cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 80 results. Next

A357332 2-adic valuation of A000793(n).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 2, 0, 2, 1, 1, 2, 2, 2, 0, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3
Offset: 1

Views

Author

Jianing Song, Sep 24 2022

Keywords

Comments

Is it true that lim_{n->+oo} a(n) = +oo? It seems that the last occurrences of 0, 1, 2, 3, and 4 appear at indices 15, 77, 667, 4535, and 7520. More generally, is it true that lim_{n->+oo} v(A000793(n),p) = +oo for every prime p, where v(k,p) is the p-adic valuation of k?

Examples

			a(15) = 0 since A000793(15) = lcm(3,5,7) = 105 is odd.
a(77) = 1 since A000793(77) = lcm(2,3,5,7,11,13,17,19) = 9699690 is even but not divisible by 4.
		

Crossrefs

Cf. A000793.

Programs

  • PARI
    listn(N) = {
      my(V = vector(N, n, 1));
       forprime (i=2, N,  \\ primes i
          forstep (j=N, i,  -1,
             my( hi = V[j] );
             my( pp = i );  \\ powers of prime i
             while ( pp<=j,  \\ V[] is 1-based
                 hi = max(if(j==pp, pp, V[j-pp]*pp), hi);
                 pp *= i;
             );
             V[j] = hi;
          );
       );
       vector(N, n, valuation(V[n], 2));
    } \\ copied from Joerg Arndt's code for A000793

A383458 Maximum number of cycles in any permutation in S_n of the highest order (A000793(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 2, 2, 3, 4, 3, 4, 3, 3, 3, 4, 5, 4, 5, 6, 7, 4, 5, 4
Offset: 1

Views

Author

Anand Jain, Mar 22 2025

Keywords

Comments

Landau's function g(n) = A000793(n) gives the maximum order of any permutation on n elements.
The number of permutations of order g(n) is A074059, and the number of different cycle types of permutations of order g(n) is A074064. a(n) is the maximum number of cycles in any permutation of order g(n), and A383459(n) is the minimum number of cycles in any permutation of order g(n).

Examples

			There are two different cycle types of permutations in S_6 of the maximum order g(6) = 6, for example (123456) and (12)(345)(6). The minimum number of cycles is A383459(6) = 1 and maximum number is a(6) = 3.
		

Crossrefs

Programs

  • Julia
    using Combinatorics
    arrs = []
    for n in 1:25
        ps = integer_partitions(n)
        lcms = lcm.(ps)
        the_max, imax, = findmax(lcms)
        max_order_cyc_idxs = []
        for (i, l) in enumerate(lcms)
            if the_max == l
                push!(max_order_cyc_idxs, i)
            end
        end
        push!(arrs, ps[max_order_cyc_idxs])
    end
    map(x->maximum(length.(x)), arrs)

A206398 Erroneous version of A000793.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 60, 84, 105, 140, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 1540, 2310, 2310, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 13860, 16380, 16380, 20020, 30030, 30030, 60060, 60060, 60060, 60060, 120120, 120120, 180180
Offset: 1

Views

Author

Keywords

A324793 Numbers k such that A000793(k) = A159685(k).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 11, 15, 17, 18, 28, 41, 58, 77
Offset: 1

Views

Author

N. J. A. Sloane, Sep 05 2019

Keywords

Comments

This is the complete list of numbers n such that g(n) = h(n), in the notation of Deléglise-Nicolas (2019).

Crossrefs

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A000792 a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 729, 972, 1458, 2187, 2916, 4374, 6561, 8748, 13122, 19683, 26244, 39366, 59049, 78732, 118098, 177147, 236196, 354294, 531441, 708588, 1062882, 1594323, 2125764, 3188646, 4782969, 6377292
Offset: 0

