cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 142 results. Next

A028356 Simple periodic sequence underlying clock sequence A028354.

Original entry on oeis.org

1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4
Offset: 0

Views

Author

Keywords

Comments

From Klaus Brockhaus, May 15 2010: (Start)
Continued fraction expansion of (28+sqrt(2730))/56.
Decimal expansion of 1112/9009.
Partial sums of 1 followed by A130151.
First differences of A028357. (End)

References

  • Zdeněk Horský, "Pražský orloj" ("The Astronomical Clock of Prague", in Czech), Panorama, Prague, 1988, pp. 76-78.

Crossrefs

Cf. A177924 (decimal expansion of (28+sqrt(2730))/56), A130151 (repeat 1, 1, 1, -1, -1, -1), A028357 (partial sums of A028356). - Klaus Brockhaus, May 15 2010

Programs

  • Magma
    &cat [[1, 2, 3, 4, 3, 2]^^20]; // Klaus Brockhaus, May 15 2010
    
  • Maple
    A028356:=n->[1, 2, 3, 4, 3, 2][(n mod 6)+1]: seq(A028356(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
  • Mathematica
    CoefficientList[ Series[(1 + 2x + 3x^2 + 4x^3 + 3x^4 + 2x^5)/(1 - x^6), {x, 0, 85}], x]
    LinearRecurrence[{1,0,-1,1},{1,2,3,4},120] (* or *) PadRight[{},120,{1,2,3,4,3,2}] (* Harvey P. Dale, Apr 15 2016 *)
  • Python
    def A028356(n): return (1,2,3,4,3,2)[n%6] # Chai Wah Wu, Apr 18 2024
  • Sage
    def A():
        a, b, c, d = 1, 2, 3, 4
        while True:
            yield a
            a, b, c, d = b, c, d, a + (d - b)
    A028356 = A(); [next(A028356) for n in range(106)] # Peter Luschny, Jul 26 2014
    

Formula

Sum of any six successive terms is 15.
G.f.: (1 + 2*x + 3*x^2 + 4*x^3 + 3*x^4 + 2*x^5)/(1 - x^6).
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (15 - cos(n*Pi) - 8*cos(n*Pi/3))/6. (End)
E.g.f.: (15*exp(x) - exp(-x) - 8*cos(sqrt(3)*x/2)*(sinh(x/2) + cosh(x/2)))/6. - Ilya Gutkovskiy, Jun 23 2016
a(n) = abs(((n+3) mod 6)-3) + 1. - Daniel Jiménez, Jan 14 2023

Extensions

Additional comments from Robert G. Wilson v, Mar 01 2002

A029651 Central elements of the (1,2)-Pascal triangle A029635.

Original entry on oeis.org

1, 3, 9, 30, 105, 378, 1386, 5148, 19305, 72930, 277134, 1058148, 4056234, 15600900, 60174900, 232676280, 901620585, 3500409330, 13612702950, 53017895700, 206769793230, 807386811660, 3156148445580, 12350146091400, 48371405524650
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 2-subset of a (2n+1)-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007

References

  • V. N. Smith and L. Shapiro, Catalan numbers, Pascal's triangle and mutators, Congressus Numerant., 205 (2010), 187-197.

Crossrefs

Essentially a duplicate of A003409.

Programs

  • Maple
    a := n -> (3/2)*4^n*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(1+n))-0^n/2;
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Dec 16 2015
  • Mathematica
    Join[{1},Table[3*Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    concat([1], for(n=1, 50, print1(3*binomial(2*n-1,n), ", "))) \\ G. C. Greubel, Jan 23 2017

