a(n) is the number of zero coefficients in the n-th Stern polynomial, A125184. - T. D. Noe, Mar 01 2011
Lemma: For n < m with r = a(n) = a(m) there exists n < k < m with a(k) > r. Proof: We have n=b2^r and m=c2^r with b < c both odd; choose an even i between them; now a(i2^r) > r and n < i2^r < m. QED. Corollary: Every finite run of consecutive integers has a unique maximum 2-adic valuation. - Jason Kimberley, Sep 09 2011
a(n-2) is the 2-adic valuation of A000166(n) for n >= 2. - Joerg Arndt, Sep 06 2014
a(n) = number of 1's in the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} p_j-th prime (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(24)=3; indeed, the partition having Heinz number 24 = 2*2*2*3 is [1,1,1,2]. - Emeric Deutsch, Jun 04 2015
a(n+1) is the difference between the two largest parts in the integer partition having viabin number n (0 is assumed to be a part). Example: a(20) = 2. Indeed, we have 19 = 10011_2, leading to the Ferrers board of the partition [3,1,1]. For the definition of viabin number see the comment in A290253. - Emeric Deutsch, Aug 24 2017
Apart from being squarefree, as noted above, the sequence has the property that every consecutive subsequence contains at least one number an odd number of times. - Jon Richfield, Dec 20 2018
a(n+1) is the 2-adic valuation of Sum_{e=0..n} u^e = (1 + u + u^2 + ... + u^n), for any u of the form 4k+1 (A016813). - Antti Karttunen, Aug 15 2020
{a(n)} represents the "first black hat" strategy for the game of countably infinitely many hats, with a probability of success of 1/3; cf. the Numberphile link below. - Frederic Ruget, Jun 14 2021
a(n) is the least nonnegative integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022

Examples

			2^3 divides 24, so a(24)=3.
From _Omar E. Pol_, Jun 12 2009: (Start)
Triangle begins:
  0;
  1,0;
  2,0,1,0;
  3,0,1,0,2,0,1,0;
  4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
  5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
  6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,...
(End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 27.
  • K. Atanassov, On the 37th and the 38th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 2, 83-85.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A011371 (partial sums), A094267 (first differences), A001511 (bisection), A346070 (mod 4).
Bisection of A050605 and |A088705|. Pairwise sums are A050603 and A136480. Difference of A285406 and A281264.
This is Guy Steele's sequence GS(1, 4) (see A135416). Cf. A053398(1,n). Column/row 1 of table A050602.
Cf. A007949 (3-adic), A235127 (4-adic), A112765 (5-adic), A122841 (6-adic), A214411 (7-adic), A244413 (8-adic), A122840 (10-adic).
Cf. A086463 (Dgf at s=2).

Programs

  • Haskell
    a007814 n = if m == 0 then 1 + a007814 n' else 0
                where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Jul 05 2013, May 14 2011, Apr 08 2011
    
  • Haskell
    a007814 n | odd n = 0 | otherwise = 1 + a007814 (n `div` 2)
    --  Walt Rorie-Baety, Mar 22 2013
    
  • Magma
    [Valuation(n, 2): n in [1..120]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    ord := proc(n) local i,j; if n=0 then return 0; fi; i:=0; j:=n; while j mod 2 <> 1 do i:=i+1; j:=j/2; od: i; end proc: seq(ord(n), n=1..111);
    A007814 := n -> padic[ordp](n,2): seq(A007814(n), n=1..111); # Peter Luschny, Nov 26 2010
  • Mathematica
    Table[IntegerExponent[n, 2], {n, 64}] (* Eric W. Weisstein *)
    IntegerExponent[Range[64], 2] (* Eric W. Weisstein, Feb 01 2024 *)
    p=2; Array[ If[ Mod[ #, p ]==0, Select[ FactorInteger[ # ], Function[ q, q[ [ 1 ] ]==p ], 1 ][ [ 1, 2 ] ], 0 ]&, 96 ]
    DigitCount[BitXor[x, x - 1], 2, 1] - 1; a different version based on the same concept: Floor[Log[2, BitXor[x, x - 1]]] (* Jaume Simon Gispert (jaume(AT)nuem.com), Aug 29 2004 *)
    Nest[Join[ #, ReplacePart[ #, Length[ # ] -> Last[ # ] + 1]] &, {0, 1}, 5] (* N. J. Gunther, May 23 2009 *)
    Nest[ Flatten[# /. a_Integer -> {0, a + 1}] &, {0}, 7] (* Robert G. Wilson v, Jan 17 2011 *)
  • PARI
    A007814(n)=valuation(n,2);
    
  • Python
    import math
    def a(n): return int(math.log(n - (n & n - 1), 2)) # Indranil Ghosh, Apr 18 2017
    
  • Python
    def A007814(n): return (~n & n-1).bit_length() # Chai Wah Wu, Jul 01 2022
    
