cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 142 results. Next

A100828 Expansion of (1+2*x-2*x^3-3*x^2)/((x-1)*(x+1)*(x^2+2*x-1)).

Original entry on oeis.org

1, 4, 7, 18, 41, 100, 239, 578, 1393, 3364, 8119, 19602, 47321, 114244, 275807, 665858, 1607521, 3880900, 9369319, 22619538, 54608393, 131836324, 318281039, 768398402, 1855077841, 4478554084, 10812186007, 26102926098, 63018038201
Offset: 0

Views

Author

Creighton Dement, Jan 06 2005; revised Aug 22 2005

Keywords

Comments

A floretion-generated sequence relating NSW and Pell numbers.
Elements of odd index in the sequence gives A002315. a(n+2) - a(n) = A002203(n+2).
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[B*C} with B = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and C = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e

Crossrefs

Programs

  • PARI
    Vec((1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Apr 29 2019

Formula

a(n) = (u^(n+1)+1)*(v^(n+1)+1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
From Colin Barker, Apr 29 2019: (Start)
G.f.: (1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)).
a(n) = (1 + (-1)^(1+n) + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n)) / 2.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3.
(End)

A244419 Coefficient triangle of polynomials related to the Dirichlet kernel. Rising powers. Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)).

Original entry on oeis.org

1, 1, 2, -1, 2, 4, -1, -4, 4, 8, 1, -4, -12, 8, 16, 1, 6, -12, -32, 16, 32, -1, 6, 24, -32, -80, 32, 64, -1, -8, 24, 80, -80, -192, 64, 128, 1, -8, -40, 80, 240, -192, -448, 128, 256, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, -1, 10, 60, -160, -560, 672, 1792, -1024, -2304, 512, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Jul 29 2014

Keywords

Comments

This is the row reversed version of A180870. See also A157751 and A228565.
The Dirichlet kernel is D(n,x) = Sum_{k=-n..n} exp(i*k*x) = 1 + 2*Sum_{k=1..n} T(n,x) = S(n, 2*y) + S(n-1, 2*y) = S(2*n, sqrt(2*(1+y))) with y = cos(x), n >= 0, with the Chebyshev polynomials T (A053120) and S (A049310). This triangle T(n, k) gives in row n the coefficients of the polynomial Dir(n,y) = D(n,x=arccos(y)) = Sum_{m=0..n} T(n,m)*y^m. See A180870, especially the Peter Bala comments and formulas.
This is the Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)) due to the o.g.f. for Dir(n,y) given by (1+z)/(1 - 2*y*z + z^2) = G(z)/(1 - y*F(z)) with G(z) = (1+z)/(1+z^2) and F(z) = 2*z/(1+z^2) (see the Peter Bala formula under A180870). For Riordan triangles and references see the W. Lang link 'Sheffer a- and z- sequences' under A006232.
The A- and Z- sequences of this Riordan triangle are (see the mentioned W. Lang link in the preceding comment also for the references): The A-sequence has o.g.f. 1+sqrt(1-x^2) and is given by A(2*k+1) = 0 and A(2*k) [2, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, -33/2048, -429/32768, -715/65536, ...], k >= 0. (See A098597 and A046161.)
The Z-sequence has o.g.f. sqrt((1-x)/(1+x)) and is given by
[1, -1, 1/2, -1/2, 3/8, -3/8, 5/16, -5/16, 35/128, -35/128, ...]. (See A001790 and A046161.)
The column sequences are A057077, 2*(A004526 with even numbers signed), 4*A008805 (signed), 8*A058187 (signed), 16*A189976 (signed), 32*A189980 (signed) for m = 0, 1, ..., 5.
The row sums give A005408 (from the o.g.f. due to the Riordan property), and the alternating row sums give A033999.
The row polynomials Dir(n, x), n >= 0, give solutions to the diophantine equation (a + 1)*X^2 - (a - 1)*Y^2 = 2 by virtue of the identity (a + 1)*Dir(n, -a)^2 - (a - 1)*Dir(n, a)^2 = 2, which is easily proved inductively using the recurrence Dir(n, a) = (1 + a)*(-1)^(n-1)*Dir(n-1, -a) + a*Dir(n-1, a) given below by Wolfdieter Lang. - Peter Bala, May 08 2025