Formula

a(n) = 3 * binomial(2n-1, n) (n>0). - Len Smiley, Nov 03 2001
a(n) = 3*A001700(n-1), (n>=1).
G.f.: (1+xC(x))/(1-2xC(x)), C(x) the g.f. of A000108. - Paul Barry, Dec 17 2004
a(n) = A003409(n), n>0. - R. J. Mathar, Oct 23 2008
a(n) = Sum_{k=0..n} A039599(n,k)*A000034(k). - Philippe Deléham, Oct 29 2008
a(n) = (3/2)*4^n*Gamma(1/2+n)/(sqrt(Pi)*Gamma(1+n))-0^n/2. - Peter Luschny, Dec 16 2015
a(n) ~ (3/2)*4^n*(1-(1/8)/n+(1/128)/n^2+(5/1024)/n^3-(21/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = 2^(1-n)*Sum_{k=0..n} binomial(k+n,k)*binomial(2*n-1,n-k), n>0, a(0)=1. - Vladimir Kruchinin, Nov 23 2016
E.g.f.: (3*exp(2*x)*BesselI(0,2*x) - 1)/2. - Ilya Gutkovskiy, Nov 23 2016
a(n) = A143398(2n,n) = A145460(2n,n). - Alois P. Heinz, Sep 09 2018
a(n) = [x^n] C(-x)^(-3*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Oct 16 2024

Extensions

More terms from David W. Wilson

A083906 Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
Offset: 0

Views

Author

Alford Arnold, Jun 19 2003

Keywords

Comments

There are A033638(n) values in the n-th row, compliant with the order of the polynomial.
In the example for n=6 detailed below, the orders of [6, k]_q are 1, 6, 9, 10, 9, 6, 1 for k = 0..6,
the maximum order 10 defining the row length.
Note that 1 6 9 10 9 6 1 and related distributions are antidiagonals of A077028.
A083480 is a variation illustrating a relationship with numeric partitions, A000041.
The rows are formed by the nonzero entries of the columns of A049597.
If n is even the n-th row converges to n+1, n-1, n-4, ..., 19, 13, 7, 4, 3, 1 which is A029552 reversed, and if n is odd the sequence is twice A098613. - Michael Somos, Jun 25 2017

Examples

			When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
		

References

  • George E. Andrews, 'Theory of Partitions', 1976, page 242.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 100);
    qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
    A083906:= func< n,k | Coefficient(R!((&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
    [A083906(n,k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024
    
  • Maple
    QBinomial := proc(n,m,q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ) ; expand(%) ; end:
    A083906 := proc(n,k) add( QBinomial(n,m,q),m=0..n ) ; coeftayl(%,q=0,k) ; end:
    for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d,",A083906(n,k)) ; od: od: # R. J. Mathar, May 28 2009
    T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
    if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
    seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8);  # Peter Luschny, Feb 16 2024
  • Mathematica
    Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]],q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
  • PARI
    {T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
    
  • SageMath
    def T(n,k): # T = A083906
        if k<0 or k> (n^2//4): return 0
        elif n<2 : return n+1
        else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
    flatten([[T(n,k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024

Formula

T(n, k) is the coefficient [q^k] of the Sum_{m=0..n} [n, m]_q over q-Binomial coefficients.
Row sums: Sum_{k=0..floor(n^2/4)} T(n,k) = 2^n.
For n >= k, T(n+1,k) = T(n, k) + A000041(k). - Geoffrey Critzer, Feb 12 2021
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A060546(n). - G. C. Greubel, Feb 13 2024
From Mikhail Kurkov, Feb 14 2024: (Start)
T(n, k) = 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) for n >= 2 and 0 <= k <= floor(n^2/4).
Sum_{i=0..n} T(n-i, i) = A000041(n+1). Note that upper limit of the summation can be reduced to A083479(n) = (n+2) - ceiling(sqrt(4*n)).
Both results were proved (see MathOverflow link for details). (End)
From G. C. Greubel, Feb 17 2024: (Start)
T(n, floor(n^2/4)) = A000034(n).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A016116(n+1).
Sum_{k=0..(n + 2) - ceiling(sqrt(4*n))} (-1)^k*T(n - k, k) = (-1)^n*A000025(n+1) = -A260460(n+1). (End)