  • R
    sapply(1:100,function(x) sum(gmp::factorize(x)==2)) # Christian N. K. Anderson, Jun 20 2013
    
  • Scheme
    (define (A007814 n) (let loop ((n n) (e 0)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = A001511(n) - 1.
a(2*n) = A050603(2*n) = A001511(n).
a(n) = A091090(n-1) + A036987(n-1) - 1.
a(n) = 0 if n is odd, otherwise 1 + a(n/2). - Reinhard Zumkeller, Aug 11 2001
Sum_{k=1..n} a(k) = n - A000120(n). - Benoit Cloitre, Oct 19 2002
G.f.: A(x) = Sum_{k>=1} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Apr 10 2002
G.f. A(x) satisfies A(x) = A(x^2) + x^2/(1-x^2). A(x) = B(x^2) = B(x) - x/(1-x), where B(x) is the g.f. for A001151. - Franklin T. Adams-Watters, Feb 09 2006
Totally additive with a(p) = 1 if p = 2, 0 otherwise.
Dirichlet g.f.: zeta(s)/(2^s-1). - Ralf Stephan, Jun 17 2007
Define 0 <= k <= 2^n - 1; binary: k = b(0) + 2*b(1) + 4*b(2) + ... + 2^(n-1)*b(n-1); where b(x) are 0 or 1 for 0 <= x <= n - 1; define c(x) = 1 - b(x) for 0 <= x <= n - 1; Then: a(k) = c(0) + c(0)*c(1) + c(0)*c(1)*c(2) + ... + c(0)*c(1)...c(n-1); a(k+1) = b(0) + b(0)*b(1) + b(0)*b(1)*b(2) + ... + b(0)*b(1)...b(n-1). - Arie Werksma (werksma(AT)tiscali.nl), May 10 2008
a(n) = floor(A002487(n - 1) / A002487(n)). - Reikku Kulon, Oct 05 2008
Sum_{k=1..n} (-1)^A000120(n-k)*a(k) = (-1)^(A000120(n)-1)*(A000120(n) - A000035(n)). - Vladimir Shevelev, Mar 17 2009
a(A001147(n) + A057077(n-1)) = a(2*n). - Vladimir Shevelev, Mar 21 2009
For n>=1, a(A004760(n+1)) = a(n). - Vladimir Shevelev, Apr 15 2009
2^(a(n)) = A006519(n). - Philippe Deléham, Apr 22 2009
a(n) = A063787(n) - A000120(n). - Gary W. Adamson, Jun 04 2009
a(C(n,k)) = A000120(k) + A000120(n-k) - A000120(n). - Vladimir Shevelev, Jul 19 2009
a(n!) = n - A000120(n). - Vladimir Shevelev, Jul 20 2009
v_{2}(n) = Sum_{r>=1} (r / 2^(r+1)) Sum_{k=0..2^(r+1)-1} e^(2(k*Pi*i(n+2^r))/(2^(r+1))). - A. Neves, Sep 28 2010, corrected Oct 04 2010
a(n) mod 2 = A096268(n-1). - Robert G. Wilson v, Jan 18 2012
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7; a(n) = (A037227(n)-1)/2. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = p, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 04 2013
a(n) = A067255(n,1). - Reinhard Zumkeller, Jun 11 2013
a(n) = log_2(n - (n AND n-1)). - Gary Detlefs, Jun 13 2014
a(n) = 1 + A000120(n-1) - A000120(n), where A000120 is the Hamming weight function. - Stanislav Sykora, Jul 14 2014
A053398(n,k) = a(A003986(n-1,k-1)+1); a(n) = A053398(n,1) = A053398(n,n) = A053398(2*n-1,n) = Min_{k=1..n} A053398(n,k). - Reinhard Zumkeller, Aug 04 2014
a((2*x-1)*2^n) = a((2*y-1)*2^n) for positive n, x and y. - Juri-Stepan Gerasimov, Aug 04 2016
a(n) = A285406(n) - A281264(n). - Ralf Steiner, Apr 18 2017
a(n) = A000005(n)/(A000005(2*n) - A000005(n)) - 1. - conjectured by Velin Yanev, Jun 30 2017, proved by Nicholas Stearns, Sep 11 2017
Equivalently to above formula, a(n) = A183063(n) / A001227(n), i.e., a(n) is the number of even divisors of n divided by number of odd divisors of n. - Franklin T. Adams-Watters, Oct 31 2018
a(n)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Feb 16 2019
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Jul 11 2020
a(n) = 2*Sum_{j=1..floor(log_2(n))} frac(binomial(n, 2^j)*2^(j-1)/n). - Dario T. de Castro, Jul 08 2022
a(n) = A070939(n) - A070939(A030101(n)). - Andrew T. Porter, Dec 16 2022
a(n) = floor((gcd(n, 2^n)^(n+1) mod (2^(n+1)-1)^2)/(2^(n+1)-1)) (see Lemma 3.4 from Mazzanti's 2002 article). - Lorenzo Sauras Altuzarra, Mar 10 2024
a(n) = 1 - A088705(n). - Chai Wah Wu, Sep 18 2024