Views

Author

Keywords

Comments

Numbers of the form 3^k, 2*3^k, 4*3^k with a(0) = 1 prepended.
If a set of positive numbers has sum n, this is the largest value of their product.
In other words, maximum of products of partitions of n: maximal value of Product k_i for any way of writing n = Sum k_i. To find the answer, take as many of the k_i's as possible to be 3 and then use one or two 2's (see formula lines below).
a(n) is also the maximal size of an Abelian subgroup of the symmetric group S_n. For example, when n = 6, one of the Abelian subgroups with maximal size is the subgroup generated by (123) and (456), which has order 9. [Bercov and Moser] - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Also the maximum number of maximal cliques possible in a graph with n vertices (cf. Capobianco and Molluzzo). - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 15 2001 [Corrected by Jim Nastos and Tanya Khovanova, Mar 11 2009]
Every triple of alternate terms {3*k, 3*k+2, 3*k+4} in the sequence forms a geometric progression with first term 3^k and common ratio 2. - Lekraj Beedassy, Mar 28 2002
For n > 4, a(n) is the least multiple m of 3 not divisible by 8 for which omega(m) <= 2 and sopfr(m) = n. - Lekraj Beedassy, Apr 24 2003
Maximal number of divisors that are possible among numbers m such that A080256(m) = n. - Lekraj Beedassy, Oct 13 2003
Or, numbers of the form 2^p*3^q with p <= 2, q >= 0 and 2p + 3q = n. Largest number obtained using only the operations +,* and () on the parts 1 and 2 of any partition of n into these two summands where the former exceeds the latter. - Lekraj Beedassy, Jan 07 2005
a(n) is the largest number of complexity n in the sense of A005520 (A005245). - David W. Wilson, Oct 03 2005
a(n) corresponds also to the ultimate occurrence of n in A001414 and thus stands for the highest number m such that sopfr(m) = n, for n >= 2. - Lekraj Beedassy, Apr 29 2002
a(n) for n >= 1 is a paradigm shift sequence with procedural length p = 0, in the sense of A193455. - Jonathan T. Rowell, Jul 26 2011
a(n) = largest term of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
For n >= 2, a(n) is the largest number whose prime divisors (with multiplicity) add to n, whereas the smallest such number (resp. smallest composite number) is A056240(n) (resp. A288814(n)). - David James Sycamore, Nov 23 2017
For n >= 3, a(n+1) = a(n)*(1 + 1/s), where s is the smallest prime factor of a(n). - David James Sycamore, Apr 10 2018

Examples

			a{8} = 18 because we have 18 = (8-5)*a(5) = 3*6 and one can verify that this is the maximum.
a(5) = 6: the 7 partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) and the corresponding products are 5, 4, 6, 3, 4, 2 and 1; 6 is the largest.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 18*x^8 + ...
		

References

  • B. R. Barwell, Cutting String and Arranging Counters, J. Rec. Math., 4 (1971), 164-168.
  • B. R. Barwell, Journal of Recreational Mathematics, "Maximum Product": Solution to Prob. 2004;25(4) 1993, Baywood, NY.
  • M. Capobianco and J. C. Molluzzo, Examples and Counterexamples in Graph Theory, p. 207. North-Holland: 1978.
  • S. L. Greitzer, International Mathematical Olympiads 1959-1977, Prob. 1976/4 pp. 18;182-3 NML vol. 27 MAA 1978
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 396.
  • P. R. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. Amer., 1991, pp. 30-31 and 188.
  • L. C. Larson, Problem-Solving Through Problems. Problem 1.1.4 pp. 7. Springer-Verlag 1983.
  • D. J. Newman, A Problem Seminar. Problem 15 pp. 5;15. Springer-Verlag 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A007600 for a left inverse.
Cf. array A064364, rightmost (nonvanishing) numbers in row n >= 2.
See A056240 and A288814 for the minimal numbers whose prime factors sums up to n.
A000792, A178715, A193286, A193455, A193456, and A193457 are closely related as paradigm shift sequences for (p = 0, ..., 5 respectively).
Cf. A202337 (subsequence).