Extensions

Edited by R. J. Mathar, May 28 2009
New name using a comment from Geoffrey Critzer by Peter Luschny, Feb 17 2024

A218754 Number of ways to write n=p+q(3+(-1)^n)/2 with q<=n/2 and p, q, p^2+3pq+q^2 all prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 2, 1, 3, 1, 3, 1, 1, 2, 1, 0, 3, 3, 2, 3, 3, 0, 3, 0, 3, 2, 1, 1, 4, 1, 2, 2, 1, 2, 0, 2, 2, 2, 3, 0, 4, 1, 1, 2, 0, 1, 2, 3, 5, 0, 2, 1, 3, 4, 1, 1, 2, 2, 6, 2, 2, 4, 1, 2, 3, 2, 3, 3, 3, 2, 4, 1, 2, 5, 0, 3, 4, 2, 3, 4, 3, 1, 4, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 04 2012

Keywords

Comments

Conjecture: a(n)>0 for all n>=1188.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 23 2023
This conjecture is stronger than both Goldbach's conjecture and Lemoine's conjecture.
Zhi-Wei Sun also made the following conjecture: Given any positive odd integer d, there is a prime p(d) such that for any prime p>p(d) there is a prime q

Conjecture verified for d up to 100 and p up to 10^7. - Mauro Fiorentini, Sep 23 2023

Examples

			For n=72 we have a(72)=1 since the only primes p and q with p+q=72, q<=36 and p^2+3pq+q^2 prime are p=67 and q=5.
		

Crossrefs

Cf. A000034 = 1,2,1,2,... = (3-(-1)^n)/2. (Note: Offset shifted w.r.t. use in the definition of this sequence.) - M. F. Hasler, Nov 05 2012

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[q]==True&&PrimeQ[n-q(3-(-1)^n)/2]&&PrimeQ[q^2+3q(n-q(3-(-1)^n)/2)+(n-q(3-(-1)^n)/2)^2]==True,1,0],{q,1,n/2}]
    Do[Print[n," ",a[n]],{n,1,20000}]

A068073 Period 4 sequence [ 1, 2, 3, 2, ...].

Original entry on oeis.org

1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1
Offset: 0

Author

Robert G. Wilson v, Mar 01 2002

Keywords

Comments

Continued fraction expansion of (2+sqrt(14))/4. - Klaus Brockhaus, May 01 2010
The sequence is like a sawtooth wave of period 4. - Michael Somos, Feb 13 2011

Examples

			G.f. = 1 + 2*x + 3*x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8 + 2*x^9 + ...
		

Crossrefs

Cf. A177033 (decimal expansion of (2+sqrt(14))/4). - Klaus Brockhaus, May 01 2010

Programs

  • Mathematica
    CoefficientList[ Series[(1 + 2x + 3x^2 + 2x^3)/(1 - x^4), {x, 0, 85}], x]
    a[ n_] := {2, 3, 2, 1}[[Mod[n, 4, 1]]]; (* Michael Somos, Apr 17 2015 *)
    PadRight[{},120,{1,2,3,2}] (* Harvey P. Dale, Jun 13 2020 *)
  • PARI
    {a(n) = [1, 2, 3, 2] [n%4 + 1]}; /* Michael Somos, Feb 13 2011 */
    