Extensions

Formula index adapted to the offset of A025480 by R. J. Mathar, Jul 20 2010
Edited by Ralf Stephan, Feb 08 2014

A001511 The ruler function: exponent of the highest power of 2 dividing 2n. Equivalently, the 2-adic valuation of 2n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Number of 2's dividing 2*n.
a(n) is equivalently the exponent of the smallest power of 2 which does not divide n. - David James Sycamore, Oct 02 2023
a(n) - 1 is the number of trailing zeros in the binary expansion of n.
If you are counting in binary and the least significant bit is numbered 1, the next bit is 2, etc., a(n) is the bit that is incremented when increasing from n-1 to n. - Jud McCranie, Apr 26 2004
Number of steps to reach an integer starting with (n+1)/2 and using the map x -> x*ceiling(x) (cf. A073524).
a(n) is the number of the disk to be moved at the n-th step of the optimal solution to Towers of Hanoi problem (comment from Andreas M. Hinz).
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 1). This is essentially equivalent to Hinz's comment. - Adam Kertesz, Jul 28 2001
a(n) is the Hamming distance between n and n-1 (in binary). This is equivalent to Kertesz's comments above. - Tak-Shing Chan (chan12(AT)alumni.usc.edu), Feb 25 2003
Let S(0) = {1}, S(n) = {S(n-1), S(n-1)-{x}, x+1} where x = last term of S(n-1); sequence gives S(infinity). - Benoit Cloitre, Jun 14 2003
The sum of all terms up to and including the first occurrence of m is 2^m-1. - Donald Sampson (marsquo(AT)hotmail.com), Dec 01 2003
m appears every 2^m terms starting with the 2^(m-1)th term. - Donald Sampson (marsquo(AT)hotmail.com), Dec 08 2003
Sequence read mod 4 gives A092412. - Philippe Deléham, Mar 28 2004
If q = 2n/2^A001511(n) and if b(m) is defined by b(0)=q-1 and b(m)=2*b(m-1)+1, then 2n = b(A001511(n)) + 1. - Gerald McGarvey, Dec 18 2004
Repeating pattern ABACABADABACABAE ... - Jeremy Gardiner, Jan 16 2005
Relation to C(n) = Collatz function iteration using only odd steps: a(n) is the number of right bits set in binary representation of A004767(n) (numbers of the form 4*m+3). So for m=A004767(n) it follows that there are exactly a(n) recursive steps where m
Between every two instances of any positive integer m there are exactly m distinct values (1 through m-1 and one value greater than m). - Franklin T. Adams-Watters, Sep 18 2006
Number of divisors of n of the form 2^k. - Giovanni Teofilatto, Jul 25 2007
Every prefix up to (but not including) the first occurrence of some k >= 2 is a palindrome. - Gary W. Adamson, Sep 24 2008
1 interleaved with (2 interleaved with (3 interleaved with ( ... ))). - Eric D. Burgess (ericdb(AT)gmail.com), Oct 17 2009
A054525 (Möbius transform) * A001511 = A036987 = A047999^(-1) * A001511. - Gary W. Adamson, Oct 26 2009
Equals A051731 * A036987, (inverse Möbius transform of the Fredholm-Rueppel sequence) = A047999 * A036987. - Gary W. Adamson, Oct 26 2009
Cf. A173238, showing links between generalized ruler functions and A000041. - Gary W. Adamson, Feb 14 2010
Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...), A(x) = (1 + x + 3x^2 + 4x^3 + 10x^4 + 13x^5 + ...), A(x^2) = (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...), where A092119 = (1, 1, 3, 4, 10, ...) = Euler transform of the ruler sequence, A001511. - Gary W. Adamson, Feb 11 2010
Subtracting 1 from every term and deleting any 0's yields the same sequence, A001511. - Ben Branman, Dec 28 2011
In the listing of the compositions of n as lists in lexicographic order, a(k) is the last part of composition(k) for all k <= 2^(n-1) and all n, see example. - Joerg Arndt, Nov 12 2012
According to Hinz, et al. (see links), this sequence was studied by Louis Gros in his 1872 pamphlet "Théorie du Baguenodier" and has therefore been called the Gros sequence.
First n terms comprise least squarefree word of length n using positive integers, where "squarefree" means that the word contains no consecutive identical subwords; e.g., 1 contains no square; 11 contains a square but 12 does not; 121 contains no square; both 1211 and 1212 have squares but 1213 does not; etc. - Clark Kimberling, Sep 05 2013
Length of 0-run starting from 2 (10, 100, 110, 1000, 1010, ...), or length of 1-run starting from 1 (1, 11, 101, 111, 1001, 1011, ...) of every second number, from right to left in binary representation. - Armands Strazds, Apr 13 2017
a(n) is also the frequency of the largest part in the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017
As A000005(n) equals the number of even divisors of 2n and A001227(n) = A001227(2n), the formula A001511(n) = A000005(n)/A001227(n) might be read as "The number of even divisors of 2n is always divisible by the number of odd divisors of 2n" (where number of divisors means sum of zeroth powers of divisors). Conjecture: For any nonnegative integer k, the sum of the k-th powers of even divisors of n is always divisible by the sum of the k-th powers of odd divisors of n. - Ivan N. Ianakiev, Jul 06 2019
From Benoit Cloitre, Jul 14 2022: (Start)
To construct the sequence, start from 1's separated by a place 1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,,1,...
Then put the 2's in every other remaining place
1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,,1,2,1,...
Then the 3's in every other remaining place
1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,,1,2,1,...
Then the 4's in every other remaining place
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,,1,2,1,3,1,2,1,4,1,2,1,...
By iterating this process, we get the ruler function 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,... (End)
a(n) is the least positive integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022
a(n) is the smallest positive integer that does not occur in the coincidences of the sequence so far a(1..n-1) and its reverse. - Neal Gersh Tolunsky, Jan 18 2023
The geometric mean of this sequence approaches the Somos constant (A112302). - Jwalin Bhatt, Jan 31 2025