Programs

  • Haskell
    a000792 n = a000792_list !! n
    a000792_list = 1 : f [1] where
       f xs = y : f (y:xs) where y = maximum $ zipWith (*) [1..] xs
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[1,1,2,3,4]; [n le 5 select I[n] else 3*Self(n-3): n in [1..45]]; // Vincenzo Librandi, Apr 14 2015
  • Maple
    A000792 := proc(n)
        m := floor(n/3) ;
        if n mod 3 = 0 then
            3^m ;
        elif n mod 3 = 1 then
            4*3^(m-1) ;
        else
            2*3^m ;
        end if;
        floor(%) ;
    end proc: # R. J. Mathar, May 26 2013
  • Mathematica
    a[1] = 1; a[n_] := 4* 3^(1/3 *(n - 1) - 1) /; (Mod[n, 3] == 1 && n > 1); a[n_] := 2*3^(1/3*(n - 2)) /; Mod[n, 3] == 2; a[n_] := 3^(n/3) /; Mod[n, 3] == 0; Table[a[n], {n, 0, 40}]
    CoefficientList[Series[(1 + x + 2x^2 + x^4)/(1 - 3x^3), {x, 0, 50}], x] (* Harvey P. Dale, May 01 2011 *)
    f[n_] := Max[ Times @@@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]]; f[1] = 1; Array[f, 43, 0] (* Robert G. Wilson v, Jul 31 2012 *)
    a[ n_] := If[ n < 2, Boole[ n > -1], 2^Mod[-n, 3] 3^(Quotient[ n - 1, 3] + Mod[n - 1, 3] - 1)]; (* Michael Somos, Jan 23 2014 *)
    Join[{1, 1}, LinearRecurrence[{0, 0, 3}, {2, 3, 4}, 50]] (* Jean-François Alcover, Jan 08 2019 *)
    Join[{1,1},NestList[#+Divisors[#][[-2]]&,2,41]] (* James C. McMahon, Aug 09 2024 *)
  • PARI
    {a(n) = floor( 3^(n - 4 - (n - 4) \ 3 * 2) * 2^( -n%3))}; /* Michael Somos, Jul 23 2002 */
    
  • PARI
    lista(nn) = {print1("1, 1, "); print1(a=2, ", "); for (n=1, nn, a += a/divisors(a)[2]; print1(a, ", "););} \\ Michel Marcus, Apr 14 2015
    
  • PARI
    A000792(n)=if(n>1,3^((n-2)\3)*(2+(n-2)%3),1) \\ M. F. Hasler, Jan 19 2019
    

Formula

G.f.: (1 + x + 2*x^2 + x^4)/(1 - 3*x^3). - Simon Plouffe in his 1992 dissertation.
a(3n) = 3^n; a(3*n+1) = 4*3^(n-1) for n > 0; a(3*n+2) = 2*3^n.
a(n) = 3*a(n-3) if n > 4. - Henry Bottomley, Nov 29 2001
a(n) = n if n <= 2, otherwise a(n-1) + Max{gcd(a(i), a(j)) | 0 < i < j < n}. - Reinhard Zumkeller, Feb 08 2002
A007600(a(n)) = n; Andrew Chi-Chih Yao attributes this observation to D. E. Muller. - Vincent Vatter, Apr 24 2006
a(n) = 3^(n - 2 - 2*floor((n - 1)/3))*2^(2 - (n - 1) mod 3) for n > 1. - Hieronymus Fischer, Nov 11 2007
From Kiyoshi Akima (k_akima(AT)hotmail.com), Aug 31 2009: (Start)
a(n) = 3^floor(n/3)/(1 - (n mod 3)/4), n > 1.
a(n) = 3^(floor((n - 2)/3))*(2 + ((n - 2) mod 3)), n > 1. (End)
a(n) = (2^b)*3^(C - (b + d))*(4^d), n > 1, where C = floor((n + 1)/3), b = max(0, ((n + 1) mod 3) - 1), d = max(0, 1 - ((n + 1) mod 3)). - Jonathan T. Rowell, Jul 26 2011
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x / (1 + x / (1 + x^2 / (1 + x))))))). - Michael Somos, May 12 2012
3*a(n) = 2*a(n+1) if n > 1 and n is not divisible by 3. - Michael Somos, Jan 23 2014
a(n) = a(n-1) + largest proper divisor of a(n-1), n > 2. - Ivan Neretin, Apr 13 2015
a(n) = max{a(i)*a(n-i) : 0 < i < n} for n >= 4. - Jianing Song, Feb 15 2020
a(n+1) = a(n) + A038754(floor( (2*(n-1) + 1)/3 )), for n > 1. - Thomas Scheuerle, Oct 27 2022