  • PARI
    {a(n) = n%4 + 1 - 2 * (n%4 == 3)}; /* Michael Somos, Feb 13 2011 */
    
  • PARI
    {a(n) = 2 + kronecker( -4, n-1)}; /* Michael Somos, Feb 13 2011 */

Formula

G.f.: (1 + 2*x + 3*x^2 + 2*x^3) / (1 - x^4).
Conjecture: a(n) = Sum_{k=0..n} e^(i*Pi*(A000120(A001045(n)) - A001045(A000120(n)))), i=sqrt(-1). - Paul Barry, Jan 14 2005
From Paul Barry, Jan 14 2005: (Start)
G.f.: (1 + x + 2x^2)/(1 - x + x^2 - x^3);
a(n) = 2 - cos(Pi*n/2). (End)
Moebius transform is length 4 sequence [2, 1, 0, -2]. - Michael Somos, Feb 13 2011
a(n) = 2 - A056594(n). - Bruno Berselli, Mar 10 2011
a(n) = a(-n) = a(n+4) for all n in Z. - Michael Somos, Apr 17 2015
2 * a(n) = A164356(n) unless n=0. - Michael Somos, Apr 17 2015
G.f.: 1 / (1 - 2*x / (1 + x / (2 - 5*x / (1 + 16*x / (5 - x))))). - Michael Somos, Jan 20 2017
G.f.: 2 / (1 - x) - 1 / (1 + x^2). - Michael Somos, Jan 07 2019
a(n) = abs(((n+2) mod 4)-2) + 1. - Daniel Jiménez, Jan 14 2023

A084639 Expansion of x*(1+2*x)/((1+x)*(1-x)*(1-2*x)).

Original entry on oeis.org

0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364, 2729, 5460, 10921, 21844, 43689, 87380, 174761, 349524, 699049, 1398100, 2796201, 5592404, 11184809, 22369620, 44739241, 89478484, 178956969, 357913940, 715827881, 1431655764, 2863311529, 5726623060, 11453246121
Offset: 0

Author

Paul Barry, Jun 06 2003

Keywords

Comments

Original name was: Generalized Jacobsthal numbers.
This is the sequence A(0,1;1,2;3) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
Entries correspond to value bound adjustment for an N-bit string having M bits set and a(n+1) bit transitions. Wolfram Alpha can easily generate an entry. a(5)=41 stems from input as 1111110_2 - 1010101_2. The subtraction pattern alternates (begins at 1), and bit count is ptr+2 both terms, with the lead term having only its LSB clear. - Bill McEachen, Jul 15 2011
Also a(n) = 2*A000975(n) if n even, a(n) = 2*A000975(n) - 1 if n odd. - Michel Lagneau, Jan 11 2012
In the above comment by Bill McEachen the binary pattern (in an obvious notation) is for even n 1^(n+1)0 - (10)^((n+2)/2) and for odd n 1^(n+1)0 - (10)^((n+1)/2)1. That is for even n a(n) = sum(2^k, k=1..(n+1)) - sum(2^(2*k-1), k=1..(n+2)/2) = (2^(n+2) - 4)/3, and for odd n a(n) = sum(2^k , k=1..(n+1)) - sum(2^(2*k), k=0..(n+1)/2) = (2^(n+2) - 5)/3. This checks with the formula a(n) = (2^(n+3) + (-1)^n - 9)/6 given below. After a correspondence with Bill McEachen. - Wolfdieter Lang, Jan 24 2014
Michel Lagneau's comment above is equal to the fact that a(n) = A000975(n)-1, or in other words, this sequence gives the partial sums of Jacobsthal sequence, starting from its second 1, A001045(2). From this also follows that this sequence gives the positions of repunits in "Jacobsthal greedy base", A265747. - Antti Karttunen, Dec 17 2015
From Kensuke Matsuoka, Aug 11 2020: (Start)
This sequence is the sum of diagonally arranged powers of 2 repeated in an L shape. For example, a(1)=1, a(2) = 4, a(3)=9, a(4)= 20, a(5)=41, a(6)=84 are obtained from the figure below.
32
16 8
8 4 2
4 2 1 2
2 1 2 4 8
1 2 4 8 16 32
From this figure, a(n) = a(n-2) + 2^n is obtained. (End)
For n > 0, also the total distance that the disks travel from the leftmost peg to the middle peg in the Tower of Hanoi puzzle, in the unique solution with 2^n - 1 moves (see links). - Sela Fried, Dec 17 2023

Crossrefs

Programs

  • Magma
    [2^(n+2)/3+(-1)^n/6-3/2: n in [0..35]]; // Vincenzo Librandi, Aug 08 2011
    