Examples

			For example, 2^1|2, 2^2|4, 2^1|6, 2^3|8, 2^1|10, 2^2|12, ... giving the initial terms 1, 2, 1, 3, 1, 2, ...
From _Omar E. Pol_, Jun 12 2009: (Start)
Triangle begins:
1;
2,1;
3,1,2,1;
4,1,2,1,3,1,2,1;
5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1;
6,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1;
7,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6,1,2,1,3,...
(End)
S(0) = {} S(1) = 1 S(2) = 1, 2, 1 S(3) = 1, 2, 1, 3, 1, 2, 1 S(4) = 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1. - Yann David (yann_david(AT)hotmail.com), Mar 21 2010
From _Joerg Arndt_, Nov 12 2012: (Start)
The 16 compositions of 5 as lists in lexicographic order:
[ n]  a(n)  composition
[ 1]  [ 1]  [ 1 1 1 1 1 ]
[ 2]  [ 2]  [ 1 1 1 2 ]
[ 3]  [ 1]  [ 1 1 2 1 ]
[ 4]  [ 3]  [ 1 1 3 ]
[ 5]  [ 1]  [ 1 2 1 1 ]
[ 6]  [ 2]  [ 1 2 2 ]
[ 7]  [ 1]  [ 1 3 1 ]
[ 8]  [ 4]  [ 1 4 ]
[ 9]  [ 1]  [ 2 1 1 1 ]
[10]  [ 2]  [ 2 1 2 ]
[11]  [ 1]  [ 2 2 1 ]
[12]  [ 3]  [ 2 3 ]
[13]  [ 1]  [ 3 1 1 ]
[14]  [ 2]  [ 3 2 ]
[15]  [ 1]  [ 4 1 ]
[16]  [ 5]  [ 5 ]
a(n) is the last part in each list.
(End)
From _Omar E. Pol_, Aug 20 2013: (Start)
Also written as a triangle in which the right border gives A000027 and row lengths give A011782 and row sums give A000079 the sequence begins:
1;
2;
1,3;
1,2,1,4;
1,2,1,3,1,2,1,5;
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6;
1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,7;
(End)
G.f. = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 2*x^6 + x^7 + 4*x^8 + x^9 + 2*x^10 + ...
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 2nd ed., 2001-2003; see Dim- and Dim+ on p. 98; Dividing Rulers, on pp. 436-437; The Ruler Game, pp. 469-470; Ruler Fours, Fives, ... Fifteens on p. 470.
  • L. Gros, Théorie du Baguenodier, Aimé Vingtrinier, Lyon, 1872.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E22.
  • A. M. Hinz, The Tower of Hanoi, in Algebras and combinatorics (Hong Kong, 1997), 277-289, Springer, Singapore, 1999.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589.
  • Andrew Schloss, "Towers of Hanoi" composition, in The Digital Domain. Elektra/Asylum Records 9 60303-2, 1983. Works by Jaffe (Finale to "Silicon Valley Breakdown"), McNabb ("Love in the Asylum"), Schloss ("Towers of Hanoi"), Mattox ("Shaman"), Rush, Moorer ("Lions are Growing") and others.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 1 of table A050600.
Sequence read mod 2 gives A035263.
Sequence is bisection of A007814, A050603, A050604, A067029, A089309.
This is Guy Steele's sequence GS(4, 2) (see A135416).
Cf. A005187 (partial sums), A085058 (bisection), A112302 (geometric mean), A171977 (2^a(n)).
Cf. A287896, A002487, A209229 (Mobius trans.), A092673 (Dirichlet inv.).
Cf. generalized ruler functions for k=3,4,5: A051064, A115362, A055457.