Examples

			The triangle T(n,m) begins:
  n\m  0   1   2    3    4    5    6     7     8    9    10 ...
  0:   1
  1:   1   2
  2:  -1   2   4
  3:  -1  -4   4    8
  4:   1  -4 -12    8   16
  5:   1   6 -12  -32   16   32
  6:  -1   6  24  -32  -80   32   64
  7:  -1  -8  24   80  -80 -192   64   128
  8:   1  -8 -40   80  240 -192 -448   128   256
  9:   1  10 -40 -160  240  672 -448 -1024   256  512
  10: -1  10  60 -160 -560  672 1792 -1024 -2304  512  1024
  ...
Example for A-sequence recurrence: T(3,1) = Sum_{j=0..2} A(j)*T(2,j) = 2*(-1) + 0*2 + (-1/2)*4 = -4. Example for Z-sequence recurrence: T(4,0) = Sum_{j=0..3} Z(j)*T(3,j) = 1*(-1) + (-1)*(-4) + (1/2)*4 + (-1/2)*8 = +1. (For the A- and Z-sequences see a comment above.)
Example for the alternate recurrence: T(4,2) = 2*T(3,1) - T(3,2) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,2) + T(3,3) = T(3,3) = 8. - _Wolfdieter Lang_, Jul 30 2014
		

Crossrefs

Dir(n, x) : A005408 (x = 1), A002878 (x = 3/2), A001834 (x = 2), A030221 (x = 5/2), A002315 (x = 3), A033890 (x = 7/2), A057080 (x = 4), A057081 (x = 9/2), A054320 (x = 5), A077416 (x = 6), A028230 (x = 7), A159678 (x = 8), A049629 (x = 9), A083043 (x = 10),
(-1)^n * Dir(n, x): A122367 (x = -3/2); A079935 (x = -2), A004253 (x = -5/2), A001653 (x = -3), A049685 (x = -7/2), A070997 (x = -4), A070998 (x = -9/2), A072256(n+1) (x = -5).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, (-1)^Quotient[n, 2], (0 <= n && n < k) || (n == -1 && k == 1), 0, True, 2 T[n-1, k-1] - T[n-2, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2019, from Sage *)
  • Sage
    def T(n, k):
        if k == 0: return (-1)^(n//2)
        if (0 <= n and n < k) or (n == -1 and k == 1): return 0
        return 2*T(n-1, k-1) - T(n-2, k)
    for n in range(11): [T(n,k) for k in (0..n)] # Peter Luschny, Jul 29 2014

Formula

T(n, m) = [y^m] Dir(n,y) for n >= m >= 0 and 0 otherwise, with the polynomials Dir(y) defined in a comment above.
T(n, m) = 2^m*(S(n,m) + S(n-1,m)) with the entries S(n,m) of A049310 given there explicitly.
O.g.f. for polynomials Dir(y) see a comment above (Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2))).
O.g.f. for column m: ((1 + x)/(1 + x^2))*(2*x/(1 + x^2))^m, m >= 0, (Riordan property).
Recurrence for the polynomials: Dir(n, y) = 2*y*Dir(n-1, y) - Dir(n-2, y), n >= 1, with input D(-1, y) = -1 and D(0, y) = 1.
Triangle three-term recurrence: T(n,m) = 2*T(n-1,m-1) - T(n-2,m) for n >= m >= 1 with T(n,m) = 0 if 0 <= n < m, T(0,0) = 1, T(-1,1) = 0 and T(n,0) = A057077(n) = (-1)^(floor(n/2)).
From Wolfdieter Lang, Jul 30 2014: (Start)
In analogy to A157751 one can derive a recurrence for the row polynomials Dir(n, y) = Sum_{m=0..n} T(n,m)*y^m also using a negative argument but only one recursive step: Dir(n,y) = (1+y)*(-1)^(n-1)*Dir(n-1,-y) + y*Dir(n-1,y), n >= 1, Dir(0,y) = 1 (Dir(-1,y) = -1). See also A180870 from where this formula can be derived by row reversion.
This entails another triangle recurrence T(n,m) = (1 + (-1)^(n-m))*T(n-1,m-1) - (-1)^(n-m)*T(n-1,m), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = (-1)^floor(n/2). (End)
From Peter Bala, Aug 14 2022: (Start)
The row polynomials Dir(n,x), n >= 0, are related to the Chebyshev polynomials of the first kind T(n,x) by the binomial transform as follows:
(2^n)*(x - 1)^(n+1)*Dir(n,x) = (-1) * Sum_{k = 0..2*n+1} binomial(2*n+1,k)*T(k,-x).
Note that Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x). (End)
From Peter Bala, May 04 2025: (Start)
For n >= 1, the n-th row polynomial Dir(n, x) = (-1)^n * (U(n, -x) - U(n-1, -x)) = U(2*n, sqrt((1+x)/2)), where U(n, x) denotes the n-th Chebyshev polynomial of the second kind.
For n >= 1 and x < 1, Dir(n, x) = (-1)^n * sqrt(2/(1 - x )) * T(2*n+1, sqrt((1 - x)/2)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
Dir(n, x)^2 - 2*x*Dir(n, x)*Dir(n+1, x) + Dir(n+1, x)^2 = 2*(1 + x).
Dir(n, x) = (-1)^n * R(n, -2*(x+1)), where R(n, x) is the n-th row polynomial of the triangle A085478.
Dir(n, x) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n+k, 2*k) * (2*x + 2)^k. (End)

A054488 Expansion of (1+2*x)/(1-6*x+x^2).

