cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 207 results. Next

A003366 Numbers that are the sum of 10 positive 6th powers.

Original entry on oeis.org

10, 73, 136, 199, 262, 325, 388, 451, 514, 577, 640, 738, 801, 864, 927, 990, 1053, 1116, 1179, 1242, 1305, 1466, 1529, 1592, 1655, 1718, 1781, 1844, 1907, 1970, 2194, 2257, 2320, 2383, 2446, 2509, 2572, 2635, 2922, 2985, 3048, 3111, 3174, 3237, 3300, 3650, 3713, 3776
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
98143 is in the sequence as 98143 = 1^6 + 1^6 + 1^6 + 1^6 + 1^6 + 1^6 + 3^6 + 4^6 + 6^6 + 6^6.
145526 is in the sequence as 145526 = 1^6 + 1^6 + 1^6 + 1^6 + 3^6 + 3^6 + 4^6 + 6^6 + 6^6 + 6^6.
173624 is in the sequence as 173624 = 3^6 + 3^6 + 3^6 + 5^6 + 5^6 + 5^6 + 5^6 + 5^6 + 6^6 + 6^6. (End)
		

Crossrefs

Cf. A001014 (sixth powers).

Programs

  • Mathematica
    With[{nn=3},Select[Total/@Tuples[Range[nn]^6,10]//Union,#<=(nn+1)^6+9&]] (* Harvey P. Dale, Dec 17 2019 *)

A081120 Number of integral solutions to Mordell's equation y^2 = x^3 - n.

Original entry on oeis.org

1, 2, 0, 4, 0, 0, 4, 1, 0, 0, 4, 0, 2, 0, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0, 2, 4, 1, 6, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 2, 0, 0, 0, 2, 2, 0, 6, 4, 2, 0, 0, 0, 4, 2, 4, 2, 0, 0, 0, 4, 2, 0, 4, 1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 4, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 6
Offset: 1

Views

Author

T. D. Noe, Mar 06 2003

Keywords

Comments

Mordell's equation has a finite number of integral solutions for all nonzero n.
Gebel, Pethö, and Zimmer (1998) computed the solutions for |n| <= 10^4. Bennett and Ghadermarzi (2015) extended this bound to |n| <= 10^7.
Sequence A081121 gives n for which there are no integral solutions. See A081119 for the number of integral solutions to y^2 = x^3 + n.
From Jianing Song, Aug 24 2022: (Start)
If A060951(n) = 0 (namely the elliptic curve y^2 = x^3 - n has rank 0), then:
- a(n) = 2 if n is of the form 432*t^6;
- a(n) = 1 if n is a cube;
- a(n) = 0 otherwise.
This follows from the complete description of the torsion group of y^2 = x^3 + n, using O to denote the point at infinity (see Exercise 10.19 of Chapter X of Silverman's Arithmetic of elliptic curves):
- If n = t^6 is a sixth power, then the torsion group consists of O, (2*t^2,+-3*t^3), (0,+-t^3), and (-t^2, 0).
- If n = t^2 is not a sixth power, then the torsion group consists of O and (0,+-t).
- If n = t^3 is not a sixth power, then the torsion group consists of O and (-t,0).
- If n is of the form -432*t^6, then the torsion group consists of O and (12*t^2,+-36*t^3).
- In all the other cases, the torsion group is trivial.
So a torsion point on y^2 = x^3 + n other than O is an integral point. If y^2 = x^3 + n has rank 0, then all the integral points on y^2 = x^3 + n are exactly the torsion points other than O.
Note that this result implies particularly that a(n) = a(n*t^6) for all t if A060951(n) = 0: the elliptic curve y^2 = x^3 - n*t^6 can be written as (y/t^3)^2 = (x/t^2)^3 - n, so it has the same Mordell-Weil group (hence the same rank and isomorphic torsion group) as y^2 = x^3 - n. (End)

Examples

			a(4)=4 refers to (x,y) = (2,+-2) and (5,+-11).
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.

Crossrefs

Cf. A081119, A081121. See A134109 for another version.

Programs

Extensions

Edited by Max Alekseyev, Feb 06 2021

A179386 Records of minima of A154333, difference of a cube minus the next smaller square.