Programs

  • Haskell
    a001511 n = length $ takeWhile ((== 0) . (mod n)) a000079_list
    -- Reinhard Zumkeller, Sep 27 2011
    
  • Haskell
    a001511 n | odd n = 1 | otherwise = 1 + a001511 (n `div` 2)
    -- Walt Rorie-Baety, Mar 22 2013
    
  • MATLAB
    nmax=5;r=1;for n=2:nmax;r=[r n r];end % Adriano Caroli, Feb 26 2016
    
  • Magma
    [Valuation(2*n,2): n in [1..105]]; // Bruno Berselli, Nov 23 2015
    
  • Maple
    A001511 := n->2-wt(n)+wt(n-1); # where wt is defined in A000120
    # This is the binary logarithm of the denominator of (256^n-1)B_{8n}/n, in Maple parlance a := n -> log[2](denom((256^n-1)*bernoulli(8*n)/n)). - Peter Luschny, May 31 2009
    A001511 := n -> padic[ordp](2*n,2): seq(A001511(n), n=1..105);  # Peter Luschny, Nov 26 2010
    a:= n-> ilog2((Bits[Xor](2*n, 2*n-1)+1)/2): seq(a(n), n=1..50);  # Gary Detlefs, Dec 13 2018
  • Mathematica
    Array[ If[ Mod[ #, 2] == 0, FactorInteger[ # ][[1, 2]], 0] &, 105] + 1 (* or *)
    Nest[ Flatten[ # /. a_Integer -> {1, a + 1}] &, {1}, 7] (* Robert G. Wilson v, Mar 04 2005 *)
    IntegerExponent[2*n, 2] (* Alexander R. Povolotsky, Aug 19 2011 *)
    myHammingDistance[n_, m_] := Module[{g = Max[m, n], h = Min[m, n]}, b1 = IntegerDigits[g, 2]; b2 = IntegerDigits[h, 2, Length[b1]]; HammingDistance[b1, b2]] (* Vladimir Shevelev A206853 *) Table[ myHammingDistance[n, n - 1], {n, 111}] (* Robert G. Wilson v, Apr 05 2012 *)
    Table[Position[Reverse[IntegerDigits[n,2]],1,1,1],{n,110}]//Flatten (* Harvey P. Dale, Aug 18 2017 *)
  • PARI
    a(n) = sum(k=0,floor(log(n)/log(2)),floor(n/2^k)-floor((n-1)/2^k)) /* Ralf Stephan */
    
  • PARI
    a(n)=if(n%2,1,factor(n)[1,2]+1) /* Jon Perry, Jun 06 2004 */
    
  • PARI
    {a(n) = if( n, valuation(n, 2) + 1, 0)}; /* Michael Somos, Sep 30 2006 */
    
  • PARI
    {a(n)=if(n==1,1,polcoeff(x-sum(k=1, n-1, a(k)*x^k*(1-x^k)*(1-x+x*O(x^n))), n))} /* Paul D. Hanna, Jun 22 2007 */
    
  • Python
    def a(n): return bin(n)[2:][::-1].index("1") + 1 # Indranil Ghosh, May 11 2017
    
  • Python
    A001511 = lambda n: (n&-n).bit_length() # M. F. Hasler, Apr 09 2020
    
  • Python
    def A001511(n): return (~n & n-1).bit_length()+1 # Chai Wah Wu, Jul 01 2022
    