Original entry on oeis.org

1, 8, 47, 274, 1597, 9308, 54251, 316198, 1842937, 10741424, 62605607, 364892218, 2126747701, 12395593988, 72246816227, 421085303374, 2454265004017, 14304504720728, 83372763320351, 485932075201378, 2832219687887917
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
b(n)^2 - 8*a(n)^2 = 17, with the companion sequence b(n)= A077240(n).
The odd part is A077413(n) with Diophantine companion A077239(n).

Examples

			8 = a(1) = sqrt((A077240(1)^2 - 17)/8) = sqrt((23^2 - 17)/8)= sqrt(64) = 8.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

Crossrefs

Cf. A077241 (even and odd parts).

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 21); Coefficients(R!( (1+2*x)/(1-6*x+x^2))); // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a[0]:=1: a[1]:=8: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    LinearRecurrence[{6,-1},{1,8},30] (* Harvey P. Dale, Oct 09 2017 *)
    Table[(LucasL[2*n+1, 2] + Fibonacci[2*n, 2])/2, {n,0,30}] (* G. C. Greubel, Jan 19 2020 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+2*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jan 19 2020
    
  • PARI
    apply( {A054488(n)=[1,8]*([0,-1;1,6]^n)[,1]}, [0..30]) \\ M. F. Hasler, Feb 27 2020
    
  • Sage
    [(lucas_number2(2*n+1,2,-1) + lucas_number1(2*n,2,-1))/2 for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

a(n) = 6*a(n-1) - a(n-2), a(0)=1, a(1)=8.
a(n) = ((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1) + 2*((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n))/(4*sqrt(2)).
a(n) = S(n, 6) + 2*S(n-1, 6), with S(n, x) Chebyshev's polynomials of the second kind, A049310. S(n, 6) = A001109(n+1).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-9)^k. - Philippe Deléham, Mar 05 2014
a(n) = (Pell(2*n+2) + 2*Pell(2*n))/2 = (Pell-Lucas(2*n+1) + Pell(2*n))/2. - G. C. Greubel, Jan 19 2020
E.g.f.: (1/4)*exp(3*x)*(4*cosh(2*sqrt(2)*x) + 5*sqrt(2)*sinh(2*sqrt(2)*x)). - Stefano Spezia, Jan 27 2020

Extensions

More terms from James Sellers, May 05 2000
Chebyshev comments from Wolfdieter Lang, Nov 08 2002

A081978 Smallest triangular number with exactly n divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 3, 0, 6, 0, 28, 0, 66, 36, 496, 0, 276, 0, 8128, 1631432881, 120, 0, 300, 0, 528, 0, 38009927549623740385753, 0, 630, 0, 33550336, 2172602007770041, 8256, 0, 209628, 0, 3570, 0, 8589869056, 0, 2016, 0, 137438691328, 0, 3240, 0, 662976, 0, 2096128, 41616
Offset: 1