Original entry on oeis.org

2, 4, 7, 26, 28, 47, 49, 60, 63, 174, 207, 307, 7670, 15336, 18589, 22189, 37071, 44678, 63604, 64432
Offset: 1

Views

Author

Artur Jasinski, Jul 13 2010, Aug 03 2010

Keywords

Comments

"Records of minima" here means values A154333(x) such that A154333(x') > A154333(x) for all x' > x, or equivalently, the range of m(x) = min{ A154333(x') ; x' > x }. - M. F. Hasler, Sep 27 2013
For the associated x values see A179387 (and example).
For the associated values y=max{ y | y^2 < x^3 }, see A179388.
From Artur Jasinski, Jul 13 2010: (Start)
Theorem (*Artur Jasinski*)
For any positive number x >= A179387(n) the distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n).
Proof: The number of integral points of each Mordell elliptic curve of the form x^3-y^2 = k is finite and completely computable, therefore such x can't exist.
(End)
An equivalent theorem is the following (*Artur Jasinski*): For any positive number x >= 1+A179387(n) distance between cube of x and square of any y (such that x<>n^2 and y<>n^3) can't be less than A179386(n+1). - Artur Jasinski, Aug 11 2010
Also: The range of b(n) = min { A181138(m) | m>n }. - M. F. Hasler, Sep 26 2013
Indeed, if k=A154333(x) is a member if this sequence A179386, then also k=A181138(y) for the corresponding y, and since there is no larger x' such that x'^3-y'^3 <= k, there cannot be a larger y' such that k=A181138(y') (since this y' would require a corresponding x' > x). Conversely, the same reasoning holds for "records of minima" in A181138. - M. F. Hasler, Sep 26 and Sep 28 2013

Examples

			For numbers x > 32, A154333(x) > 7.
For numbers x > 35, A154333(x) > 26.
For numbers x > 37, A154333(x) > 28.
For numbers x > 63, A154333(x) > 47.
For numbers x > 65, A154333(x) > 49.
For numbers x > 136, A154333(x) > 60.
For numbers x > 568, A154333(x) > 63.
For numbers x > 5215, A154333(x) > 174.
For numbers x > 367806, A154333(x) > 207.
For numbers x > 939787, A154333(x) > 307.
		

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; min = 10^100; Do[m = Floor[(n^3)^(1/2)]; k = n^3 - m^2; If[k != 0, If[k <= min, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; min = 10^100; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m]], {n, 1, 13333677}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

Extensions

Edited by M. F. Hasler, Sep 27 2013

A003364 Numbers that are the sum of 8 positive 6th powers.

Original entry on oeis.org

8, 71, 134, 197, 260, 323, 386, 449, 512, 736, 799, 862, 925, 988, 1051, 1114, 1177, 1464, 1527, 1590, 1653, 1716, 1779, 1842, 2192, 2255, 2318, 2381, 2444, 2507, 2920, 2983, 3046, 3109, 3172, 3648, 3711, 3774, 3837, 4103, 4166, 4229, 4292, 4355, 4376, 4418, 4439, 4481
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
167223 is in the sequence as 167223 = 1^6 + 1^6 + 3^6 + 3^6 + 3^6 + 3^6 + 6^6 + 7^6.
290366 is in the sequence as 290366 = 1^6 + 4^6 + 4^6 + 5^6 + 5^6 + 5^6 + 7^6 + 7^6.
443086 is in the sequence as 443086 = 2^6 + 3^6 + 5^6 + 5^6 + 5^6 + 5^6 + 7^6 + 8^6. (End)
		

Crossrefs

Cf. A001014 (sixth powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020

A081121 Numbers k such that Mordell's equation y^2 = x^3 - k has no integral solutions.

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 14, 16, 17, 21, 22, 24, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 65, 66, 68, 69, 70, 73, 75, 77, 78, 80, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99
Offset: 1

Views

Author

T. D. Noe, Mar 06 2003

Keywords

Comments

Mordell's equation has a finite number of integral solutions for all nonzero k. Gebel computes the solutions for k < 10^5. Sequence A054504 gives k for which there are no integral solutions to y^2 = x^3 + k. See A081120 for the number of integral solutions to y^2 = x^3 - n.
This is the complement of A106265. - M. F. Hasler, Oct 05 2013
Numbers k such that A081120(k) = 0. - Charles R Greathouse IV, Apr 29 2015

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.