  • Sage
    [valuation(2*n,2) for n in (1..105)]  # Bruno Berselli, Nov 23 2015
    
  • Scheme
    (define (A001511 n) (let loop ((n n) (e 1)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = A007814(n) + 1 = A007814(2*n).
a(2*n+1) = 1; a(2*n) = 1 + a(n). - Philippe Deléham, Dec 08 2003
a(n) = 2 - A000120(n) + A000120(n-1), n >= 1. - Daniele Parisse
a(n) = 1 + log_2(abs(A003188(n) - A003188(n-1))).
Multiplicative with a(p^e) = e+1 if p = 2; 1 if p > 2. - David W. Wilson, Aug 01 2001
For any real x > 1/2: lim_{N->infinity} (1/N)*Sum_{n=1..N} x^(-a(n)) = 1/(2*x-1); also lim_{N->infinity} (1/N)*Sum_{n=1..N} 1/a(n) = log(2). - Benoit Cloitre, Nov 16 2001
s(n) = Sum_{k=1..n} a(k) is asymptotic to 2*n since s(n) = 2*n - A000120(n). - Benoit Cloitre, Aug 31 2002
For any n >= 0, for any m >= 1, a(2^m*n + 2^(m-1)) = m. - Benoit Cloitre, Nov 24 2002
a(n) = Sum_{d divides n and d is odd} mu(d)*tau(n/d). - Vladeta Jovovic, Dec 04 2002
G.f.: A(x) = Sum_{k>=0} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Dec 24 2002
a(1) = 1; for n > 1, a(n) = a(n-1) + (-1)^n*a(floor(n/2)). - Vladeta Jovovic, Apr 25 2003
A fixed point of the mapping 1->12; 2->13; 3->14; 4->15; 5->16; ... . - Philippe Deléham, Dec 13 2003
Product_{k>0} (1+x^k)^a(k) is g.f. for A000041(). - Vladeta Jovovic, Mar 26 2004
G.f. A(x) satisfies A(x) = A(x^2) + x/(1-x). - Franklin T. Adams-Watters, Feb 09 2006
a(A118413(n,k)) = A002260(n,k); = a(A118416(n,k)) = A002024(n,k); a(A014480(n)) = A003602(A014480(n)). - Reinhard Zumkeller, Apr 27 2006
Ordinal transform of A003602. - Franklin T. Adams-Watters, Aug 28 2006 (The ordinal transform of a sequence b_0, b_1, b_2, ... is the sequence a_0, a_1, a_2, ... where a_n is the number of times b_n has occurred in {b_0 ... b_n}.)
Could be extended to n <= 0 using a(-n) = a(n), a(0) = 0, a(2*n) = a(n)+1 unless n=0. - Michael Somos, Sep 30 2006
A094267(2*n) = A050603(2*n) = A050603(2*n + 1) = a(n). - Michael Somos, Sep 30 2006
Sequence = A129360 * A000005 = M*V, where M = an infinite lower triangular matrix and V = d(n) as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Row sums of triangle A130093. - Gary W. Adamson, May 13 2007
Dirichlet g.f.: zeta(s)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007
a(n) = -Sum_{d divides n} mu(2*d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
G.f.: x/(1-x) = Sum_{n>=1} a(n)*x^n*( 1 - x^n ). - Paul D. Hanna, Jun 22 2007
2*n = 2^a(n)* A000265(n). - Eric Desbiaux, May 14 2009 [corrected by Alejandro Erickson, Apr 17 2012]
Multiplicative with a(2^k) = k + 1, a(p^k) = 1 for any odd prime p. - Franklin T. Adams-Watters, Jun 09 2009
With S(n): 2^n - 1 first elements of the sequence then S(0) = {} (empty list) and if n > 0, S(n) = S(n-1), n, S(n-1). - Yann David (yann_david(AT)hotmail.com), Mar 21 2010
a(n) = log_2(A046161(n)/A046161(n-1)). - Johannes W. Meijer, Nov 04 2012
a((2*n-1)*2^p) = p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 05 2013
a(n+1) = 1 + Sum_{j=0..ceiling(log_2(n+1))} (j * (1 - abs(sign((n mod 2^(j + 1)) - 2^j + 1)))). - Enrico Borba, Oct 01 2015
Conjecture: a(n) = A181988(n)/A003602(n). - L. Edson Jeffery, Nov 21 2015
a(n) = log_2(A006519(n)) + 1. - Doug Bell, Jun 02 2017
Inverse Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
a(n) = 1 + (A183063(n)/A001227(n)). - Omar E. Pol, Nov 06 2018 (after Franklin T. Adams-Watters)
a(n) = log_2((Xor(2*n,2*n-1)+1)/2). - Gary Detlefs, Dec 13 2018
(2^(a(n)-1)-1)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Dec 14 2018
a(n) = A000005(n)/A001227(n). - Ivan N. Ianakiev, Jul 05 2019
a(n) = Sum_{j=1..r} (j/2^j)*(Product_{k=1..j} (1 - (-1)^floor( (n+2^(j-1))/2^(k-1) ))), for n < a predefined 2^r. - Adriano Caroli, Sep 30 2019

Extensions

Name edited following suggestion by David James Sycamore, Oct 05 2023

A136480 Number of trailing equal digits in binary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3
Offset: 0

Author

Reinhard Zumkeller, Dec 31 2007

Keywords

Comments

a(even) = number of trailing binary zeros;
a(odd) = number of trailing binary ones.
For n>0, power of 2 associated with n^2 + n, e.g. n=4 gives 20, so a(4)=2. - Jon Perry, Sep 12 2014

Crossrefs

Programs

  • Haskell
    a136480 0 = 1
    a136480 n = a007814 $ n + mod n 2  -- Reinhard Zumkeller, Jul 22 2014
    
  • JavaScript
    for (n=1;n<120;n++) {
    m=n*n+n;
    c=0;
    while (m%2==0) {m/=2;c++;}
    document.write(c+", ");
    }  // Jon Perry, Sep 12 2014
    
  • Maple
    A136480 := proc(n)
        if n = 0 then
            1;
        else
            A007814(n*(n+1)) ;
        end if;
    end proc:
    seq( A136480(n),n=0..80) ; # R. J. Mathar, Mar 20 2023
  • Mathematica
    Length[Last[Split[IntegerDigits[#,2]]]]&/@Range[0,140]  (* Harvey P. Dale, Mar 31 2011 *)
  • PARI
    a(n)=if (n, valuation(n+n%2,2), 1) \\ Charles R Greathouse IV, Oct 14 2013
    