  • Maple
    a:=proc(n) (2^(n+3) + (-1)^n - 9)/6 end proc: [seq(a(n), n=0..33)]; # Wolfdieter Lang, Jan 24 2014
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + 2 a[n - 2] + 3; Array[a, 32, 0] (* Or *)
    a[0] = 0; a[1] = 1; a[n_] := a[n] = 3 a[n - 1] - 2 a[n - 2] + (-1)^n; Array[a, 32, 0]
    CoefficientList[Series[x*(1+2*x)/((1+x)*(1-x)*(1-2*x)),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,-2},{0,1,4},40]  (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
  • PARI
    a(n)=2^(n+2)/3-if(n%2,5,4)/3 \\ Charles R Greathouse IV, Aug 08 2011
    
  • PARI
    concat(0, Vec(x*(1+2*x)/((1+x)*(1-x)*(1-2*x)) + O(x^100))) \\ Altug Alkan, Dec 17 2015
    
  • Python
    def A084639(n): return (4<Chai Wah Wu, Apr 25 2025

Formula

G.f.: x*(1+2*x)/((1+x)*(1-x)*(1-2*x)).
E.g.f.: 4*exp(2*x)/3-3*exp(x)/2+exp(-x)/6.
a(n) = a(n-1)+2*a(n-2)+3, a(0)=0, a(1)=1.
a(n) = 2^(n+2)/3+(-1)^n/6-3/2.
a(n) = A001045(n+2) - A000034(n).
a(n) = 5*a(n-2)-4*a(n-4). Cf. A084640, A101622. - Paul Curtz, Apr 03 2008
a(n) = 2*a(n-1) + a(n-2) -2*a(n-3). - R. J. Mathar, Jun 28 2010
a(n) = a(n-1)+2*a(n-2)+3, n>1. - Gary Detlefs, Dec 19 2010
a(n) = 3*a(n-1)-2*a(n-2) +(-1)^n, n>1. - Gary Detlefs, Dec 19 2010
a(n) = a(n-2) + 2^n for n >= 2. - Kensuke Matsuoka, Aug 11 2020

Extensions

Replaced duplicate of a formula by another recurrence - R. J. Mathar, Jun 28 2010

A201908 Irregular triangle of 2^k mod (2n-1).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 1, 2, 4, 8, 16, 15, 13, 9, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 9
Offset: 1

Author

T. D. Noe, Dec 07 2011

Keywords

Comments

The length of the rows is given by A002326. For n > 1, the first term of row n is 1 and the last term is n. Many sequences are in this one: starting at A036117 (mod 11) and A070335 (mod 23).
Row n, for n >= 2, divided elementwise by (2*n-1) gives the cycles of iterations of the doubling function D(x) = 2*x or 2*x-1 if 0 <= x < 1/2 or , 1/2 <= x < 1, respectively, with seed 1/(2*n-1). See the Devaney reference, pp. 25-26. D^[k](x) = frac(2^k/(2*n-1)), for k = 0, 1, ..., A002326(n-1) - 1. E.g., n = 3: 1/5, 2/5, 4/5, 3/5. - Gary W. Adamson and Wolfdieter Lang, Jul 29 2020.

Examples

			The irregular triangle T(n, k) begins:
n\k  0 1 2 3  4  5  6  7 8  9 10 11 12 13 14 15 16 17 ...
---------------------------------------------------------
1:   0
2:   1 2
3:   1 2 4 3
4:   1 2 4
5:   1 2 4 8  7  5
6:   1 2 4 8  5 10  9  7 3  6
7:   1 2 4 8  3  6 12 11 9  5 10  7
8:   1 2 4 8
9:   1 2 4 8 16 15 13  9
10:  1 2 4 8 16 13  7 14 9 18 17 15 11  3  6 12  5 10
... reformatted by _Wolfdieter Lang_, Jul 29 2020.
		