Views

Author

Amarnath Murthy, Apr 03 2003

Keywords

Comments

a(p)=0 if p is an odd prime. If n is an odd composite number, then a(n) is a square; see A001110 for numbers that are both triangular and square. - Victoria A Sapko (vsapko(AT)frc.mass.edu), Sep 28 2007
From Jon E. Schoenfield, May 25 2014: (Start)
If n is an odd semiprime, then a triangular number t having exactly n divisors must be of the form t = p^(2r) * q^(2s) = (p^r * q^s)^2, where p and q are distinct primes (p < q) and r and s are positive integers such that (2r+1)*(2s+1) = n.
If t is the k-th triangular number k(k+1)/2, it can be factored as t = u * v where
u = k and v = (k+1)/2 if k is odd, or
u = k/2 and v = k+1 if k is even.
Since neither p nor q (each of which is greater than 1) can divide both k and (k+1)/2, or both k/2 and k+1, only four cases need to be considered:
Case 1: k is even, q^(2s) = k/2, p^(2r) = k+1
Case 2: k is even, p^(2r) = k/2, q^(2s) = k+1
Case 3: k is odd, q^(2s) = k, p^(2r) = (k+1)/2
Case 4: k is odd, p^(2r) = k, q^(2s) = (k+1)/2
These yield the following equations:
Case 1: 2 * q^(2s) + 1 = p^(2r)
Case 2: 2 * p^(2r) + 1 = q^(2s)
Case 3: 2 * p^(2r) - 1 = q^(2s)
Case 4: 2 * q^(2s) - 1 = p^(2r)
Case 1 can be ruled out: since q > p, q is odd, so 2 * q^(2s) + 1 == 3 (mod 16), but p^(2r) cannot be 3 (mod 16).
For a Case 2 solution, since q is odd, 2 * p^(2r) + 1 = q^(2s) == 1 (mod 8), so p^(2r) == 0 (mod 4), so p must be even. Therefore, p = 2, and we must satisfy the equation 2 * 2^(2r) + 1 = q^(2s), whose left-hand side, which is divisible by 3 for every nonnegative integer r, is thus the square of a prime iff it is 3^2. So r=1, q=3, and s=1, yielding t = 2^2 * 3^2 = 36, which is the smallest triangular number with exactly 9 divisors, so a(9)=36.
In Case 3, both p and q must be odd, and p^r must be a number w having the property that 2*w^2 - 1 is square (i.e., (q^s)^2); every such number w is in A001653 (1, 5, 29, 169, 985, ...), and the corresponding value of q^s = sqrt(2*w^2 - 1) is in A002315 (1, 7, 41, 239, 1393, ...). (Note that A001653 and A002315 are defined with offsets of 1 and 0, respectively, so A001653(j) corresponds to A002315(j-1).) However, for odd semiprime n > 9, we need r > 1 and/or s > 1. The only nontrivial power (i.e., number of the form x^m, where both x and m are integers greater than 2) in A001653 is A001653(4) = 169 = 13^2 [Pethö], so the only Case 3 solution with r > 1 is 2 * 13^4 - 1 = 239^2, which yields the 15-divisor triangular number 13^4 * 239^2 = 1631432881 = a(15). A Case 3 solution with r = 1 and s > 1 would require 2 * p^2 - 1 = q^(2s), which is impossible since p < q.
Finally, in Case 4, both p and q must be odd, q^s must be in A001653, and p^r must be the corresponding term in A002315. However, using the only nontrivial power in A001653 (i.e., 169 = 13^2) as q^s would not yield a valid solution here because it would mean p = 239 and q = 13 (contradicting p < q). Thus, if a Case 4 solution exists for odd semiprime n > 9, we must have s = 1 and r > 1, so n = (2r+1)*(2s+1) = (2r+1)*3, where 2r+1 is prime. Such a solution requires an index j satisfying two conditions: (1) A001653(j) = q^1 = q is prime, and (2) the corresponding term A002315(j-1) = p^r is a nontrivial prime power. There are no nontrivial powers (whether of primes or composites) among the terms in A002315 below 10^5000. Moreover, the terms in A001653 are the odd-indexed terms from A000129 (Pell numbers), so condition (1) requires that j satisfy A000129(2j-1) = q. A096650 lists the indices of all prime or probable prime Pell numbers up to 100000. A check of the value A002315(j-1) corresponding to each prime or probable prime among the odd-indexed Pell numbers A000129(2j-1) up to j=50000 determined that none were nontrivial powers, so if any Case 4 solution with n > 9 exists, it will yield a triangular number t = p^(2r) * q^2 = (2 * q^2 - 1) * q^2, where q >= A000129(100001) = 3.16...*10^38277, so t > 10^153110. Since there are no nontrivial powers at all in A002315 below 10^5000, and since prime Pell numbers above A000129(50000) seem so scarce, it seems extremely unlikely that any such solution exists.
Thus, a(n) = 0 for every odd semiprime n that is not divisible by 3, and assuming that no Case 4 solution for odd semiprime n > 9 exists, the only nonzero a(n) where n is an odd semiprime greater than 9 is a(15) = 13^4 * 239^2 = 1631432881.
If j is prime and n=2j, then a(n) (if nonzero) must be of the form p^r * q, where p and q are distinct primes, r = j-1, and q is one of 3 functions of p^r:
q = f1(p^r) = 2*p^r - 1
q = f2(p^r) = 2*p^r + 1
q = f3(p^r) = (p^r - 1)/2
Of these, q = f1(p^r) for all but two cases among n < 1000:
at n=362, q = f2(p^r), with p=3;
at n=514, q = f3(p^r), with p=331.
Conjecture: a(2j) > 0 for all j > 1. (This conjecture holds at least through n = 2j = 1000. The largest a(n) for even n <= 1000 is a(898) = 20599^448 * (2 * 20599^448 - 1) = 3.21...*10^3865.) (End)
For more known terms, and information about unknown terms, see Links. - Jon E. Schoenfield, May 26 2014
If d(k*(k+1)/2) = 21, note that 2*q^2 = p^6 + 1 = (p^2 + 1)*(p^4 - p^2 + 1) has no prime solutions, so then k = p^2 and k+1 = 2*q^6, where p and q are distinct primes. We can prove 2*x^3 - y^2 = 1 has only one positive solution (1, 1) which shows that p^2 + 1 = 2*q^6 has no prime solutions. In the ring of Gaussian integers, x^3 = (1+y*i)*(1-y*i)/((1+i)*(1-i)) and (1+y*i)/(1+i) is coprime to (1-y*i)/(1-i), thus (1+y*i)/(1+i) = (u+v*i)^3 and (1-y*i)/(1-i) = (u-v*i)^3 for some integers u and v. Note that 1+y*i = (1+i)*(u+v*i)^3 = (u+v)*(u^2+v^2-4*u*v) + (u-v)*(u^2+v^2+4*u*v)*i, we have (u+v)*(u^2+v^2-4*u*v) = 1. Therefore, u = 1 and v = 0 if u > v, which means y = (u-v)*(u^2+v^2+4*u*v) = 1. This implies that a(21) = 0. - Jinyuan Wang, Aug 22 2020
a(n) is a perfect number for all n such that n/2 is in A000043. - J. Lowell, Mar 16 2024