  • Python
    def A136480(n): return (~(m:=n+(n&1))& m-1).bit_length() # Chai Wah Wu, Jul 08 2022

Formula

a(n) = A050603(n-1) for n>0;
a(2*n + n mod 2) = a(n) + 1.
For n>0: a(n) = A007814(n + n mod 2).
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=0..m} a(k) = 2. - Amiram Eldar, Sep 15 2022
a(n) = A007814(A002378(n)), n>0. - R. J. Mathar, Mar 20 2023

A053398 Nim-values from game of Kopper's Nim.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 2, 0, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 0, 2, 0, 2, 0, 3, 0, 3, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1
Offset: 1

Keywords

Comments

Rows/columns 1-10 are A007814, A050603, A053399, A053384-A053890.
Comment from R. K. Guy: David Singmaster (zingmast(AT)sbu.ac.uk) sent me, about 5 years ago, a game he'd received from Bodo Koppers. It is played with two heaps of beans. The move is to remove one heap and split the other into two nonempty heaps. I'm not sure if Koppers invented it, or got it from elsewhere. I do not think that he analyzed it, but Singmaster did.

Crossrefs

Cf. A003986, A007814 (both edges & central terms & minima per row), A000523 (max per row), A245836 (row sums), A003987, A051775.

Programs

  • Haskell
    a053398 :: Int -> Int -> Int
    a053398 n k = a007814 $ a003986 (n - 1) (k - 1) + 1
    a053398_row n = map (a053398 n) [1..n]
    a053398_tabl = map a053398_row [1..]
    -- Reinhard Zumkeller, Aug 04 2014

Formula

a(x, y) = place of last zero bit of (x-1) OR (y-1).
T(n,k) = A007814(A003986(n-1,k-1)+1). - Reinhard Zumkeller, Aug 04 2014

A050600 Recursion counts for summation table A003056 with formula a(y,0) = y, a(y,x) = a((y XOR x),2*(y AND x)).

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 1, 1, 1, 0, 1, 3, 2, 3, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 4, 3, 4, 2, 4, 3, 4, 0, 1, 1, 3, 3, 2, 2, 3, 3, 1, 0, 1, 2, 1, 3, 2, 2, 2, 3, 1, 2, 0, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0
Offset: 0

Author

Antti Karttunen, Jun 22 1999

Keywords

Comments

Count the summation table A003056 with recursive formula based on identity A+B = (A XOR B)+ 2*(A AND B) given by Schroeppel and then this table gives the number of recursion steps to get the final result.
For k=1..n-1: T(n,k) = T(n,n-k) = A080080(n-k,k) + 1. - Reinhard Zumkeller, Aug 03 2014

Crossrefs

Column 1: A001511, column 2: A050603, column 3: A050604.
Cf. A050601, A050602, A003056, A048720 (for the Maple implementation of trinv and XORnos, ANDnos)
Cf. A080080.

Programs

  • Haskell
    import Data.Bits (xor, (.&.), shiftL)
    a050600 n k = adder 0 (n - k) k where
       adder :: Int -> Int -> Int -> Int
       adder c u 0 = c
       adder c u v = adder (c + 1) (u `xor` v) (shiftL (u .&. v) 1)
    a050600_row n = map (a050600 n) $ reverse [0..n]
    a050600_tabl = map a050600_row [0..]
    -- Reinhard Zumkeller, Aug 02 2014
  • Maple
    add1c := proc(a,b) option remember; if(0 = b) then RETURN(0); else RETURN(1+add_c(XORnos(a,b),2*ANDnos(a,b))); fi; end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2];
    add1c[a_, b_] := add1c[a, b] = If[b == 0, 0, 1 + add1c[BitXor[a, b], 2*BitAnd[a, b]]];
    a[n_] := add1c[n - (trinv[n]*(trinv[n] - 1))/2, (trinv[n] - 1)* ((1/2)*trinv[n] + 1) - n];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 21 2021, after Maple code *)

Formula

a(n) -> add1c( (n-((trinv(n)*(trinv(n)-1))/2)), (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n) )

A094267 First differences of A001511.

Original entry on oeis.org

1, -1, 2, -2, 1, -1, 3, -3, 1, -1, 2, -2, 1, -1, 4, -4, 1, -1, 2, -2, 1, -1, 3, -3, 1, -1, 2, -2, 1, -1, 5, -5, 1, -1, 2, -2, 1, -1, 3, -3, 1, -1, 2, -2, 1, -1, 4, -4, 1, -1, 2, -2, 1, -1, 3, -3, 1, -1, 2, -2, 1, -1, 6, -6, 1, -1, 2, -2, 1, -1, 3, -3, 1, -1, 2, -2, 1, -1, 4, -4, 1, -1, 2, -2, 1, -1, 3, -3, 1, -1, 2, -2, 1, -1, 5, -5, 1, -1, 2, -2, 1, -1, 3, -3
Offset: 0

Author

N. J. A. Sloane, Jun 03 2004

Keywords

Comments

For n even, Sum_{k=1..n} a(k) > 0. For n odd, Sum_{k=1..n} a(k) = 0. - James Spahlinger, Oct 13 2013

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + x^4 - x^5 + 3*x^6 - 3*x^7 + x^8 - x^9 + ...
		