Extensions

More terms and better description from Therese Biedl (biedl(AT)uwaterloo.ca), Jan 19 2000

A057568 Number of partitions of n where n divides the product of the parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 5, 5, 1, 22, 1, 11, 23, 80, 1, 113, 1, 150, 85, 45, 1, 737, 226, 84, 809, 726, 1, 1787, 1, 4261, 735, 260, 1925, 9567, 1, 437, 1877, 16402, 1, 14630, 1, 9861, 33057, 1152, 1, 102082, 19393, 57330, 10159, 30706, 1, 207706, 47927, 200652
Offset: 1

Views

Author

Leroy Quet, Oct 04 2000

Keywords

Examples

			From _Gus Wiseman_, Jul 04 2019: (Start)
The a(1) = 1 through a(9) = 5 partitions are the following. The Heinz numbers of these partitions are given by A326149.
  (1)  (2)  (3)  (4)   (5)  (6)    (7)  (8)      (9)
                 (22)       (321)       (44)     (63)
                                        (422)    (333)
                                        (2222)   (3321)
                                        (4211)   (33111)
                                        (22211)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=1, 1, 0), `if`(i<1, 0, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, min(i, n-i), t/igcd(i, t)))))
        end:
    a:= n-> `if`(isprime(n), 1, b(n$3)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Dec 20 2017
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@#,n]&]],{n,20}] (* Gus Wiseman, Jul 04 2019 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 1, 1, 0], If[i < 1, 0, b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[i, n - i], t/GCD[i, t]]]]];
    a[n_] := If[PrimeQ[n], 1, b[n, n, n]];
    Array[a, 70] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • Scheme
    ;; This is a naive algorithm that scans over all partitions of each n. For fold_over_partitions_of see A000793.
    (define (A057568 n) (let ((z (list 0))) (fold_over_partitions_of n 1 * (lambda (partprod) (if (zero? (modulo partprod n)) (set-car! z (+ 1 (car z)))))) (car z)))
    ;; Antti Karttunen, Dec 20 2017

Extensions

More terms from James Sellers, Oct 09 2000

A034891 Number of different products of partitions of n; number of partitions of n into prime parts (1 included); number of distinct orders of Abelian subgroups of symmetric group S_n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 36, 45, 55, 67, 81, 98, 117, 140, 166, 196, 231, 271, 317, 369, 429, 496, 573, 660, 758, 869, 993, 1133, 1290, 1465, 1662, 1881, 2125, 2397, 2699, 3035, 3407, 3820, 4276, 4780, 5337, 5951, 6628, 7372, 8191, 9090
Offset: 0

Views

Author

Keywords

Comments

a(n) = length of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
Number of partitions of n into noncomposite parts. - Omar E. Pol, Jun 23 2022

Crossrefs

Programs

  • Haskell
    a034891 = length . a212721_row  -- Reinhard Zumkeller, Jun 14 2012
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, (p->
          `if`(i<0, 0, b(n, i-1)+ `if`(p>n, 0,
             b(n-p, i))))(`if`(i<1, 1, ithprime(i))))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    Table[ Length[ Union[ Apply[ Times, Partitions[ n], 1]]], {n, 30}]
    CoefficientList[ Series[ (1/(1 - x)) Product[1/(1 - x^Prime[i]), {i, 100}], {x, 0, 50}], x] (* Robert G. Wilson v, Aug 17 2013 *)
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<0, 0, b[n, i-1] + If[p>n, 0, b[n-p, i]]]]]; a[n_] := b[n, PrimePi[n] ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • Sage
    [Partitions(n, parts_in=(prime_range(n+1)+[1])).cardinality() for n in xsrange(1000)] # Giuseppe Coppoletta, Jul 11 2016