Examples

			a(2)=3 because the smallest triangular number with 2 divisors is T(2)=3.
		

Crossrefs

Extensions

More terms from Victoria A Sapko (vsapko(AT)frc.mass.edu), Sep 28 2007
a(14) corrected and a(20) added by Jon E. Schoenfield, May 11 2014
a(21)-a(24) from Jinyuan Wang, Aug 22 2020
a(25)-a(45) from Jon E. Schoenfield, Jan 28 2021

A084930 Triangle of coefficients of Chebyshev polynomials T_{2n+1} (x).

Original entry on oeis.org

1, -3, 4, 5, -20, 16, -7, 56, -112, 64, 9, -120, 432, -576, 256, -11, 220, -1232, 2816, -2816, 1024, 13, -364, 2912, -9984, 16640, -13312, 4096, -15, 560, -6048, 28800, -70400, 92160, -61440, 16384, 17, -816, 11424, -71808, 239360, -452608, 487424, -278528, 65536, -19, 1140, -20064, 160512, -695552
Offset: 0

Views

Author

Gary W. Adamson, Jun 12 2003

Keywords

Comments

From Herb Conn, Jan 28 2005: (Start)
"Letting x = 2 Cos 2A, we have the following trigonometric identities:
"Sin 3A = 3*Sin A - 4*Sin^3 A
"Sin 5A = 5*Sin A - 20*Sin^3 A + 16*Sin^5 A
"Sin 7A = 7*Sin A - 56*Sin^3 A + 112*Sin^5 A - 64*Sin^7 A
"Sin 9A = 9*Sin A - 120*Sin^3 A + 432*Sin^5 A - 576*Sin^7 A + 256*Sin^9 A, etc." (End)
Cayley (1876) states "Write sin u = x, then we have sin u = x, [...] sin 3u = 3x - 4x^3, [...] sin 5u = 5x - 20x^3 + 16 x^5, [...]". Since T_n(cos(u)) = cos(nu) for all integer n, sin(u) = cos(u - Pi/2), and sin(u + k*Pi) = (-1)^k sin(u) it follows that T_n(sin(u)) = (-1)^((n-1)/2) sin(nu) for all odd integer n. - Michael Somos, Jun 19 2012
From Wolfdieter Lang, Aug 05 2014: (Start)
The coefficient triangle t(n,k) for the row polynomials Todd(n, x) := T_{2*n+1}(sqrt(x))/sqrt(x) = sum(t(n,k)*x^k, k=0..n) is the Riordan triangle ((1-z)/(1+z)^2, 4*z/(1+z)^2) (rewrite the g.f. for the present triangle a(n,k) given in the formula section). The triangle entries t(n,k) = a(n,k), but the interpretation of the row polynomials is different for both cases.
From the relation Todd(n, x) = S(n, 2*(2*x-1)) - S(n-1, 2*(2*x-1)) with the Chebyshev S-polynomials (see A049310 and the formula section of A130777) follows the recurrence: Todd(n, x) = 2*(-1)^n*(1-x)*Todd(n-1, 1-x) + (2x-1)*Todd(n-1, x), n >= 1, Todd(0, x) = 1.
This corresponds to the triangle recurrence t(n,k) = (2*(k+1)*(-1)^(n-k) - 1)*t(n-1,k) + 2*(1 +(-1)^(n-k))*t(n-1,k-1) + 2*(-1)^(n-k)*sum(binomial(l+1,k)*t(n-1,l), l=k+1..n-1), n >= k >= 1, t(n,k) = 0 if n < k, t(n,0) = (-1)^n*(2*n+1). Compare this with the shorter recurrence involving the rational A-sequence for this Riordan triangle which has g.f. x^2/(2-x-2*sqrt(1-x)). t(n,k) = sum(A(j)*t(n-1,k-1+j), j=0..n-k), n >= k >= 1. The Z-sequence has g.f. -(1 + 2/sqrt(1-x)). For the A- and Z-sequence see a link under A006232. (End)