References

  • Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25

Crossrefs

Cf. A002326, A201909 (3^k), A201910 (5^k), A201911 (7^k).
Cf. A000034 (3), A070402 (5), A069705 (7), A036117 (11), A036118 (13), A062116 (17), A036120 (19), A070347 (21), A070335 (23), A070336 (25), A070337 (27), A036122 (29), A070338 (33), A070339 (35), A036124 (37), A070340 (39), A070348 (41), A070349 (43), A070350 (45), A070351 (47), A036128 (53), A036129 (59), A036130 (61), A036131 (67), A036135 (83), A036138 (101), A036140 (107), A201920 (125), A036144 (131), A036146 (139), A036147 (149), A036150 (163), A036152 (173), A036153 (179), A036154 (181), A036157 (197), A036159 (211), A036161 (227).

Programs

  • GAP
    R:=List([0..72],n->OrderMod(2,2*n+1));;
    Flat(Concatenation([0],List([2..11],n->List([0..R[n]-1],k->PowerMod(2,k,2*n-1))))); # Muniru A Asiru, Feb 02 2019
  • Mathematica
    nn = 30; p = 2; t = p^Range[0, nn]; Flatten[Table[If[IntegerQ[Log[p, n]], {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, 1, nn, 2}]]

Formula

T(n, k) = 2^k mod (2*n-1), n >= 1, k = 0, 1, ..., A002326(n-1) - 1.
T(n, k) = (2*n-1)*frac(2^k/(2*n-1)), n >= 1, k = 0, 1, ..., A002326(n-1) - 1, with the fractional part frac(x) = x - floor(x). - Wolfdieter Lang, Jul 29 2020

A007068 a(n) = a(n-1) + (3+(-1)^n)*a(n-2)/2.

Original entry on oeis.org

1, 3, 4, 10, 14, 34, 48, 116, 164, 396, 560, 1352, 1912, 4616, 6528, 15760, 22288, 53808, 76096, 183712, 259808, 627232, 887040, 2141504, 3028544, 7311552, 10340096, 24963200, 35303296, 85229696, 120532992, 290992384, 411525376, 993510144, 1405035520, 3392055808
Offset: 1

Keywords

Comments

First row of spectral array W(sqrt 2).
Row sums of the square of the matrix with general term binomial(floor(n/2),n-k). - Paul Barry, Feb 14 2005

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007068 n = a007068_list !! (n-1)
    a007068_list = 1 : 3 : zipWith (+)
       (tail a007068_list) (zipWith (*) a000034_list a007068_list)
    -- Reinhard Zumkeller, Jan 21 2012
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==3,a[n]==a[n-1]+(3+(-1)^n) a[n-2]/2},a[n],{n,40}] (* Harvey P. Dale, Nov 12 2012 *)

Formula

a(2n+1) = a(2n)+a(2n-1); a(2n) = a(2n-1)+2*a(2n-2); same recurrence (mod parity) as A001882. - Len Smiley, Feb 05 2001
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(floor(n/2), n-j)*C(floor(j/2), j-k). - Paul Barry, Feb 14 2005
a(n) = 4*a(n-2)-2*a(n-4). G.f.: -x*(1+x)*(2*x^2-2*x-1)/(1-4*x^2+2*x^4). a(2n+1)=A007070(n). a(2n)=A007052(n). [R. J. Mathar, Aug 17 2009]
a(n) = a(n-1) + a(n-2) * A000034(n-1). [Reinhard Zumkeller, Jan 21 2012]

Extensions

Better description and more terms from Olivier Gérard, Jun 05 2001

A010694 Period 2: repeat (2,4).