Crossrefs

Programs

  • Mathematica
    m = 99; f[_List] := (xm = 2 xm; ym = Ceiling[xm^(3/2)];
    Complement[Range[m], Outer[Plus, -Range[0, ym]^2, Range[-xm, xm]^3] //Flatten //Union]); xm=10; FixedPoint[f, {}] (* Jean-François Alcover, Apr 29 2011 *)

A008456 12th powers: a(n) = n^12.

Original entry on oeis.org

0, 1, 4096, 531441, 16777216, 244140625, 2176782336, 13841287201, 68719476736, 282429536481, 1000000000000, 3138428376721, 8916100448256, 23298085122481, 56693912375296, 129746337890625, 281474976710656, 582622237229761
Offset: 0

Views

Author

Keywords

Comments

Numbers which are square, cubic and quartic. - Doug Bell, Jun 03 2017

Crossrefs

a(n) = A123868(n) + 1.
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A001014 (6th powers), A008454 (10th powers), A008455 (11th powers), A010801 (13th powers).
Cf. A013670 (zeta(12)).

Programs

Formula

Multiplicative with a(p^e) = p^(12*e). - David W. Wilson, Aug 01 2001
a(n) = A000290(n)^6 = A000578(n)^4 = A000583(n)^3 = A001014(n)^2. - Doug Bell, Jun 03 2017
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(12) = 691*Pi^12/638512875 (A013670).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2047*zeta(12)/2048 = 1414477*Pi^12/1307674368000. (End)
a(n) = 13*a(n-1)-78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+1716*a(n-7)-1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13). - Wesley Ivan Hurt, Dec 02 2021
Intersection of A000578 and A000583; i.e., cubes and 4th powers. - M. F. Hasler, Jul 03 2025

A000540 Sum of 6th powers: 0^6 + 1^6 + 2^6 + ... + n^6.

Original entry on oeis.org

0, 1, 65, 794, 4890, 20515, 67171, 184820, 446964, 978405, 1978405, 3749966, 6735950, 11562759, 19092295, 30482920, 47260136, 71397705, 105409929, 152455810, 216455810, 302221931, 415601835, 563637724, 754740700, 998881325, 1307797101, 1695217590
Offset: 0

Views

Author

Keywords

Comments

This sequence is related to A000539 by a(n) = n*A000539(n)-sum(A000539(i), i=0..n-1). - Bruno Berselli, Apr 26 2010

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, (2008), p. 289.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 6 of array A103438.
Partial sums of A001014.

Programs

  • Haskell
    a000540 n = a000540_list !! n
    a000540_list = scanl1 (+) a001014_list -- Reinhard Zumkeller, Dec 04 2011
    
  • Magma
    [n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42: n in [0..30]]; // Vincenzo Librandi, Apr 04 2015
  • Maple
    a:=n->sum (j^6,j=0..n): seq(a(n),n=0..27); # Zerinvary Lajos, Jun 27 2007
    A000540:=(z+1)*(z**4+56*z**3+246*z**2+56*z+1)/(z-1)**8; # g.f. by Simon Plouffe in his 1992 dissertation, without the leading 0.
    A000540 := proc(n) n^7/7+n^6/2+n^5/2-n^3/6+n/42 ; end proc: # R. J. Mathar
  • Mathematica
    Accumulate[Range[0,30]^6] (* Harvey P. Dale, Jul 30 2009 *)
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 1, 65, 794, 4890, 20515, 67171, 184820}, 31] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42 \\ Edward Jiang, Sep 10 2014
    