Formula

G.f.: (1/(1-x))*(1/Product_{k>0} (1-x^prime(k))). a(n) = (1/n)*Sum_{k=1..n} A074372(k)*a(n-k). Partial sums of A000607. - Vladeta Jovovic, Sep 19 2002
a(n) = A000041(n) - A353188(n). - Omar E. Pol, Jun 23 2022

Extensions

More terms from Vladeta Jovovic
a(0)=1 from Michael Somos, Feb 05 2011

A057511 Permutation of natural numbers: rotations of all branches of the rooted plane trees encoded by A014486.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 14, 16, 19, 10, 15, 12, 17, 20, 13, 18, 21, 22, 23, 25, 28, 30, 33, 37, 39, 42, 44, 53, 51, 47, 56, 60, 24, 29, 38, 43, 52, 26, 40, 31, 45, 48, 34, 54, 57, 61, 27, 41, 32, 46, 55, 35, 49, 58, 62, 36, 50, 59, 63, 64, 65, 67, 70, 72, 75, 79, 81
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Crossrefs

Inverse permutation: A057512. Cycle counts: A057513. Number of fixed objects: A057546. Max. cycle lengths are given by Landau's function A000793.

Programs

  • Maple
    # See A057509 for rotateL, A057501 for other procedures.
    map(CatalanRankGlobal,map(DeepRotateL, A014486));
    DeepRotateL := n -> pars2binexp(deeprotateL(binexp2pars(n)));
    deeprotateL := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else rotateL(map(deeprotateL,a)); fi; end;

A225630 Array of iterated Landau-like functions, starting maximization of LCM from the partition {1+1+...+1} of n, read downwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 6, 2, 1, 1, 1, 6, 12, 6, 2, 1, 1, 1, 6, 30, 12, 6, 2, 1, 1, 1, 12, 30, 60, 12, 6, 2, 1, 1, 1, 15, 84, 60, 60, 12, 6, 2, 1, 1, 1, 20, 120, 420, 60, 60, 12, 6, 2, 1, 1, 1, 30, 180, 840, 420, 60, 60, 12, 6, 2, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 13 2013

Keywords

Comments

Row 0 consists of all 1's (corresponding to lcm(1,1,...,1) computed from the {1+1+...+1} partition), after which, on each succeeding row, the entry A(row,n) is computed by finding such a partition {p1+p2+...+pk} of n that value of lcm(A(row-1,n),p1,p2,...,pk) is maximized.
This will produce the ordinary Landau's function (A000793) for row 1, the "second order Landau's function" (A225627) for row 2, etc.
For each column n, only finite number of distinct values (A225634(n)) occur, after which the fixed point A003418(n) that has been reached repeats forever.

Examples

			Table begins:
  1, 1, 1, 1,  1,  1,  1,   1,   1,  1, ...
  1, 1, 2, 3,  4,  6,  6,  12,  15, 20, ...
  1, 1, 2, 6, 12, 30, 30,  84, 120, ...
  1, 1, 2, 6, 12, 60, 60, 420, 840, ...
  ...
		

Crossrefs

Transpose: A225631. Cf. also A225632, A225634.
Row 0: A000012, row 1: A000793, row 2: A225627, row 3: A225628. Cf. also A225629.
Rows converge towards A003418, which is also the main diagonal of this array.
See A225640 for a variant which uses a similar process, but where the "initial seed" in column n is n instead of 1.

Programs

  • Scheme
    (define (A225630 n) (A225630bi (A025581 n) (A002262 n)))
    (define (A225630bi col row) (let ((maxlcm (list 0))) (let loop ((prevmaxlcm 1) (stepsleft row)) (if (zero? stepsleft) prevmaxlcm (begin (gen_partitions col (lambda (p) (set-car! maxlcm (max (car maxlcm) (apply lcm (cons prevmaxlcm p)))))) (loop (car maxlcm) (- stepsleft 1)))))))
    (define (gen_partitions m colfun) (let recurse ((m m) (b m) (n 0) (partition (list))) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (cons i partition)) (if (< i (min b m)) (loop (+ 1 i))))))))
Previous Showing 21-30 of 80 results. Next