Examples

			The triangle a(n,k):
n   2n+1\k 0     1      2       3       4        5        6         7        8        9      10 ...
0    1:    1
1    3:   -3     4
2    5:    5   -20     16
3    7:   -7    56   -112      64
4    9:    9  -120    432    -576     256
5   11:  -11   220  -1232    2816   -2816     1024
6   13:   13  -364   2912   -9984   16640   -13312     4096
7   15:  -15   560  -6048   28800  -70400    92160   -61440     16384
8   17:   17  -816  11424  -71808  239360  -452608   487424   -278528    65536
9   19:  -19  1140 -20064  160512 -695552  1770496 -2723840   2490368 -1245184   262144
10  21:   21 -1540  33264 -329472 1793792 -5870592 12042240 -15597568 12386304 -5505024 1048576
... formatted and extended by _Wolfdieter Lang_, Aug 02 2014.
---------------------------------------------------------------------------------------------------
First few polynomials T_{2n+1}(x) are
1*x - 3*x + 4*x^3
5*x - 20*x^3 + 16*x^5
- 7*x + 56*x^3 - 112*x^5 + 64*x^7
9*x - 120*x^3 + 432*x^5 - 576*x^7  + 256*x^9
		

References

  • A. Cayley, On an Expression for 1 +- sin(2p+1)u in Terms of sin u, Messenger of Mathematics, 5 (1876), pp. 7-8 = Mathematical Papers Vol. 10, n. 630, pp. 1-2.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990. p. 37, eq. (1.96) and p. 4, eq. (1.10).

Crossrefs

Cf. A053120 (coefficient triangle of T-polynomials), A127674 (even-indexed T polynomials).
Cf. A127675 (row reversed triangle with different signs).

Programs

  • Mathematica
    row[n_] := (T = ChebyshevT[2*n+1, x]; Coefficient[T, x, #]& /@ Range[1, Exponent[T, x], 2]); Table[row[n], {n, 0, 9} ] // Flatten (* Jean-François Alcover, Aug 06 2014 *)

Formula

Alternate rows of A008310.
a(n,k)=((-1)^(n-k))*(2^(2*k))*binomial(n+1+k,2*k+1)*(2*n+1)/(n+1+k) if n>=k>=0 else 0.
From Wolfdieter Lang, Aug 02 2014: (Start)
a(n,k) = [x^(2*k+1)] T_{2*n+1}(x), n >= k >= 0.
G.f. for row polynomials: x*(1-z)/(1 + 2*(1- 2*x^2)*z + z^2). (End)
The first column sequences are: A157142, 4*(-1)^(n+1)*A000330(n), 16*(-1)^n*A005585(n-1), 64*(-1)^(n+1)*A050486(n-3), 256*(-1)^n*A054333(n-4), ... - Wolfdieter Lang, Aug 05 2014

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 26 2003
Edited; example rewritten (to conform with the triangle) by Wolfdieter Lang, Aug 02 2014

A120861 Fixed-k dispersion for Q = 8: Square array D(g,h) (g, h >= 1), read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 7, 3, 12, 41, 4, 19, 70, 239, 5, 24, 111, 408, 1393, 6, 31, 140, 647, 2378, 8119, 8, 36, 181, 816, 3771, 13860, 47321, 9, 48, 210, 1055, 4756, 21979, 80782, 275807, 10, 53, 280, 1224, 6149, 27720, 128103, 470832, 1607521, 11, 60, 309, 1632, 7134
Offset: 1

Views

Author

Clark Kimberling, Jul 09 2006

Keywords

Comments

For each positive integer n, there exists a unique pair (j,k) of positive integers such that (j + k + 1)^2 - 4*k = 8*n^2; in fact, j(n) = A087056(n) and k(n) = A087059(n).
Suppose g >= 1 and let k = k(g). The numbers in row g of array D are among those n for which (j + k + 1)^2 - 4*k = 8*n^2 for some j; that is, k stays fixed and j and n vary - hence the name "fixed-k dispersion". (The fixed-j dispersion for Q = 8 is A120860.)
Every positive integer occurs exactly once in array D and every pair of rows are mutually interspersed. That is, beginning at the first term of any row having greater initial term than that of another row, all the following terms individually separate the individual terms of the other row.