  • PARI
    a(n)=sum(i=1, n, i^6); \\ Michel Marcus, Sep 11 2014
    
  • Python
    A000540_list, m = [0], [720, -1800, 1560, -540, 62, -1, 0, 0]
    for _ in range(10**2):
        for i in range(7):
            m[i+1] += m[i]
        A000540_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,7)/7 for n in range(1, 29)]# Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)*(3*n^4+6*n^3-3*n+1)/42.
a(n) = sqrt(Sum_{j=1..n} Sum_{i=1..n} (i*j)^6). - Alexander Adamchuk, Oct 26 2004
G.f.: A(x) = 3*x/7*G(0); with G(k) = 1 + 2/(k+1+(k+1)/(2*k^2 + 4*k + 1 + 2*(k+1)^2/(3*k + 2 - 9*x*(k+1)*(k+2)^4*(k+3)*(2*k+5)/(3*x*(k+2)^4*(k+3)*(2*k+5)+(k+1)*(2*k+3)/G(k+1))))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
G.f.: x*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1) / (x-1)^8 . - R. J. Mathar, Aug 07 2012
a(n) = Sum_{i=1..n} J_6(i)*floor(n/i), where J_6 is A069091. - Enrique Pérez Herrero, Mar 09 2013
a(n) = 7*a(n-1) - 21* a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + 720. - Ant King, Sep 24 2013
a(n) = -Sum_{j=1..6} j*Stirling1(n+1,n+1-j)*Stirling2(n+6-j,n). - Mircea Merca, Jan 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 84*Pi*(8*cos(sqrt((sqrt(93) + 9)/6)*Pi) + 15*cos(sqrt((sqrt(93) + 9)/6)*Pi/2) * cosh(sqrt((sqrt(93) - 9)/6)*Pi/2) + 8*cosh(sqrt((sqrt(93) - 9)/6)*Pi) - 7*sqrt(3)*sin(sqrt((sqrt(93) + 9)/6)*Pi/2) * sinh(sqrt((sqrt(93) - 9)/6)*Pi/2)) / (31*(cos(sqrt((sqrt(93) + 9)/6)*Pi) + cosh(sqrt((sqrt(93) - 9)/6)*Pi))) = 0.985708051237101247832970793342271511... . - Vaclav Kotesovec, Feb 13 2015
a(n) = (n + 1)*(n + 1/2)*n*(n + 1/2 + z)*(n + 1/2 - z)*(n + 1/2 + zbar)*(n + 1/2 - zbar)/7, with I^2 = -1 and z = 2^(-3/2)*3^(-1/4)*(sqrt(sqrt(31) + 3*sqrt(3)) + I*sqrt(sqrt(31) - 3*sqrt(3))), and zbar is the complex conjugate of z. See the Graham et al. reference, eq. (6.98), pp. 288-289 (with n -> n+1). (There was a typo in the first edition, which was corrected in the second edition.) - Wolfdieter Lang, Apr 03 2015
a(n+2) = 36*A086020(n+1) + 24*A005585(n+1) + A000330(n+2). - Yasser Arath Chavez Reyes, Apr 16 2024

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A179145 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 1 integral solution.

Original entry on oeis.org

27, 125, 216, 1728, 2197, 3375, 4913, 6859, 8000, 13824, 19683, 24389, 27000, 29791, 59319, 68921, 74088, 79507, 91125, 103823, 110592, 132651, 140608, 148877, 157464, 166375, 195112, 205379, 216000, 226981, 238328, 287496, 300763, 314432
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Complement of A356703 among the positive cubes.
Cf. also A179163, A179419.

Programs

  • Mathematica
    (* Assuming every term is a cube *) xmax = 2000; r[n_] := Reap[ Do[ rpos = Reduce[y^2 == x^3 + n, y, Integers]; If[rpos =!= False, Sow[rpos]]; rneg = Reduce[y^2 == (-x)^3 + n, y, Integers]; If[rneg =!= False, Sow[rneg]], {x, 1, xmax}]]; ok[n_] := Which[ rn = r[n]; rn[[2]] === {}, False, Length[rn[[2]]] > 1, False, ! FreeQ[rn[[2, 1]], Or], False, True, True]; ok[n_ /; !IntegerQ[n^(1/3)]] = False; ok[1]=False; A179145 = Reap[ Do[ If[ok[n], Print[n]; Sow[n]], {n, 1, 320000}]][[2, 1]] (* Jean-François Alcover, Apr 12 2012 *)

Formula

a(n) = A356709(n)^3. - Jianing Song, Aug 24 2022

Extensions

Edited and extended by Ray Chandler, Jul 11 2010

A262675 Exponentially evil numbers.

Original entry on oeis.org

1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2015

Keywords

Comments

Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016

Examples

			864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
		

Crossrefs

Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.

Programs

  • Haskell
    a262675 n = a262675_list !! (n-1)
    a262675_list = filter
       (all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
    -- Reinhard Zumkeller, Oct 25 2015
    
  • Mathematica
    {1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
    expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
  • PARI
    isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i,2]) % 2, return (0));); return (1);} \\ Michel Marcus, Sep 27 2015
    
  • Perl
    use ntheory ":all"; sub isok { my @f = factor_exp($[0]); return scalar(grep { !(hammingweight($->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015

Formula

Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023

Extensions

More terms from Michel Marcus, Sep 27 2015
Previous Showing 21-30 of 207 results. Next