Crossrefs

Absolute values give A050603. Cf. A001511, A005187.

Programs

  • PARI
    a(n)=(-1)^n*valuation(n+2-n%2,2) \\ Charles R Greathouse IV, Oct 14 2013
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=0, length( binary(n+2)) - 1, x^(2^k) / (1 - x^(2^k)), x^3 * O(x^n));  polcoeff( (A * (1 - x) - x) / x^2, n))}; /* Michael Somos, May 11 2014 */
    
  • Python
    def A094267(n): return (((m:=n>>1)&~(m+1)).bit_length()+1)*(-1 if n&1 else 1) # Chai Wah Wu, Jul 12 2022

Formula

a(n) = (-1)^n * A050603(n).
G.f.: -1/x + (1 - x)*Sum_{k>=0} x^(2^k-2)/(1 - x^(2^k)). - Ilya Gutkovskiy, Feb 28 2017

A324468 a(n) = r(n) + r(n+1) + r(n+2), where r(n) is the ruler sequence A007814.

Original entry on oeis.org

1, 3, 2, 3, 1, 4, 3, 4, 1, 3, 2, 3, 1, 5, 4, 5, 1, 3, 2, 3, 1, 4, 3, 4, 1, 3, 2, 3, 1, 6, 5, 6, 1, 3, 2, 3, 1, 4, 3, 4, 1, 3, 2, 3, 1, 5, 4, 5, 1, 3, 2, 3, 1, 4, 3, 4, 1, 3, 2, 3, 1, 7, 6, 7, 1, 3, 2, 3, 1, 4, 3, 4, 1, 3, 2, 3, 1, 5, 4, 5, 1, 3, 2, 3, 1
Offset: 1

Author

N. J. A. Sloane, Mar 03 2019

Keywords

Crossrefs

Cf. A001511, A007814, A050603 (r(n)+r(n+1)), A324465.

Programs

  • Magma
    [&+[Valuation(n+k, 2): k in [0..2]]: n in [1..70]]; // Vincenzo Librandi, Mar 10 2019
    
  • Mathematica
    Table[Sum[IntegerExponent[n + k, 2], {k, 0, 2}], {n, 100}] (* Vincenzo Librandi, Mar 10 2019 *)
  • PARI
    a(n) = sum(k=0, 2, valuation(n+k, 2)); \\ Michel Marcus, Mar 10 2019
    
  • Python
    def A324468(n): return (~n & n-1).bit_length()+(~(n+1) & n).bit_length()+(~(n+2) & n+1).bit_length() # Chai Wah Wu, Jul 01 2022

Formula

1 <= a(n) <= 1 + log_2(n+2). - Charles R Greathouse IV, Jul 01 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. - Amiram Eldar, Sep 10 2024

A378992 a(n) = A011371(n) - A048881(n); The exponent of the highest power of 2 dividing the n-th factorial minus the exponent of the highest power of 2 dividing n-th Catalan number.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 2, 4, 6, 6, 6, 7, 8, 8, 8, 11, 14, 14, 14, 15, 16, 16, 16, 18, 20, 20, 20, 21, 22, 22, 22, 26, 30, 30, 30, 31, 32, 32, 32, 34, 36, 36, 36, 37, 38, 38, 38, 41, 44, 44, 44, 45, 46, 46, 46, 48, 50, 50, 50, 51, 52, 52, 52, 57, 62, 62, 62, 63, 64, 64, 64, 66, 68, 68, 68, 69, 70, 70, 70, 73, 76, 76, 76
Offset: 0

Author

Antti Karttunen, Dec 16 2024

Keywords

Comments

Apparently, after the initial three 0's, only terms of A092054 occur, every other as a single copy, and every other in a batch of 3 duplicated terms.

Crossrefs

Programs

  • Mathematica
    A378992[n_] := n - DigitCount[n, 2, 1] - DigitCount[n + 1, 2, 1] + 1;
    Array[A378992, 100, 0] (* or *)
    MapIndexed[#2[[1]] - # &, Total[Partition[DigitCount[Range[0, 100], 2, 1], 2, 1], {2}]] (* Paolo Xausa, Dec 28 2024 *)
  • PARI
    A378992(n) = (1+(n-hammingweight(n)-hammingweight(1+n)));

Formula

a(n) = A007814(A000142(n)) - A007814(A000108(n)) = A011371(n) - A048881(n).
a(0) = 0; for n > 0, a(n) = A050605(n-1) + a(n-1), where A050605(n) = A007814(n+1)+A007814(n+2)-1.
Showing 1-9 of 9 results.