Examples

			Northwest corner:
  1,  7,  41,  239, 1393,  8119,  47321, ...
  2, 12,  70,  408, 2378, 13860,  80782, ...
  3, 19, 111,  647, 3771, 21979, 128103, ...
  4, 24, 140,  816, 4756, 27720, 161564, ...
  5, 31, 181, 1055, 6149, 35839, 208885, ...
  6, 36, 210, 1224, 7134, 41580, 242346, ...
... [Edited by _Petros Hadjicostas_, Jul 07 2020]
		

Crossrefs

Cf. A087056, A087059, A120858, A120859, A120860, A120862, A120863, A336109 (first column), A002315 (first row), A001542 (2nd row), A253811 (3rd row).

Programs

  • PARI
    f(n) = 3*n + 2*sqrtint(2*n^2) + 2;
    unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)););};
    D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g,1]=t; listput(listus, t); t = f(t); m[g,2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g,h-1] - m[g,h-2]; m[g, h] = t; listput(listus, t););); m;}; \\ Michel Marcus, Jul 08 2020

Formula

Define f(n) = 3*n + 2*floor(n*sqrt(2)) + 2. Let D(g,h) be the term in row g and column h of the array to be defined:
D(1,1) = 1; D(1,2) = f(1); and D(1,h) = 6*D(1,h-1) - D(1,h-2) for h >= 3.
For arbitrary g >= 1, once row g is defined, define D(g+1,1) = least positive integer not in rows 1,2,...,g; D(g+1,2) = f(D(g+1,1)); and D(g+1,h) = 6*D(g+1,h-1) - D(g+1,h-2) for h >= 3. All rows after row 1 are thus inductively defined. [Corrected by Petros Hadjicostas, Jul 07 2020]

Extensions

Name edited by Petros Hadjicostas, Jul 07 2020

A046177 Squares (A000290) which are also hexagonal numbers (A000384).

Original entry on oeis.org

1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441, 4446390382511295358038307980025, 5131130648390546663702275158894481
Offset: 1

Views

Author

Keywords

Comments

Also, odd square-triangular numbers (or bisection of A001110 = {0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, ...} = Numbers that are both triangular and square: a(n) = 34a(n-1) - a(n-2) + 2). - Alexander Adamchuk, Nov 06 2007
Let y^2 = x*(2*x-1) = H_x (x>=1). The least both hexagonal and square number which is greater than y^2 is given by the relation (24*x+17*y-6)^2 = H_{17*x+12*y-4}. - Richard Choulet, May 01 2009
As n increases, this sequence is approximately geometric with common ratio r = lim(n -> Infinity, a(n)/a(n-1)) = ( 1+ sqrt(2))^8 = 577 + 408 * sqrt(2). - Ant King Nov 08 2011
Also centered octagonal numbers (A016754) which are also triangular numbers (A000217). - Colin Barker, Jan 16 2015
Also hexagonal numbers (A000384) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 25 2015

References

  • M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80.

Crossrefs

Cf. A001110 (Numbers that are both triangular and square).

Programs

  • Mathematica
    LinearRecurrence[{1155, -1155, 1}, {1, 1225, 1413721}, 11] (* Ant King, Nov 08 2011 *)
  • PARI
    Vec(x*(1+70*x+x^2)/((1-x)*(1-1154*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 16 2015

Formula

a(n) = A001110(2n-1). - Alexander Adamchuk, Nov 06 2007
a(n+1) = 577*a(n)+36+204*(8*a(n)^2+a(n))^0.5 for n>=1 (a(0)=1). - Richard Choulet, May 01 2009
a(n+2) = 1154*a(n+1) - a(n) + 72 for n>=0. - Richard Choulet, May 01 2009
From Ant King, Nov 07 2011: (Start)
a(n) = 1155*a(n-1) - 1155*a(n-2) + a(n-3).
a(n) = 1/32*((1 + sqrt(2))^(8*n - 4) + (1 - sqrt(2))^(8*n-4) - 2).
a(n) = floor(1/32*(1 + sqrt(2))^(8*n - 4)).
a(n) = 1/32*((tan(3*Pi/8))^(8*n-4) + (tan(Pi/8))^(8*n-4) - 2).
a(n) = floor(1/32*(tan(3*Pi/8))^(8*n-4)).
G.f.: x*(1 + 70*x + x^2)/((1 - x)*(1 - 1154*x + x^2)).
(End)
a(n) = A096979(4*n - 3). - Ivan N. Ianakiev, Sep 05 2016
a(n) = (1/2) * (A002315(n))^2 * ((A002315(n))^2 + 1) = ((2*x + 1)*sqrt(x^2 + (x+1)^2))^2, where x = (1/2)*(A002315(n)-1). - Ivan N. Ianakiev, Sep 05 2016

A094015 Expansion of (1+4*x)/(1-8*x^2).