Original entry on oeis.org

2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2
Offset: 0

Keywords

Comments

Simple continued fraction expansion of 1 + sqrt(3/2) = A176051. - R. J. Mathar, Mar 08 2012
Number of linear characters of dihedral group of order 2(n+1). - Eric M. Schmidt, Feb 12 2013
a(n) is the n-th increment between two consecutive elements of the wheel in the wheel factorization with the basis {2, 3}. See A038179. - Wojciech Raszka, May 10 2019
In base 3, make a sequence such that after the initial term 2, each term is the sum of the squares of the digits of the previous term. That's this sequence (see A000216 for the base 10 version). - Alonso del Arte, Mar 19 2020

Crossrefs

Programs

Formula

From R. J. Mathar, Aug 28 2008: (Start)
a(n) = 2 * A000034(n).
G.f.: 2(1 + 2x)/((1 - x)(1 + x)). (End)
a(n) = a(n-2) for n >= 2. - Jaume Oliver Lafont, Mar 20 2009
a(n) = 2^(n+1) mod 6. - Roderick MacPhee, Mar 31 2011

A070893 Let r, s, t be three permutations of the set {1,2,3,..,n}; a(n) = value of Sum_{i=1..n} r(i)*s(i)*t(i), with r={1,2,3,..,n}; s={n,n-1,..,1} and t={n,n-2,n-4,...,1,...,n-3,n-1}.

Original entry on oeis.org

1, 6, 19, 46, 94, 172, 290, 460, 695, 1010, 1421, 1946, 2604, 3416, 4404, 5592, 7005, 8670, 10615, 12870, 15466, 18436, 21814, 25636, 29939, 34762, 40145, 46130, 52760, 60080, 68136, 76976, 86649, 97206, 108699, 121182, 134710, 149340
Offset: 1

Author

Wouter Meeussen, May 22 2002

Keywords

Comments

See A070735 for the minimal values for these products. This sequence is an upper bound. The third permutation 't'= ceiling(abs(range(n-1/2,-n,-2))) is such that it associates its smallest factor with the largest factor of the product 'r'*'s'.
We observe that is the transform of A002717 by the following transform T: T(u_0,u_1,u_2,u_3,...) = (u_0,u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In other words, v_p = Sum_{k=0..p} u_k and the g.f. phi_v of v is given by phi_v = phi_u/(1-z). - Richard Choulet, Jan 28 2010

Examples

			{1,2,3,4,5,6,7}*{7,6,5,4,3,2,1}*{7,5,3,1,2,4,6} gives {49,60,45,16,30,48,42}, with sum 290, so a(7)=290.
		

Crossrefs

Cf. A070735, A082289. a(n)=A082290(2n-2).
Cf. A002717 (first differences). - Bruno Berselli, Aug 26 2011
Column k=3 of A166278. - Alois P. Heinz, Nov 02 2012

Programs

  • Magma
    [(1/96)*(2*n*(n+2)*(3*n^2+10*n+4)+3*(-1)^n-3): n in [1..40]]; // Vincenzo Librandi, Aug 26 2011
  • Mathematica
    Table[Plus@@(Range[n]*Range[n, 1, -1]*Ceiling[Abs[Range[n-1/2, -n, -2]]]), {n, 49}];
    (* or *)
    CoefficientList[Series[ -(1+2x)/(-1+x)^5/(1+x), {x, 0, 48}], x]//Flatten
  • PARI
    a(n)=sum(i=1,n,i*(n+1-i)*ceil(abs(n+3/2-2*i)))
    
  • PARI
    a(n)=polcoeff(if(n<0,x^4*(2+x)/((1+x)*(1-x)^5),x*(1+2*x)/((1+x)*(1-x)^5))+x*O(x^abs(n)),abs(n))
    

Formula

G.f.: x*(1+2*x)/((1+x)*(1-x)^5). - Michael Somos, Apr 07 2003
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) + 3. If sequence is also defined for n <= 0 by this equation, then a(n)=0 for -3 <= n <= 0 and a(n)=A082289(-n) for n <= -4. - Michael Somos, Apr 07 2003
a(n) = (1/96)*(2*n*(n+2)*(3*n^2+10*n+4)+3*(-1)^n-3). a(n) - a(n-2) = A002411(n). - Bruno Berselli, Aug 26 2011
Previous Showing 31-40 of 142 results. Next