Original entry on oeis.org

1, 4, 8, 32, 64, 256, 512, 2048, 4096, 16384, 32768, 131072, 262144, 1048576, 2097152, 8388608, 16777216, 67108864, 134217728, 536870912, 1073741824, 4294967296, 8589934592, 34359738368, 68719476736, 274877906944
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Row sums of triangle A135838. - Gary W. Adamson, Dec 01 2007
Row sums of triangle A152842. - Reinhard Zumkeller, May 01 2014

Crossrefs

Programs

  • Haskell
    a094015 = sum . a152842_row  -- Reinhard Zumkeller, May 01 2014
    
  • Magma
    [2*8^Floor((n-1)/2)*(3+(-1)^n): n in [0..30]]; // G. C. Greubel, Nov 22 2021
    
  • Maple
    a:=n->mul(3-(-1)^j,j=1..n):seq(a(n),n=0..25); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    Table[8^Floor[n/2]*Mod[4^n, 5], {n, 0, 30}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    [8^(n//2)*(4^n%5) for n in (0..30)] # G. C. Greubel, Nov 22 2021

Formula

a(n) = 2^(3*n/2)*(1 + sqrt(2) + (-1)^n*(1 - sqrt(2)))/2.
a(n) = (1/4)*(3 + (-1)^n)*8^floor((n+1)/2). - Paul Barry, Jul 14 2004
a(n) = (1 + sqrt(2))*(2*sqrt(2))^n/2 + (1 - sqrt(2))*(-2*sqrt(2))^n/2. Third binomial transform is A002315 (NSW numbers). - Paul Barry, Jul 17 2004
a(n) = 2^A007494(n). - Paul Barry, Aug 18 2007
a(n) = A016116(n+1)*A000079(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 8^floor(n/2)*A010685(n). - G. C. Greubel, Nov 22 2021

A373330 a(n) is the difference between T = A000217(n^2) and the greatest square not exceeding T.

Original entry on oeis.org

0, 0, 1, 9, 15, 1, 41, 0, 55, 72, 9, 156, 36, 204, 262, 144, 135, 289, 209, 316, 111, 117, 406, 309, 527, 261, 342, 860, 804, 36, 954, 1200, 624, 605, 1257, 969, 1400, 741, 849, 1856, 1639, 0, 1721, 2076, 855, 701, 1770, 1101, 1719, 397, 426, 1980, 1416, 2449, 1142
Offset: 0

Views

Author

Hugo Pfoertner, Jun 02 2024

Keywords

Crossrefs

A373331 and A373332 are the coordinates of the observed lower envelope of this sequence.

Programs

  • Mathematica
    Array[PolygonalNumber[#^2] - Floor[Sqrt[(#^4 + #^2)/2]]^2 &, 55, 0] (* Michael De Vlieger, Jun 02 2024 *)
  • PARI
    a(n) = my(T=(n^4+n^2)/2); T-sqrtint(T)^2
    
  • Python
    from sympy import integer_nthroot
    def A373330(n): return (T:=(n**4 + n**2) // 2)-(integer_nthroot(T,2)[0])**2
    # Karl-Heinz Hofmann, Jul 01 2024

Formula

a(n) = A000217(n^2) - A373329(n)^2.
a(A002315(n)) = 0.

A202391 Indices of the smallest of four consecutive triangular numbers summing up to a square.

Original entry on oeis.org

5, 39, 237, 1391, 8117, 47319, 275805, 1607519, 9369317, 54608391, 318281037, 1855077839, 10812186005, 63018038199, 367296043197, 2140758220991, 12477253282757, 72722761475559, 423859315570605, 2470433131948079
Offset: 1

Views

Author

Max Alekseyev, Dec 18 2011

Keywords

Comments

Positive integers n such that A000217(n) + A000217(n + 1) + A000217(n + 2) + A000217(n + 3) is a square (=A075870(n+1)^2).

Crossrefs

Formula

a(n) = A002315(n) - 2.
G.f.: x*(1+x)*(x-5) / ( (x-1)*(1-6*x+x^2) ). - R. J. Mathar, Dec 19 2011
a(n+2) = 6*a(n+1) - a(n) + 8; a(n+3) = 7*a(n+2) - 7*a(n+1) + a(n); a(n+1) = (-4 + (7 + 5*r)*(3 + 2*r)^n + (7 - 5*r)*(3 - 2*r)^n)/2 where r = sqrt(2). - Paul Weisenhorn, Jan 13 2013
Previous Showing 71-80 of 142 results. Next